
Lexical elements
See also
These topics provide a formal definition of the Borland C++ lexical elements. They describe the different
categories of word-like units (tokens) recognized by a language.
See the topics listed under See Also to learn about lexical elements.
The tokens in Borland C++ are derived from a series of operations performed on your programs by the
compiler and its built-in preprocessor.
A Borland C++ program starts as a sequence of ASCII characters representing the source code, created
by keystrokes using a suitable text editor (such as the Borland C++ editor). The basic program unit in
Borland C++ is the file. This usually corresponds to a named file located in RAM or on disk and having
the extension .C or .CPP.
The preprocessor first scans the program text for special preprocessor directives (see Preprocessor
directives for details). For example, the directive #include <inc_file> adds (or includes) the contents of
the file inc_file to the program before the compilation phase. The preprocessor also expands any
macros found in the program and include files.
In the tokenizing phase of compilation, the source code file is parsed (that is, broken down) into tokens
and whitespace.

Whitespace
See also
Whitespace is the collective name given to spaces (blanks), horizontal and vertical tabs, newline
characters, and comments. Whitespace can serve to indicate where tokens start and end, but beyond
this function, any surplus whitespace is discarded. For example, the two sequences
int i; float f;
and
int i;
 float f;
are lexically equivalent and parse identically to give the six tokens:
 int
 i
 ;
 float
 f
 ;
The ASCII characters representing whitespace can occur within literal strings, in which case they are
protected from the normal parsing process (they remain as part of the string). For example,
char name[] = "Borland International";
parses to seven tokens, including the single literal-string token "Borland International"

Line splicing with \
A special case occurs if the final newline character encountered is preceded by a backslash (\). The
backslash and new line are both discarded, allowing two physical lines of text to be treated as one unit.
"Borland \
International"
is parsed as "Borland International" (see String constants for more information).

Comments
See also
Comments are pieces of text used to annotate a program. Comments are for the programmer's use
only; they are stripped from the source text before parsing.
There are two ways to delineate comments: the C method and the C++ method. Both are supported by
Borland C++, with an additional, optional extension permitting nested comments. If you are not
compiling for ANSI compatibility, you can use any of these kinds of comments in both C and C++
programs.
You should also follow the guidelines on the use of whitespace and delimiters in comments discussed
later in this topic to avoid other portability problems.

C comments
A C comment is any sequence of characters placed after the symbol pair /*. The comment terminates at
the first occurrence of the pair */ following the initial /*. The entire sequence, including the four comment-
delimiter symbols, is replaced by one space after macro expansion. Note that some C implementations
remove comments without space replacements.
Borland C++ does not support the nonportable token pasting strategy using /**/. Token pasting in
Borland C++ is performed with the ANSI-specified pair ##, as follows:
#define VAR(i,j) (i/**/j) /* won't work */
#define VAR(i,j) (i##j) /* OK in Borland C++ */
#define VAR(i,j) (i ## j) /* Also OK */
In Borland C++,
int /* declaration */ i /* counter */;
parses as these three tokens:
int i;
See Token Pasting with ## for a description of token pasting.

C++ comments
C++ allows a single-line comment using two adjacent slashes (//). The comment can start in any
position, and extends until the next new line:
class X { // this is a comment
... };
You can also use // to create comments in C code. This is specific to Borland C++.

Nested comments
ANSI C doesn't allow nested comments. The attempt to comment out a line
/* int /* declaration */ i /* counter */; */
fails, because the scope of the first /* ends at the first */. This gives
i ; */
which would generate a syntax error.
By default, Borland C++ won't allow nested comments, but you can override this with compiler options.
See Options|Project|Compiler|Source|Nested Comments for information on enabling nested comments.

Delimiters and whitespace
In rare cases, some whitespace before /* and //, and after */, although not syntactically mandatory, can
avoid portability problems. For example, this C++ code:
int i = j//* divide by k*/k;
+m;
parses as int i = j +m; not as

int i = j/k;
+m;
as expected under the C convention. The more legible
int i = j/ /* divide by k*/ k;
+m;
avoids this problem.

Tokens
See also
Tokens are word-like units recognized by a language. Borland C++ recognizes six classes of tokens.
Here is the formal definition of a token:
 keyword
 identifier
 constant
 string-literal
 operator
 punctuator (also known as separators)
As the source code is scanned, tokens are extracted in such a way that the longest possible token from
the character sequence is selected. For example, external would be parsed as a single identifier, rather
than as the keyword extern followed by the identifier al.
See Token Pasting with ## for a description of token pasting.

Keywords
Keywords are words reserved for special purposes and must not be used as normal identifier names.
See the:

Alphabetical list of keywords.
Table of C++ Keywords
Table of Borland C++ Register Pseudovariables

You can use options to select ANSI keywords only, UNIX keywords, and so on; see Options|Project|
Compiler|Source|Language Compliance for information on these options.
If you use non-ANSI keywords in a program and you want the program to be ANSI compliant, always
use the non-ANSI keyword versions that are prefixed with double underscores. Some keywords have a
version prefixed with only one underscore; these keywords are provided to facilitate porting code
developed with other compilers. For ANSI-specified keywords there is only one version.
Note: Note that the keywords _ _try and try are an exception to the discussion above. The keyword try

is required to match the catch keyword in the C++ exception-handling mechanism. try cannot be
substituted by _ _try. The keyword _ _try can only be used to match the _ _except or _ _finally
keywords. See the discussions on C++ exception handling and C-based structured exceptions for
more information.

Identifiers
See also
Here is the formal definition of an identifier:
identifier:
nondigit
identifier nondigit
identifier digit
nondigit: one of
a b c d e f g h i j k l m n o p q r s t u v w x y z _
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
digit: one of
0 1 2 3 4 5 6 7 8 9

Naming and length restrictions
Identifiers are arbitrary names of any length given to classes, objects, functions, variables, user-defined
data types, and so on. (Identifiers can contain the letters a to z and A to Z, the underscore character "_",
and the digits 0 to 9.) There are only two restrictions:
 The first character must be a letter or an underscore.
 By default, Borland C++ recognizes only the first 32 characters as significant. The number of significant
characters can be reduced by menu and command-line options, but not increased. See Options|Project|
Compiler|Source|Identifier Length for information on these options.
Case sensitivity
Borland C++ identifiers are case sensitive, so that Sum, sum and suM are distinct identifiers.
Global identifiers imported from other modules follow the same naming and significance rules as normal
identifiers. However, Borland C++ offers the option of suspending case sensitivity to allow compatibility
when linking with case-insensitive languages. With the case-insensitive option, the globals Sum and
sum are considered identical, resulting in a possible. "Duplicate symbol" warning during linking.

An exception to these rules is that identifiers of type _ _pascal are always converted to all uppercase for
linking purposes.

Uniqueness and scope
Although identifier names are arbitrary (within the rules stated), errors result if the same name is used
for more than one identifier within the same scope and sharing the same name space. Duplicate names
are legal for different name spaces regardless of scope rules.

Constants
See also
Constants are tokens representing fixed numeric or character values.
Borland C++ supports four classes of constants: integer, floating point, character (including strings), and
enumeration.
Internal representation of numerical types shows how these types are represented internally.
The data type of a constant is deduced by the compiler using such clues as numeric value and the
format used in the source code. The formal definition of a constant is shown in the following table.

Constants: Formal Definitions
constant: nonzero-digit: one of
 floating-constant 1 2 3 4 5 6 7 8 9
 integer-constant
 numeration-constant
 character-constant
floating-constant: octal-digit: one of
 fractional-constant <exponent-part> <floating-suffix> 0 1 2 3 4 5 6 7
 digit-sequence exponent-part <floating-suffix>
fractional-constant: hexadecimal-digit: one of
 <digit-sequence> . digit-sequence 0 1 2 3 4 5 6 7 8 9
 digit-sequence . a b c d e f

A B C D E F
exponent-part: integer-suffix:
 e <sign> digit-sequence unsigned-suffix <long-suffix>
 E <sign> digit-sequence long-suffix <unsigned-suffix>
sign: one of unsigned-suffix: one of
 + - u U
digit-sequence: long-suffix: one of
 digit l L
 digit-sequence digit
floating-suffix: one of enumeration-constant:
 f l F L identifier
integer-constant: character-constant
 decimal-constant <integer-suffix> c-char-sequence
 octal-constant <integer-suffix>
 hexadecimal-constant <integer-suffix>
decimal-constant: c-char-sequence:
 nonzero-digit c-char
 decimal-constant digit c-char-sequence c-char

octal-constant: c-char:
 0 Any character in the source character set

 octal-constant octal-digit except the single-quote ('), backslash
(\), or

newline character escape-sequence.
hexadecimal-constant: escape-sequence: one of the following
 0 x hexadecimal-digit \" \' \? \\
 0 X hexadecimal-digit \a \b \f \n
 hexadecimal-constant hexadecimal-digit \o \oo \ooo \r

\t \v \Xh... \xh...

Integer constants
See also
Integer constants can be decimal (base 10), octal (base 8) or hexadecimal (base 16). In the absence of
any overriding suffixes, the data type of an integer constant is derived from its value, as shown in
Borland C++ integer constants without L or U.. Note that the rules vary between decimal and
nondecimal constants.

Decimal
Decimal constants from 0 to 4,294,967,295 are allowed. Constants exceeding this limit are truncated.
Decimal constants must not use an initial zero. An integer constant that has an initial zero is interpreted
as an octal constant. Thus,
int i = 10; /*decimal 10 */
int i = 010; /*decimal 8 */
int i = 0; /*decimal 0 = octal 0 */

Octal
All constants with an initial zero are taken to be octal. If an octal constant contains the illegal digits 8 or
9, an error is reported. Octal constants exceeding 037777777777 are truncated.

Hexadecimal
All constants starting with 0x (or 0X) are taken to be hexadecimal. Hexadecimal constants exceeding
0xFFFFFFFF are truncated.

long and unsigned suffixes
The suffix L (or l) attached to any constant forces the constant to be represented as a long. Similarly,
the suffix U (or u) forces the constant to be unsigned. It is unsigned long if the value of the number
itself is greater than decimal 65,535, regardless of which base is used. You can use both L and U
suffixes on the same constant in any order or case: ul, lu, UL, and so on. See the table of Borland
constants.
The data type of a constant in the absence of any suffix (U, u, L, or l) is the first of the following types
that can accommodate its value:

Decimal int, long int, unsigned long int
Octal int, unsigned int, long int, unsigned long int
Hexadecimal int, unsigned int, long int, unsigned long int
If the constant has a U or u suffix, its data type will be the first of unsigned int, unsigned long int that
can accommodate its value.
If the constant has an L or l suffix, its data type will be the first of long int, unsigned long int that can
accommodate its value.
If the constant has both u and l suffixes, (ul, lu, Ul, lU, uL, Lu, LU or UL), its data type will be unsigned
long int.
Borland C++ integer constants without L or U summarizes the representations of integer constants in all
three bases. The data types indicated assume no overriding L or U suffix has been used.

Extended integer types
See also
You can specify the size for integer types. You must use the appropriate suffix when using extended
integers.
Type Suffix Example Storage
__int8 i8 __int8 c = 127i8; 8 bits
__int16 i16 __int16 s = 32767i16; 16 bits
__int32 i32 __int32 i = 123456789i32;32 bits
__int64 i64 __int64 big = 12345654321i64; 64 bits
unsigned __int64 ui64 unsigned __int64 hugeInt = 64 bits

 1234567887654321ui64;

Borland C++ integer constants without L or U
See also

Decimal constants
0 to 32,767 int
32,768 to 2,147,483,647 long
2,147,483,648 to 4,294,967,295 unsigned long

> 4294967295 truncated

Octal constants
00 to 077777 int
010000 to 0177777 unsigned int
02000000 to 017777777777 long
020000000000 to 037777777777 unsigned long

> 037777777777 truncated

Hexadecimal constants
0x0000 to 0x7FFF int
0x8000 to 0xFFFF unsigned int
0x10000 to 0x7FFFFFFF long
0x80000000 to 0xFFFFFFFF unsigned long

>0xFFFFFFFF truncated

Floating-point constants
See also
A floating-point constant consists of:
 Decimal integer
 Decimal point
 Decimal fraction
 e or E and a signed integer exponent (optional)
 Type suffix: f or F or l or L (optional)
You can omit either the decimal integer or the decimal fraction (but not both). You can omit either the
decimal point or the letter e (or E) and the signed integer exponent (but not both). These rules allow for
conventional and scientific (exponent) notations.
Negative floating constants are taken as positive constants with the unary operator minus (-) prefixed.
Here are some examples:

Constant Value
23.45e6 23.45 106
.0 0
0. 0
1. 1.0 100 = 1.0
-1.23 -1.23
2e-5 2.0 10-5
3E+10 3.0 1010
.09E34 0.09 1034

In the absence of any suffixes, floating-point constants are of type double. However, you can coerce a
floating constant to be of type float by adding an f or F suffix to the constant. Similarly, the suffix l or L
forces the constant to be data type long double. The table below shows the ranges available for float,
double, and long double.

Borland C++ floating-point constant sizes and ranges
Type Size (bits) Range
float 32 3.4 10-38 to 3.4 1038

double 64 1.7 10-308 to 1.7 10308

long double 80 3.4 10-4932 to 1.1 104932

Character constants
See also
A character constant is one or more characters enclosed in single quotes, such as 'A', '+', or '\n'. In C,
single-charactrer constants have data type int. The number of bits used to internally represent a
character constant is sizeof(int). In a 16-bit program, the upper byte is zero or sign-extended. In C++, a
character constant has type char. Multicharacter constants in both C and C++ have data type int.
To learn more about character constants, see
 Three char types
 Escape sequences
 Wide-character and multi-character constants
Note: To compare sizes of character types, compile this as a C program and then as a C++ program.
#include <stdio.h>
#define CH 'x' /* A CHARACTER CONSTANT */
void main(void) {
 char ch = 'x'; /* A char VARIABLE */
 printf("\nSizeof int = %d", sizeof(int));
 printf("\nSizeof char = %d", sizeof(char));
 printf("\nSizeof ch = %d", sizeof(ch));
 printf("\nSizeof CH = %d", sizeof(CH));
 printf("\nSizeof wchar_t = %d", sizeof(wchar_t));
}
Note: Sizes are in bytes.

Sizes of character types
Output when compiled as C program Output when compiled as C++ program
16-bit 32-bit 16-bit32-bit
Sizeof int = 2 4Sizeof int= 2 4
Sizeof char = 1 1Sizeof char = 1 1
Sizeof ch = 1 1Sizeof ch = 1 1
Sizeof CH = 2 4Sizeof CH = 1 1
Sizeof wchar_t = 2 2 Sizeof wchar_t = 2 2

The three char types
See also
One-character constants, such as 'A', '\t' and '007', are represented as int values. In this case, the low-
order byte is sign extended into the high bit; that is, if the value is greater than 127 (base 10), the upper
bit is set to -1 (=0xFF). This can be disabled by declaring that the default char type is unsigned, which
forces the high bit to be zero regardless of the value of the low bit. See Options|Project|C++ Options|C+
+ Compatibility|Do not treat 'char' as distinct type for information on these options.
The three character types, char, signed char, and unsigned char, require an 8-bit (one byte) storage.
In C and Borland C++ programs prior to version Borland C++ 4.0 , char is treated the same as signed
char. The behavior of C programs is unaffected by the distinction between the three character types.
Note: To retain the old behavior, use the -K2 command-line option and Borland C++ 3.1 header files

and libraries.
In a C++ program, a function can be overloaded with arguments of type char, signed char, or
unsigned char. For example, the following function prototypes are valid and distinct:
void func(char ch);
void func(signed char ch);
void func(unsigned char ch);
If only one of the above prototypes exists, it will accept any of the three character types. For example,
the following is acceptable:
void func(unsigned char ch);
void main(void) {
 signed char ch = 'x';
 func(ch);
 }
See Options|Project|Compiler|Code Generation for a description of code-generation options.

Escape sequences
See also
The backslash character (\) is used to introduce an escape sequence, which allows the visual
representation of certain nongraphic characters. For example, the constant \n is used to the single
newline character.
A backslash is used with octal or hexadecimal numbers to represent the ASCII symbol or control code
corresponding to that value; for example, '\03' for Ctrl-C or '\x3F' for the question mark. You can use any
string of up to three octal or any number of hexadecimal numbers in an escape sequence, provided that
the value is within legal range for data type char (0 to 0xff for Borland C++). Larger numbers generate
the compiler error Numeric constant too large. For example, the octal number \777 is larger than the
maximum value allowed (\377) and will generate an error. The first nonoctal or nonhexadecimal
character encountered in an octal or hexadecimal escape sequence marks the end of the sequence.
Originally, Turbo C allowed only three digits in a hexadecimal escape sequence. The ANSI C rules
adopted in Borland C++ might cause problems with old code that assumes only the first three characters
are converted. For example, using Turbo C 1.
printf("\x0072.1A Simple Operating System");
This is intended to be interpreted as \x007 and "2.1A Simple Operating System". However, Borland C++
compiles it as the hexadecimal number \x0072 and the literal string "2.1A Simple Operating System".
To avoid such problems, rewrite your code like this:
printf("\x007" "2.1A Simple Operating System");
Ambiguities might also arise if an octal escape sequence is followed by a nonoctal digit. For example,
because 8 and 9 are not legal octal digits, the constant \258 would be interpreted as a two-character
constant made up of the characters \25 and 8.
The following table shows the available escape sequences.

Borland C++ escape sequences
Note: You must use \\ to represent an ASCII backslash, as used in operating system paths.

Sequence Value Char What it does
\a 0x07 BEL Audible bell

\b 0x08 BS Backspace

\f 0x0C FF Formfeed

\n 0x0A LF Newline (linefeed)

\r 0x0D CR Carriage return

\t 0x09 HT Tab (horizontal)

\v 0x0B VT Vertical tab

\\ 0x5c \ Backslash

\' 0x27 ' Single quote (apostrophe)

\" 0x22 " Double quote

\? 0x3F ? Question mark

\O any O=a string of up to three octal digits

\xH any H=a string of hex digits

\XH any H=a string of hex digits

Wide-character and multi-character constants
See also
Wide-character types can be used to represent a character that does not fit into the storage space
allocated for a char type. A wide character is stored in a two-byte space. A character constant preceded
immediately by an L is a wide-character constant of data type wchar_t (defined in stddef.h). For
example:
wchar_t ch = L'AB';
When wchar_t is used in a C program it is a type defined in stddef.h header file. In a C++ program,
wchar_t is a keyword that can represent distinct codes for any element of the largest extended
character set in any of the supported locales. In C++, wchar_t is the same size, signedness, and
alignment requirement as an int type.
A string preceded immediately by an L is a wide-character string. The memory allocation for a string is
two bytes per character. For example:
wchar_t str = L"ABCD";
Multi-character constants
Borland C++ also supports multi-character constants. When using the 32-bit compiler, multi-character
constants can consist of as many as four characters. The 16-bit compiler is restricted to two-character
constants. For example, 'An', '\n\t', and '\007\007' are acceptable in a 16-bit program. The constant, '\
006\007\008\009' is valid only in a 32-bit program. When using the 16-bit compiler, these constants are
represented as 16-bit int values with the first character in the low-order byte and the second character in
the high-order byte. For 32-bit compilers, multi-character constants are always 32-bit int values. The
constants are not portable to other C compilers.

String constants
See also
String constants, also known as string literals, form a special category of constants used to handle fixed
sequences of characters. A string literal is of data type array-of-char and storage class static, written as
a sequence of any number of characters surrounded by double quotes:
"This is literally a string!"
The null (empty) string is written "".
The characters inside the double quotes can include escape sequences. This code, for example:
"\t\t\"Name\"\\\tAddress\n\n"
prints like this:
"Name"\ Address
"Name" is preceded by two tabs; Address is preceded by one tab. The line is followed by two new lines.
The \" provides interior double quotes.
If you compile with the -A option for ANSI compatibility, the escape character sequence "\\", is translated
to "\" by the compiler.
A literal string is stored internally as the given sequence of characters plus a final null character ('\0'). A
null string is stored as a single '\0' character.
Adjacent string literals separated only by whitespace are concatenated during the parsing phase. In the
following example,
#include <stdio.h>
int main() {
 char *p;
 _InitEasyWin();
 p = "This is an example of how Borland C++"
 " will\nconcatenate very long strings for you"
 " automatically, \nresulting in nicer"

 " looking programs.";
 printf(p);
 return(0);
}
The output of the program is
This is an example of how Borland C++ will
concatenate very long strings for you automatically,
resulting in nicer looking programs.
You can also use the backslash (\) as a continuation character to extend a string constant across line
boundaries:
puts("This is really \
a one-line string");

Enumeration constants
See also
Enumeration constants are identifiers defined in enum type declarations. The identifiers are usually
chosen as mnemonics to assist legibility. Enumeration constants are integer data types. They can be
used in any expression where integer constants are valid. The identifiers used must be unique within the
scope of the enum declaration. Negative initializers are allowed. See Enumerations and enum
(keyword) for a detailed look at enum declarations.
The values acquired by enumeration constants depend on the format of the enumeration declaration
and the presence of optional initializers. In this example,
enum team { giants, cubs, dodgers };
giants, cubs, and dodgers are enumeration constants of type team that can be assigned to any variables
of type team or to any other variable of integer type. The values acquired by the enumeration constants
are
giants = 0, cubs = 1, dodgers = 2
in the absence of explicit initializers. In the following example,
enum team { giants, cubs=3, dodgers = giants + 1 };
the constants are set as follows:
giants = 0, cubs = 3, dodgers = 1
The constant values need not be unique:
enum team { giants, cubs = 1, dodgers = cubs - 1 };

Constants and internal representation
See also
ANSI C acknowledges that the size and numeric range of the basic data types (and their various
permutations) are implementation-specific and usually derive from the architecture of the host computer.
For Borland C++, the target platform is the IBM PC family (and compatibles), so the architecture of the
Intel 8088 and 80x86 microprocessors governs the choices of internal representations for the various
data types.
The following tables list the sizes and resulting ranges of the data types for Borland C++. Internal
representation of numerical types shows how these types are represented internally.

16-bit data types, sizes, and ranges
Type Size (bits) Range Sample applications
unsigned char 8 0 to 255 Small numbers and full PC character set

char 8 -128 to 127 Very small numbers and ASCII characters

enum 16 -32,768 to 32,767Ordered sets of values

unsigned int 16 0 to 65,535 Larger numbers and loops

short int 16 -32,768 to 32,767Counting, small numbers, loop control

int 16 -32,768 to 32,767Counting, small numbers, loop control

unsigned long 32 0 to 4,294,967,295Astronomical distances

long 32 -2,147,483,648 to 2,147,483,647 Large numbers, populations

float 32 3.4 ^ 10-38 to 3.4 ^ 1038Scientific (7-digit precision)

double 64 1.7 ^ 10-308 to 1.7 ^ 10308Scientific (15-digit precision)

long double 80 3.4 ^ 10-4932 to 1.1 ^ 104932 Financial (18-digit precision)

near pointer 16 Not applicableManipulating memory addresses

far pointer 32 Not applicableManipulating addresses outside current segment

32-bit data types, sizes, and ranges
Type Size (bits) Range Sample applications
unsigned char 8 0 to 255 Small numbers and full PC character set

char 8 -128 to 127 Very small numbers and ASCII characters

short int 16 -32,768 to 32,767 Counting, small numbers, loop control

unsigned int 32 0 to 4,294,967,295 Large numbers and loops

int 32 -2,147,483,648 to 2,147,483,647 Counting, small numbers, loop control

unsigned long 32 0 to 4,294,967,295 Astronomical distances

enum 32 -2,147,483,648 to 2,147,483,647 Ordered sets of values

long 32 -2,147,483,648 to 2,147,483,647 Large numbers, populations

float 32 3.4 ^ 10-38 to 1.7 ^ 1038 Scientific (7-digit) precision)

double 64 1.7 ^ 10-308 to 3.4 ^ 10308 Scientific (15-digit precision)

long double 80 3.4 ^ 10-4932 to 1.1 ^ 104932 Financial (18-digit precision)

Internal representation of numerical types
See also
16-bit integers

32-bit integers

Floating-point types, always

s = Sign bit (0 = positive, 1 = negative) Exponent bias (normalized values):

i = Position of implicit binary point float: 127 (7FH)

1 = Integer bit of significance: double: 1,023 (3FFH)

Stored in long double
Implicit in float, double

long double: 16,383 (3FFFH)

Constant expressions
See also
A constant expression is an expression that always evaluates to a constant (and it must evaluate to a
constant that is in the range of representable values for its type). Constant expressions are evaluated
just as regular expressions are. You can use a constant expression anywhere that a constant is legal.
The syntax for constant expressions is:
constant-expression:

Conditional-expression
Constant expressions cannot contain any of the following operators, unless the operators are contained
within the operand of a sizeof operator:
 Assignment
 Comma
 Decrement
 Function call
 Increment

Punctuators
See also
The punctuators (also known as separators) in Borland C++ are defined as follows:
punctuator: one of
[] () { } , ; : ... * = #
Brackets
Open and close brackets [] indicate single and multidimensional array subscripts:
char ch, str[] = "Stan";
int mat[3][4]; /* 3 x 4 matrix */
ch = str[3]; /* 4th element */
 .
 .
 .

Parentheses
Open and close parentheses () are used to group expressions, isolate conditional expressions, and
indicate function calls and function parameters:
d = c * (a + b); /* override normal precedence */
if (d == z) ++x; /* essential with conditional statement */
func(); /* function call, no args */
int (*fptr)(); /* function pointer declaration */
fptr = func; /* no () means func pointer */
void func2(int n); /* function declaration with parameters */
Parentheses are recommended in macro definitions to avoid potential precedence problems during
expansion:
#define CUBE(x) ((x) * (x) * (x))
The use of parentheses to alter the normal operator precedence and associativity rules is covered in
Expressions.

Braces
Open and close braces { } indicate the start and end of a compound statement:
if (d == z)
{
 ++x;
 func();
}
The closing brace serves as a terminator for the compound statement, so a ; (semicolon) is not required
after the }, except in structure or class declarations. Often, the semicolon is illegal, as in
if (statement)
 {}; /*illegal semicolon*/
else

Comma
The comma (,) separates the elements of a function argument list:
void func(int n, float f, char ch);
The comma is also used as an operator in comma expressions. Mixing the two uses of comma is legal,
but you must use parentheses to distinguish them:
func(i, j); /* call func with two args */
func((exp1, exp2), (exp3, exp4, exp5)); /* also calls func with two args! *
/

Semicolon

The semicolon (;) is a statement terminator. Any legal C or C++ expression (including the empty
expression) followed by a semicolon is interpreted as a statement, known as an expression statement.
The expression is evaluated and its value is discarded. If the expression statement has no side effects,
Borland C++ might ignore it.
a + b; /* maybe evaluate a + b, but discard value */
++a; /* side effect on a, but discard value of ++a */
; /* empty expression = null statement */
Semicolons are often used to create an empty statement:
for (i = 0; i < n; i++)
{
 ;
}

Colon
Use the colon (:) to indicate a labeled statement:
start: x=0;
 ƒ
goto start;
Labels are discussed in Labeled statements.

Ellipsis
The ellipsis (...) is three successive periods with no intervening whitespace. Ellipses are used in the
formal argument lists of function prototypes to indicate a variable number of arguments, or arguments
with varying types:
void func(int n, char ch,...);
This declaration indicates that func will be defined in such a way that calls must have at least two
arguments, an int and a char, but can also have any number of additional arguments.
In C++, you can omit the comma before the ellipsis.

Asterisk (pointer declaration)
The asterisk (*) in a variable declaration denotes the creation of a pointer to a type:
char *char_ptr; /* a pointer to char is declared */
Pointers with multiple levels of indirection can be declared by indicating a pertinent number of asterisks:
int **int_ptr; /* a pointer to an integer array */
double ***double_ptr; /* a pointer to a matrix of doubles */
You can also use the asterisk as an operator to either dereference a pointer or as the multiplication
operator:
i = *int_ptr;
a = b * 3.14;

Equal sign (initializer)
The equal sign (=) separates variable declarations from initialization lists:
char array[5] = { 1, 2, 3, 4, 5 };
int x = 5;
In C++, declarations of any type can appear (with some restrictions) at any point within the code. In a C
function, no code can precede any variable declarations.
In a C++ function argument list, the equal sign indicates the default value for a parameter:
int f(int i = 0) { ... } /* Parameter i has default value of zero */
The equal sign is also used as the assignment operator in expressions:

int a, b, c;
a = b + c;
float *ptr = (float *) malloc(sizeof(float) * 100);

Pound sign (preprocessor directive)
The pound sign (#) indicates a preprocessor directive when it occurs as the first nonwhitespace
character on a line. It signifies a compiler action, not necessarily associated with code generation. See
Preprocessor directives for more on the preprocessor directives.
and ## (double pound signs) are also used as operators to perform token replacement and merging
during the preprocessor scanning phase.

Language structure
See also
These topics provide a formal definition of Borland C++ language structure. They describe the legal
ways in which tokens can be grouped together to form expressions, statements, and other significant
units.

Declarations
See also
This section briefly reviews concepts related to declarations: objects, storage classes, types, scope,
visibility, duration, and linkage. A general knowledge of these is essential before tackling the full
declaration syntax. Scope, visibility, duration, and linkage determine those portions of a program that
can make legal references to an identifier in order to access its object.

Objects
See also
An object is an identifiable region of memory that can hold a fixed or variable value (or set of values).
(This use of the word object is different from the more general term used in object-oriented languages.)
Each value has an associated name and type (also known as a data type). The name is used to access
the object. This name can be a simple identifier, or it can be a complex expression that uniquely "points"
to the object. The type is used
 To determine the correct memory allocation required initially.
 To interpret the bit patterns found in the object during subsequent accesses.
 In many type-checking situations, to ensure that illegal assignments are trapped.
Borland C++ supports many standard (predefined) and user-defined data types, including signed and
unsigned integers in various sizes, floating-point numbers in various precisions, structures, unions,
arrays, and classes. In addition, pointers to most of these objects can be established and manipulated in
various memory models.
The Borland C++ standard libraries and your own program and header files must provide unambiguous
identifiers (or expressions derived from them) and types so that Borland C++ can consistently access,
interpret, and (possibly) change the bit patterns in memory corresponding to each active object in your
program.

Objects and declarations
Declarations establish the necessary mapping between identifiers and objects. Each declaration
associates an identifier with a data type. Most declarations, known as defining declarations, also
establish the creation (where and when) of the object; that is, the allocation of physical memory and its
possible initialization. Other declarations, known as referencing declarations, simply make their
identifiers and types known to the compiler. There can be many referencing declarations for the same
identifier, especially in a multifile program, but only one defining declaration for that identifier is allowed.
Generally speaking, an identifier cannot be legally used in a program before its declaration point in the
source code. Legal exceptions to this rule (known as forward references) are labels, calls to undeclared
functions, and class, struct, or union tags

lvalues
An lvalue is an object locator: an expression that designates an object. An example of an lvalue
expression is *P, where P is any expression evaluating to a non-null pointer. A modifiable lvalue is an
identifier or expression that relates to an object that can be accessed and legally changed in memory. A
const pointer to a constant, for example, is not a modifiable lvalue. A pointer to a constant can be
changed (but its dereferenced value cannot).
Historically, the l stood for "left," meaning that an lvalue could legally stand on the left (the receiving end)
of an assignment statement. Now only modifiable lvalues can legally stand to the left of an assignment
statement. For example, if a and b are nonconstant integer identifiers with properly allocated memory
storage, they are both modifiable lvalues, and assignments such as a = 1; and b = a + b are legal.

rvalues
The expression a + b is not an lvalue: a + b = a is illegal because the expression on the left is not related
to an object. Such expressions are often called rvalues (short for right values).

Storage classes and types
See also
Associating identifiers with objects requires each identifier to have at least two attributes: storage class
and type (sometimes referred to as data type). The Borland C++ compiler deduces these attributes from
implicit or explicit declarations in the source code.
Storage class dictates the location (data segment, register, heap, or stack) of the object and its duration
or lifetime (the entire running time of the program, or during execution of some blocks of code). Storage
class can be established by the syntax of the declaration, by its placement in the source code, or by
both of these factors.
The type determines how much memory is allocated to an object and how the program will interpret the
bit patterns found in the object's storage allocation. A given data type can be viewed as the set of values
(often implementation-dependent) that identifiers of that type can assume, together with the set of
operations allowed on those values. The compile-time operator, sizeof, lets you determine the size in
bytes of any standard or user-defined type. See sizeof for more on this operator.

Scope
See also
The scope of an identifier is that part of the program in which the identifier can be used to access its
object. There are five categories of scope: block (or local), function, function prototype, file, and class
(C++ only). These depend on how and where identifiers are declared.
 Block. The scope of an identifier with block (or local) scope starts at the declaration point and
ends at the end of the block containing the declaration (such a block is known as the enclosing block).
Parameter declarations with a function definition also have block scope, limited to the scope of the block
that defines the function.
 Function. The only identifiers having function scope are statement labels. Label names can be
used with goto statements anywhere in the function in which the label is declared. Labels are declared
implicitly by writing label_name: followed by a statement. Label names must be unique within a function.
 Function prototype. Identifiers declared within the list of parameter declarations in a function
prototype (not part of a function definition) have function prototype scope. This scope ends at the end of
the function prototype.
 File. File scope identifiers, also known as globals, are declared outside of all blocks and classes;
their scope is from the point of declaration to the end of the source file.
 Class (C++). A class is a named collection of members, including data structures and functions
that act on them. Class scope applies to the names of the members of a particular class.Classes and their
objects have many special access and scoping rules; see Classes.
 Condition (C++). Declarations in conditions are supported. Variables can be declared within the
expression of if, while, and switch statements. The scope of the variable is that of the statement. In the
case of an if statement, the variable is also in scope for the else block.

Name spaces
Name space is the scope within which an identifier must be unique. C uses four distinct classes of
identifiers:
 goto label names. These must be unique within the function in which they are declared.
 Structure, union, and enumeration tags. These must be unique within the block in which they are
defined. Tags declared outside of any function must be unique within all
 Structure and union member names. These must be unique within the structure or union in which
they are defined. There is no restriction on the type or offset of members with the same member name in
different structures.
 Variables, typedefs, functions, and enumeration members. These must be unique within the
scope in which they are defined. Externally declared identifiers must be unique among externally declared
variables.
Note: Structures, classes, and enumerations are in the same name space in C++.

Visibility
See also
The visibility of an identifier is that region of the program source code from which legal access can be
made to the identifier's associated object.
Scope and visibility usually coincide, though there are circumstances under which an object becomes
temporarily hidden by the appearance of a duplicate identifier: the object still exists but the original
identifier cannot be used to access it until the scope of the duplicate identifier is ended.
Note: Visibility cannot exceed scope, but scope can exceed visibility.
 .
 .
 .
{
 int i; char ch; // auto by default
 i = 3; // int i and char ch in scope and visible
 .
 .
 .

 {
 double i;
 i = 3.0e3; // double i in scope and visible
 // int i=3 in scope but hidden
 ch = 'A'; // char ch in scope and visible
 }
 // double i out of scope
 i += 1; // int i visible and = 4
 .
 .
 .
// char ch still in scope & visible = 'A'
}
 .
 .
 .
// int i and char ch out of scope
Again, special rules apply to hidden class names and class member names: C++ operators allow hidden
identifiers to be accessed under certain conditions

Duration
See also
Duration, closely related to storage class, defines the period during which the declared identifiers have
real, physical objects allocated in memory. We also distinguish between compile-time and run-time
objects. Variables, for instance, unlike typedefs and types, have real memory allocated during run time.
There are three kinds of duration: static, local, and dynamic.

Static
Memory is allocated to objects with static duration as soon as execution is underway; this storage
allocation lasts until the program terminates. Static duration objects usually reside in fixed data
segments allocated according to the memory model in force. All functions, wherever defined, are objects
with static duration. All variables with file scope have static duration. Other variables can be given static
duration by using the explicit static or extern storage class specifiers.
Static duration objects are initialized to zero (or null) in the absence of any explicit initializer or, in C++,
constructor.
Don't confuse static duration with file or global scope. An object can have static duration and local scope

Local
Local duration objects, also known as automatic objects, lead a more precarious existence. They are
created on the stack (or in a register) when the enclosing block or function is entered. They are
deallocated when the program exits that block or function. Local duration objects must be explicitly
initialized; otherwise, their contents are unpredictable. Local duration objects must always have local or
function scope. The storage class specifier auto can be used when declaring local duration variables,
but is usually redundant, because auto is the default for variables declared within a block. An object with
local duration also has local scope, because it does not exist outside of its enclosing block. The
converse is not true: a local scope object can have static duration.
When declaring variables (for example, int, char, float), the storage class specifier register also implies
auto; but a request (or hint) is passed to the compiler that the object be allocated a register if possible.
Borland C++ can be set to allocate a register to a local integral or pointer variable, if one is free. If no
register is free, the variable is allocated as an auto, local object with no warning or error.
Note: The Borland C++ compiler can ignore requests for register allocation. Register allocation is based

on the compiler's analysis of how a variable is used.

Dynamic
Dynamic duration objects are created and destroyed by specific function calls during a program. They
are allocated storage from a special memory reserve known as the heap, using either standard library
functions such as malloc, or by using the C++ operator new. The corresponding deallocations are made
using free or delete.

Translation units
See also
The term translation unit refers to a source code file together with any included files, but less any source
lines omitted by conditional preprocessor directives. Syntactically, a translation unit is defined as a
sequence of external declarations:
translation-unit:

external-declaration
translation-unit external-declaration

external-declaration
function-definition
declaration

word external has several connotations in C; here it refers to declarations made outside of any function,
and which therefore have file scope. (External linkage is a distinct property; see the section Linkage.)
Any declaration that also reserves storage for an object or function is called a definition (or defining
declaration). For more details, see External declarations and definitions.

Linkage
See also
An executable program is usually created by compiling several independent translation units, then
linking the resulting object files with preexisting libraries. A problem arises when the same identifier is
declared in different scopes (for example, in different files), or declared more than once in the same
scope. Linkage is the process that allows each instance of an identifier to be associated correctly with
one particular object or function. All identifiers have one of three linkage attributes, closely related to
their scope: external linkage, internal linkage, or no linkage. These attributes are determined by the
placement and format of your declarations, together with the explicit (or implicit by default) use of the
storage class specifier static or extern.
Each instance of a particular identifier with external linkage represents the same object or function
throughout the entire set of files and libraries making up the program. Each instance of a particular
identifier with internal linkage represents the same object or function within one file only. Identifiers with
no linkage represent unique entities.

External and internal linkage rules
 Any object or file identifier having file scope will have internal linkage if its declaration contains the
storage class specifier static.

For C++, if the same identifier appears with both internal and external linkage within the same file,
the identifier will have external linkage. In C, it will have internal linkage.
 If the declaration of an object or function identifier contains the storage class specifier extern, the
identifier has the same linkage as any visible declaration of the identifier with file scope. If there is no such
visible declaration, the identifier has external linkage.
 If a function is declared without a storage class specifier, its linkage is determined as if the
storage class specifier extern had been used.
 If an object identifier with file scope is declared without a storage class specifier, the identifier has
external linkage.
Identifiers with no linkage attribute:
 Any identifier declared to be other than an object or a function (for example, a typedef identifier)
 Function parameters
 Block scope identifiers for objects declared without the storage class specifier extern

Name mangling
When a C++ module is compiled, the compiler generates function names that include an encoding of the
function's argument types. This is known as name mangling. It makes overloaded functions possible,
and helps the linker catch errors in calls to functions in other modules. However, there are times when
you won't want name mangling. When compiling a C++ module to be linked with a module that does not
have mangled names, the C++ compiler has to be told not to mangle the names of the functions from
the other module. This situation typically arises when linking with libraries or .OBJ files compiled with a
C compiler
To tell the C++ compiler not to mangle the name of a function, declare the function as extern "C", like
this:
extern "C" void Cfunc(int);
This declaration tells the compiler that references to the function Cfunc should not be mangled.
You can also apply the extern "C" declaration to a block of names:
extern "C" {
 void Cfunc1(int);
 void Cfunc2(int);
 void Cfunc3(int);
};
As with the declaration for a single function, this declaration tells the compiler that references to the
functions Cfunc1, Cfunc2, and Cfunc3 should not be mangled. You can also use this form of block
declaration when the block of function names is contained in a header file:

extern "C" {
 #include "locallib.h"
};

Introduction to declaration syntax
See also
All six interrelated attributes (storage classes, types, scope, visibility, duration, and linkage) are
determined in diverse ways by declarations.
Declarations can be defining declarations (also known as definitions) or referencing declarations
(sometimes known as nondefining declarations). A defining declaration, as the name implies, performs
both the duties of declaring and defining; the nondefining declarations require a definition to be added
somewhere in the program. A referencing declaration introduces one or more identifier names into a
program. A definition actually allocates memory to an object and associates an identifier with that object.

Tentative definitions
See also
The ANSI C standard supports the concept of the tentative definition. Any external data declaration that
has no storage class specifier and no initializer is considered a tentative definition. If the identifier
declared appears in a later definition, then the tentative definition is treated as if the extern storage
class specifier were present. In other words, the tentative definition becomes a simple referencing
declaration.
If the end of the translation unit is reached and no definition has appeared with an initializer for the
identifier, then the tentative definition becomes a full definition, and the object defined has uninitialized
(zero-filled) space reserved for it. For example,
int x;
int x; /*legal, one copy of x is reserved */
int y;
int y = 4; /* legal, y is initialized to 4 */
int z = 5;
int z = 6; /* not legal, both are initialized definitions */
Unlike ANSI C, C++ doesn't have the concept of a tentative declaration; an external data declaration
without a storage class specifier is always a definition.

Possible declarations
See also
The range of objects that can be declared includes
 Variables
 Functions
 Classes and class members (C++)
 Types
 Structure, union, and enumeration tags
 Structure members
 Union members
 Arrays of other types
 Enumeration constants
 Statement labels
 Preprocessor macros
The full syntax for declarations is shown in Tables 2.1 through 2.3. The recursive nature of the declarator
syntax allows complex declarators. You'll probably want to use typedefs to improve legibility.
In Borland C++ declaration syntax, note the restrictions on the number and order of modifiers and
qualifiers. Also, the modifiers listed are the only addition to the declarator syntax that are not ANSI C or
C++. These modifiers are each discussed in greater detail in Variable Modifiers, Pointer Modifiers, and
Function Modifiers.

Borland C++declaration syntax
declaration: elaborated-type-specifier:

<decl-specifiers> <declarator-list>; class-key identifier

asm-declaration class-key class-name

function-declaration enum enum-name

linkage-specification class-key: (C++ specific)

decl-specifier: class
storage-class-specifier struct
type-specifier union
function-specifier enum-specifier:

friend (C++ specific) enum <identifier> { <enum-list> }

typedef enum-list:

decl-specifiers: enumerator

<decl-specifiers> decl-specifier enumerator-list , enumerator

storage-class-specifier: enumerator:

auto identifier

register identifier = constant-expression

static constant-expression:

extern conditional-expression

function-specifier: (C++ specific) linkage-specification: (C++ specific)

inline extern string { <declaration-list> }

virtual extern string declaration

simple-type-name: type-specifier:

class-name simple-type-name

typedef-name class-specifier

char enum-specifier

short elaborated-type-specifier

int const

long volatile
signed declaration-list:

unsigned declaration

float declaration-list ; declaration

double
void

declarator-list: type-name:

init-declarator type-specifier <abstract-declarator>

declarator-list , init-declarator abstract-declarator:

init-declarator: pointer-operator <abstract-declarator>

declarator <initializer> <abstract-declarator> (argument-declaration-list)

declarator: <cv-qualifier-list>

dname <abstract-declarator> [<constant-expression>]

modifier-list (abstract-declarator)

pointer-operator declarator argument-declaration-list:

declarator (parameter-declaration-list) <arg-declaration-list>

<cv-qualifier-list > arg-declaration-list , ...
(The <cv-qualifier-list > is for C++ only.) <arg-declaration-list> ... (C++ specific)

declarator [<constant-expression>] arg-declaration-list:

(declarator) argument-declaration

modifier-list: arg-declaration-list , argument-declaration

modifier argument-declaration:

modifier-list modifier decl-specifiers declarator

modifier: decl-specifiers declarator = expression

_ _cdecl (C++ specific)

_ _pascal decl-specifiers <abstract-declarator>

_ _interrupt decl-specifiers <abstract-declarator> = expression

_ _near (C++ specific)

_ _far function-definition:

_ _huge function-body:

pointer-operator: compound-statement

* <cv-qualifier-list> initializer:

& <cv-qualifier-list> (C++ specific) = expression

class-name :: * <cv-qualifier-list> = { initializer-list }

(C++ specific) (expression-list) (C++ specific)

cv-qualifier-list: initializer-list:

cv-qualifier <cv-qualifier-list> expression

cv-qualifier initializer-list , expression

const { initializer-list <,> }

volatile
dname:

name

class-name (C++ specific)

~ class-name (C++ specific)

type-defined-name

External declarations and definitions
See also
The storage class specifiers auto and register cannot appear in an external declaration. For each
identifier in a translation unit declared with internal linkage, no more than one external definition can be
given.
An external definition is an external declaration that also defines an object or function; that is, it also
allocates storage. If an identifier declared with external linkage is used in an expression (other than as
part of the operand of sizeof), then exactly one external definition of that identifier must be somewhere
in the entire program.
Borland C++ allows later re-declarations of external names, such as arrays, structures, and unions, to
add information to earlier declarations. Here's an example:
int a[]; // no size
struct mystruct; // tag only, no member declarators
 .
 .
 .
int a[3] = {1, 2, 3}; // supply size and initialize
struct mystruct {
 int i, j;
}; // add member declarators
Borland C++ class declaration syntax (C++ only) covers class declaration syntax. In the section on
classes (beginning with Classes), you can find examples of how to declare a class. Referencing covers
C++ reference types (closely related to pointer types) in detail. Finally, see Using Templates for a
discussion of template-type classes.

Borland C++ class declaration syntax (C++ only)
class-specifier: base-specifier:

class-head { <member-list> } : base-list

class-head: base-list:

class-key <identifier> <base-specifier> base-specifier

class-key class-name <base-specifier> base-list , base-specifier

member-list: base-specifier:

member-declaration <member-list> class-name

access-specifier : <member-list> virtual <access-specifier> class-name

member-declaration: access-specifier <virtual> class-name

<decl-specifiers> <member-declarator-list> ; access-specifier:

function-definition <;> private
qualified-name ; protected

member-declarator-list: public
member-declarator conversion-function-name:

member-declarator-list, member-declarator operator conversion-type-name

member-declarator: conversion-type-name:

declarator <pure-specifier> type-specifiers <pointer-operator>

<identifier> : constant-expression constructor-initializer:

pure-specifier: : member-initializer-list

= 0
member-initializer-list: operator-name: one of

member-initializer new delete sizeof typeid
member-initializer , member-initializer-list + - * / % ^

member-initializer: & | ~ ! = <>

class name (<argument-list>) += -= =* /= %= ^=
identifier (<argument-list>) &= |= << >> >>= <<=

operator-function-name: == != <= >= && ||
operator operator-name ++ __ , ->* -> ()

[] .*

Type categories
See also
The four basic type categories (and their subcategories) are as follows:
 Aggregate
 Array
 struct
 union
 class (C++ only)
 Function
 Scalar
 Arithmetic
 Enumeration
 Pointer
 Reference (C++ only)
 void)
Types can also be viewed in another way: they can be fundamental or derived types. The fundamental
types are void, char, int, float, and double, together with short, long, signed, and unsigned variants
of some of these. The derived types include pointers and references to other types, arrays of other
types, function types, class types, structures, and unions.
A class object, for example, can hold a number of objects of different types together with functions for
manipulating these objects, plus a mechanism to control access and inheritance from other classes

Given any nonvoid type type (with some provisos), you can declare derived types as follows:

Declaring types
Declaration Description

type t; An object of type type
type array[10]; Ten types: array[0] - array[9]

type *ptr; ptr is a pointer to type
type &ref = t; ref is a reference to type (C++)

type func(void); func returns value of type type
void func1(type t); func1 takes a type type parameter

struct st {type t1; type t2}; structure st holds two types

Note: type& var, type &var, and type & var are all equivalent.

The fundamental types
See also
The fundamental type specifiers are built from the following keywords:
char __int8 long
double __int16 signed
float __int32 short
int __int64 unsigned
From these keywords you can build the integral and floating-point types, which are together known as
the arithmetic types. The modifiers long, short, signed, and unsigned can be applied to the integral
types. The header file limits.h contains definitions of the value ranges for all the fundamental types.

Integral types
char, short, int, and long, together with their unsigned variants, are all considered integral data types.
Integral types shows the integral type specifiers, with synonyms listed on the same line.

Integral types
char, signed char Synonyms if default char set to signed.
unsigned char
char, unsigned char Synonyms if default char set to unsigned.
signed char
int, signed int
unsigned, unsigned int
short, short int, signed short int
unsigned short, unsigned short int
long, long int, signed long int
unsigned long, unsigned long int

Note: These synonyms are not valid in C++. See The three char types.

Only signed or unsigned can be used with char, short, int, or long. The keywords signed and
unsigned, when used on their own, mean signed int and unsigned int, respectively.
In the absence of unsigned, signed is usually assumed. An exception arises with char. Borland C++
lets you set the default for char to be signed or unsigned. (The default, if you don't set it yourself, is
signed.) If the default is set to unsigned, then the declaration char ch declares ch as unsigned. You
would need to use signed char ch to override the default. Similarly, with a signed default for char,
you would need an explicit unsigned char ch to declare an unsigned char.
Only long or short can be used with int. The keywords long and short used on their own mean long
int and short int.
ANSI C does not dictate the sizes or internal representations of these types, except to indicate that
short, int, and long form a nondecreasing sequence with "short <= int <= long." All three types can
legally be the same. This is important if you want to write portable code aimed at other platforms.
In a Borland C++ 16-bit program, the types int and short are equivalent, both being 16 bits. In a Borland
C++ 32-bit program, the types int and long are equivalent, both being 32 bits. The signed varieties are
all stored in two's complement format using the most significant bit (MSB) as a sign bit: 0 for positive, 1
for negative (which explains the ranges shown in 16-bit data types, sizes, and ranges and 32-bit data
types, sizes, and ranges). In the unsigned versions, all bits are used to give a range of 0 - (2n - 1),
where n is 8, 16, or 32.

Floating-point types
The representations and sets of values for the floating-point types are implementation dependent; that
is, each implementation of C is free to define them. Borland C++ uses the IEEE floating-point

formats.See the topic on ANSI implementation-specific.
float and double are 32- and 64-bit floating-point data types, respectively. long can be used with
double to declare an 80-bit precision floating-point identifier: long double test_case, for example.
16-bit data types, sizes, and ranges and 32-bit data types, sizes, and ranges indicates the storage
allocations for the floating-point types

Standard arithmetic conversions
When you use an arithmetic expression, such as a + b, where a and b are different arithmetic types,
Borland C++ performs certain internal conversions before the expression is evaluated. These standard
conversions include promotions of "lower" types to "higher" types in the interests of accuracy and
consistency.
Here are the steps Borland C++ uses to convert the operands in an arithmetic expression:
1.Any small integral types are converted as shown in Methods used in standard arithmetic conversions.

After this, any two values associated with an operator are either int (including the long and unsigned
modifiers), or they are of type double, float, or long double.

2. If either operand is of type long double, the other operand is converted to long double.
3.Otherwise, if either operand is of type double, the other operand is converted to double.
4.Otherwise, if either operand is of type float, the other operand is converted to float.
5.Otherwise, if either operand is of type unsigned long, the other operand is converted to unsigned

long.
6.Otherwise, if either operand is of type long, then the other operand is converted to long.
7.Otherwise, if either operand is of type unsigned, then the other operand is converted to unsigned.
8.Otherwise, both operands are of type int.
The result of the expression is the same type as that of the two operands.

Methods used in standard arithmetic conversions
Type Converts to Method
char int Zero or sign-extended (depends on default char type)
unsigned char int Zero-filled high byte (always)
signed char int Sign-extended (always)
short int Same value; sign extended
unsigned short unsigned int Same value; zero filled
enum int Same value

Special char, int, and enum conversions
Note: The conversions discussed in this section are specific to Borland C++.
Assigning a signed character object (such as a variable) to an integral object results in automatic sign
extension. Objects of type signed char always use sign extension; objects of type unsigned char
always set the high byte to zero when converted to int.
Converting a longer integral type to a shorter type truncates the higher order bits and leaves low-order
bits unchanged. Converting a shorter integral type to a longer type either sign-extends or zero-fills the
extra bits of the new value, depending on whether the shorter type is signed or unsigned, respectively.

Initialization
See also
Initializers set the initial value that is stored in an object (variables, arrays, structures, and so on). If you
don't initialize an object, and it has static duration, it will be initialized by default in the following manner:
 To zero if it is an arithmetic type
 To null if it is a pointer type
Note: If the object has automatic storage duration, its value is indeterminate.

Syntax for initializers
initializer

= expression
= {initializer-list} <,>}
(expression list)

initializer-list
expression
initializer-list, expression
{initializer-list} <,>}

Rules governing initializers
 The number of initializers in the initializer list cannot be larger than the number of objects to be
initialized.
 The item to be initialized must be an object (for example, an array) of unknown size.
 For C (not required for C++), all expressions must be constants if they appear in one of these
places:
 In an initializer for an object that has static duration.
 In an initializer list for an array, structure, or union (expressions using sizeof are also allowed).
 If a declaration for an identifier has block scope, and the identifier has external or internal linkage,
the declaration cannot have an initializer for the identifier.
 If a brace-enclosed list has fewer initializers than members of a structure, the remainder of the
structure is initialized implicitly in the same way as objects with static storage duration.
Scalar types are initialized with a single expression, which can optionally be enclosed in braces. The
initial value of the object is that of the expression; the same constraints for type and conversions apply
as for simple assignments.
For unions, a brace-enclosed initializer initializes the member that first appears in the union's declaration
list. For structures or unions with automatic storage duration, the initializer must be one of the following:
 An initializer list (as described in Arrays, structures, and unions).
 A single expression with compatible union or structure type. In this case, the initial value of the
object is that of the expression.

Arrays, structures, and unions
You initialize arrays and structures (at declaration time, if you like) with a brace-enclosed list of
initializers for the members or elements of the object in question. The initializers are given in increasing
array subscript or member order. You initialize unions with a brace-enclosed initializer for the first
member of the union. For example, you could declare an array days, which counts how many times
each day of the week appears in a month (assuming that each day will appear at least once), as follows:
int days[7] = { 1, 1, 1, 1, 1, 1, 1 }
The following rules initialize character arrays and wide character arrays:
 You can initialize arrays of character type with a literal string, optionally enclosed in braces. Each
character in the string, including the null terminator, initializes successive elements in the array. For
example, you could declare
char name[] = { "Unknown" };

which sets up an eight-element array, whose elements are 'U' (for name[0]), 'n' (for name[1]), and

so on (and including a null terminator).
 You can initialize a wide character array (one that is compatible with wchar_t) by using a wide
string literal, optionally enclosed in braces. As with character arrays, the codes of the wide string literal
initialize successive elements of the array.
Here is an example of a structure initialization:
struct mystruct {
 int i;
 char str[21];
 double d;
 } s = { 20, "Borland", 3.141 };
Complex members of a structure, such as arrays or structures, can be initialized with suitable
expressions inside nested braces.

Declarations and declarators
See also
A declaration is a list of names. The names are sometimes referred to as declarators or identifiers. The
declaration begins with optional storage class specifiers, type specifiers, and other modifiers. The
identifiers are separated by commas and the list is terminated by a semicolon.
Simple declarations of variable identifiers have the following pattern:

data-type var1 <=init1>, var2 <=init2>, ...;
where var1, var2,... are any sequence of distinct identifiers with optional initializers. Each of the
variables is declared to be of type data-type. For example,
int x = 1, y = 2;
creates two integer variables called x and y (and initializes them to the values 1 and 2, respectively).
These are all defining declarations; storage is allocated and any optional initializers are applied.
The initializer for an automatic object can be any legal expression that evaluates to an assignment-
compatible value for the type of the variable involved. Initializers for static objects must be constants or
constant expressions.
In C++, an initializer for a static object can be any expression involving constants and previously
declared variables and functions
The format of the declarator indicates how the declared name is to be interpreted when used in an
expression. If type is any type, and storage class specifier is any storage class specifier, and if D1 and
D2 are any two declarators, then the declaration

storage-class-specifier type D1, D2;
indicates that each occurrence of D1 or D2 in an expression will be treated as an object of type type
and storage class storage class specifier. The type of the name embedded in the declarator will be
some phrase containing type, such as "type," "pointer to type," "array of type," "function returning
type," or "pointer to function returning type," and so on.
For example, in Declaration syntax examples each of the declarators could be used as rvalues (or
possibly lvalues in some cases) in expressions where a single int object would be appropriate. The
types of the embedded identifiers are derived from their declarators as follows:

Declaration syntax examples
Declarator syntax Implied type of nameExample
type name; type int count;
type name[]; (open) array of type int count[];
type name[3]; Fixed array of three elements, int count[3];

all of type (name[0], name[1], and name[2]
type *name; Pointer to type int *count;
type *name[]; (open) array of pointers to type int *count[];
type *(name[]);Same as above int *(count[]);
type (*name)[];Pointer to an (open) array of type int (*count) [];
type &name; Reference to type (C++ only) int &count;
type name(); Function returning type int count();
type *name(); Function returning pointer to type int *count();
type *(name());Same as above int *(count());
type (*name)();Pointer to function returning type int (*count) ();

Note the need for parentheses in (*name)[] and (*name)(); this is because the precedence of both the

array declarator [] and the function declarator () is higher than the pointer declarator *. The
parentheses in *(name[]) are optional.
Note: See Borland C++declaration syntax for the declarator syntax. The definition covers both identifier

and function declarators.

Variable modifiers
See also
In addition to the storage class specifier keywords, a declaration can use certain modifiers to alter some
aspect of the identifier. The modifiers available with Borland C++ are summarized in Borland C++
modifiers.

Mixed-language calling conventions
Borland C++ allows your programs to easily call routines written in other languages, and vice versa.
When you mix languages , you have to deal with two important issues: identifiers and parameter
passing.
By default, Borland C++ saves all global identifiers in their original case (lower, upper, or mixed) with an
underscore "_" prepended to the front of the identifier. To remove the default, you can select the -u
command-line option, or uncheck the compiler option setting in the IDE.
Note: The section Linkage tells how to use extern, which allows C names to be referenced from a C++

program.
Calling conventions summarizes the effects of a modifier applied to a called function. For every modifier,
the table shows the order in which the function parameters are pushed on the stack. Next, the table
shows whether the calling program (the caller) or the called function (the callee) is responsible for
popping the parameters off the stack. Finally, the table shows the effect on the name of a global
function.

Calling conventions
Modifier Push parameters Pop parameters Name change
_ _cdecl1 Right first Caller '_' prepended

_ _fastcall Left first Callee '@' prepended

_ _pascal Left first Callee Uppercase

_ _stdcall Right first Callee No change

1. This is the default.

Note: __fastcall and _ _stdcall are subject to name mangling. See the description of the -VC option .

Multithread variables
Keywords
The keyword _ _thread is used in multithread programs to preserve a unique copy of global and static
class variables. Each program thread maintains a private copy of a _ _thread variable for each threaded
process.
The syntax is Type __thread variable__name. For example

 int __thread x;
declares an integer type variable that will be global but private to each thread in the program in which
the statement occurs.
The _ _thread modifier can be used with global (file-scope) and static variables. The modifier cannot be
used with pointers or functions. (However, you can have pointers to _ _thread objects.) A program
element that requires run-time initialization or run-time finalization cannot be declared to be a _ _thread
type. The following declarations require run-time initialization and are therefore illegal.
int f();
int __thread x = f(); // illegal
Instantiation of a class with a user-defined constructor or destructor requires run-time initialization and is
therefore illegal.
class X {
 X();
 ~X();
};
X __thread myclass; // illegal

Pointer modifiers
See also
Borland C++ has modifiers that affect the pointer declarator (*); that is, they modify pointers to data.
These are _ _near, _ _far, _ _huge, _ _cs, _ _ds, _ _es, _ _seg, and _ _ss.
You can compile a program using one of several memory models. The model you use determines
(among other things) the internal format of pointers. For example, if you use a small data model(small or
medium), all data pointers contain a 16-bit offset from the data segment (DS) register. If you use a large
data model (compact or large), all pointers to data are 32 bits long and give both a segment address
and an offset.
Sometimes when you're using one size of data model, you want to declare a pointer to be of a different
size or format than the current default. You do so using the pointer modifiers.
See _ _near, _ _far, and _ _huge for an in-depth explanation of these types of pointers, and a
description of normalized pointers. Also see the additional discussions of _ _cs, _ _ds, _ _es, _ _seg,
and _ _ss.

Function modifiers
See also
This section presents descriptions of the Borland C++ function modifiers
In addition to their use as pointer modifiers, the _ _near, _ _far, and _ _huge modifiers can also be
used as function type modifiers; that is, they can modify functions and function pointers as well as data
pointers. In addition, you can use the _ _loadds, _ _export, _ _import, and _ _saveregs modifiers to
modify functions.
Note: Tiny and huge memory models are not supported in Windows programs.
Also see Class memory model specifications.
In a 16-bit program, the _ _import can be used only as a modifier for class declarations. In 32-bit
programs the keyword can be applied to class, function, and variable declarations
The _ _near, _ _far, and _ _huge function modifiers can be combined with _ _cdecl or _ _pascal, but
not with _ _interrupt.
Functions of type _ _huge are useful when interfacing with code in assembly language that doesn't use
the same memory allocation as Borland C++.
A function that is not an _ _interrupt type can be declared to be _ _near, _ _far, or _ _huge in order to
override the default settings for the current memory model
A _ _near function uses _ _near calls; a _ _far or _ _huge function uses _ _far call instructions.
In the small and compact memory models, an unqualified function defaults to type _ _near. In the
medium and large models, an unqualified function defaults to type _ _far.
A _ _huge function is the same as a _ _far function, except that the DS register is set to the data
segment address of the source module when a _ _huge function is entered, but left unset for a _ _far
function
The _ _export modifier makes the function exportable from Windows. The _ _import modifier makes a
function available to a Windows program. The keywords are used in an executable (if you don't use
smart callbacks) or in a DLL; see Entry/Exit Code for details
The _ _loadds modifier indicates that a function should set the DS_register, just as a _ _huge function
does, but does not imply _ _near or _ _far calls. Thus, _ _loadds _ _far is equivalent to _ _huge.
The _ _saveregs modifier causes the function to preserve all register values and restore them before
returning (except for explicit return_values passed in registers such as AX or DX).
The _ _loadds and _ _saveregs modifiers are useful for writing low-level interface routines, such as
mouse support routines.
Functions declared with the _ _fastcall modifier have different names than their non-_ _fastcall
counterparts. The compiler prefixes the _ _fastcall function name with an @. This prefix applies to both
unmangled C function names and to mangled C++ function names.

Borland C++ modifiers
Modifier Use with Description
const1 Variables Prevents changes to object.
volatile1 Variables Prevents register allocation and some optimization. Warns

compiler that object might be subject to outside change
during evaluation.

_ _cdecl2 Functions Forces C argument-passing convention. Affects Linker and
link-time names.

_ _cdecl2 Variables Forces global identifier case-sensitivity and leading
underscores.

_ _interrupt Functions Function compiles with the additional register-
housekeeping code needed when writing interrupt

handlers.
_ _pascal Functions Forces Pascal argument-passing convention. Affects

Linker and link-time names.
_ _pascal Variables Forces global identifier case-insensitivity with no leading

underscores.
_ _near, Pointer types Overrides the default pointer type specified by the current

memory model.
_ _far,
_ _huge
_ _cs, Pointer types Segment pointers.
_ _ds,
_ _es,
_ _seg,
_ _ss
_ _near, Functions Overrides the default function type specified by the current

memory model.
_ _far,
_ _huge
_ _near, Variables Directs the placement of the object in memory.
_ _far
_ _export Functions/classes Tells the compiler which functions or classes to export.
_ _import Functions/classes Tells the compiler which functions or classes to import. (In

16-bit programs, this keyword can be used only for class
declarations.)

_ _loadds Functions Sets DS to point to the current data segment.
_ _saveregs Functions Preserves all register values (except for return values)

during execution of the function.
_ _fastcall Functions Forces register parameter passing convention. Affects the

linker and link-time names.
_ _stdcall Function Forces the standard WIN32 argument-passing convention.

1 C++ extends const and volatile to include classes and member functions.

2 This is the default.

Pointers
See also
Pointers fall into two main categories: pointers to objects and pointers to functions. Both types of
pointers are special objects for holding memory addresses.
The two pointer classes have distinct properties, purposes, and rules for manipulation, although they do
share certain Borland C++ operations. Generally speaking, pointers to functions are used to access
functions and to pass functions as arguments to other functions; performing arithmetic on pointers to
functions is not allowed. Pointers to objects, on the other hand, are regularly incremented and
decremented as you scan arrays or more complex data structures in memory.
Although pointers contain numbers with most of the characteristics of unsigned integers, they have their
own rules and restrictions for assignments, conversions, and arithmetic. The examples in the next few
sections illustrate these rules and restrictions.
Note: See Referencing for a discussion of referencing and dereferencing.

Pointers to objects
See also
A pointer of type "pointer to object of type" holds the address of (that is, points to) an object of type.
Since pointers are objects, you can have a pointer pointing to a pointer (and so on). Other objects
commonly pointed at include arrays, structures, unions, and classes.
The size of pointers to objects is dependent on the memory model and the size and disposition of your
data segments, possibly influenced by the optional pointer modifiers (discussed starting with Pointer
modifiers)

Pointers to functions
See also
A pointer to a function is best thought of as an address, usually in a code segment, where that function's
executable code is stored; that is, the address to which control is transferred when that function is
called. The size and disposition of your code segments is determined by the memory model in force,
which in turn dictates the size of the function pointers needed to call your functions.
A pointer to a function has a type called "pointer to function returning type," where type is the function's
return type. For example,
void (*func)();
In C++, this is a pointer to a function taking no arguments, and returning void. In C, it's a pointer to a
function taking an unspecified number of arguments and returning void. In this example,
void (*func)(int);
*func is a pointer to a function taking an int argument and returning void.
For C++, such a pointer can be used to access static member functions. Pointers to class members
must use pointer-to-member operators. See static_cast for details.

Pointer declarations
See also
A pointer must be declared as pointing to some particular type, even if that type is void (which really
means a pointer to anything). Once declared, though, a pointer can usually be reassigned so that it
points to an object of another type. Borland C++ lets you reassign pointers like this without typecasting,
but the compiler will warn you unless the pointer was originally declared to be of type pointer to void.
And in C, but not C++, you can assign a void* pointer to a non-void* pointer. See void for details.
Warning! You need to initialize pointers before using them.
If type is any predefined or user-defined type, including void, the declaration
type *ptr; /* Uninitialized pointer */
declares ptr to be of type "pointer to type." All the scoping, duration, and visibility rules apply to the ptr
object just declared.
A null pointer value is an address that is guaranteed to be different from any valid pointer in use in a
program. Assigning the integer constant 0 to a pointer assigns a null pointer value to it.
The mnemonic NULL (defined in the standard library header files, such as stdio.h) can be used for
legibility. All pointers can be successfully tested for equality or inequality to NULL.
The pointer type "pointer to void" must not be confused with the null pointer. The declaration
void *vptr;
declares that vptr is a generic pointer capable of being assigned to by any "pointer to type" value,
including null, without complaint. Assignments without proper casting between a "pointer to type1" and a
"pointer to type2," where type1 and type2 are different types, can invoke a compiler warning or error. If
type1 is a function and type2 isn't (or vice versa), pointer assignments are illegal. If type1 is a pointer to
void, no cast is needed. Under C, if type2 is a pointer to void, no cast is needed.
Assignment restrictions also apply to pointers of different sizes (_ _near, _ _far, and _ _huge). You can
assign a smaller pointer to a larger one without error, but you can't assign a larger pointer to a smaller
one unless you are using an explicit cast. For example,
char _ _near *ncp;
char _ _far *fcp;
char _ _huge *hcp;
fcp = ncp; // legal
hcp = fcp; // legal
fcp = hcp; // not legal
ncp = fcp; // not legal
ncp = (char _ _near*)fcp; // now legal

Pointer constants
See also
A pointer or the pointed-at object can be declared with the const modifier. Anything declared as a const
cannot be have its value changed. It is also illegal to create a pointer that might violate the
nonassignability of a constant object. Consider the following examples:
int i; // i is an int
int * pi; // pi is a pointer to int (uninitialized)
int * const cp = &i; // cp is a constant pointer to int
const int ci = 7; // ci is a constant int
const int * pci; // pci is a pointer to constant int
const int * const cpc = &ci; // cpc is a constant pointer to a
 // constant int
The following assignments are legal:
i = ci; // Assign const-int to int
*cp = ci; // Assign const-int to
 // object-pointed-at-by-a-const-pointer
++pci; // Increment a pointer-to-const
pci = cpc; // Assign a const-pointer-to-a-const to a
 // pointer-to-const
The following assignments are illegal:
ci = 0; // NO--cannot assign to a const-int
ci--; // NO--cannot change a const-int
*pci = 3; // NO--cannot assign to an object
 // pointed at by pointer-to-const
cp = &ci; // NO--cannot assign to a const-pointer,
 // even if value would be unchanged
cpc++; // NO--cannot change const-pointer
pi = pci; // NO--if this assignment were allowed,
 // you would be able to assign to *pci
 // (a const value) by assigning to *pi.
Similar rules apply to the volatile modifier. Note that const and volatile can both appear as modifiers to
the same identifier.

Pointer arithmetic
See also
Pointer arithmetic is limited to addition, subtraction, and comparison. Arithmetical operations on object
pointers of type "pointer to type" automatically take into account the size of type; that is, the number of
bytes needed to store a type object.
The internal arithmetic performed on pointers depends on the memory model in force and the presence
of any overriding pointer modifiers.
When performing arithmetic with pointers, it is assumed that the pointer points to an array of objects.
Thus, if a pointer is declared to point to type, adding an integral value to the pointer advances the
pointer by that number of objects of type. If type has size 10 bytes, then adding an integer 5 to a pointer
to type advances the pointer 50 bytes in memory. The difference has as its value the number of array
elements separating the two pointer values. For example, if ptr1 points to the third element of an array,
and ptr2 points to the tenth element, then the result of ptr2 - ptr1 would be 7.

The difference between two pointers has meaning only if both pointers point into the same array
When an integral value is added to or subtracted from a "pointer to type," the result is also of type
"pointer to type."
There is no such element as "one past the last element," of course, but a pointer is allowed to assume
such a value. If P points to the last array element, P + 1 is legal, but
P + 2 is undefined. If P points to one past the last array element, P - 1 is legal, giving a pointer to the last
element. However, applying the indirection operator * to a "pointer to one past the last element" leads to
undefined behavior.
Informally, you can think of P + n as advancing the pointer by (n * sizeof(type)) bytes, as long as the
pointer remains within the legal range (first element to one beyond the last element).
Subtracting two pointers to elements of the same array object gives an integral value of type ptrdiff_t
defined in stddef.h (signed long for _ _huge and _ _far pointers; signed int for all others). This value
represents the difference between the subscripts of the two referenced elements, provided it is in the
range of ptrdiff_t. In the expression P1 - P2, where P1 and P2 are of type pointer to type (or pointer to
qualified type), P1 and P2 must point to existing elements or to one past the last element. If P1 points to
the i-th element, and P2 points to the j-th element, P1 - P2 has the value (i - j).

Pointer conversions
See also
Pointer types can be converted to other pointer types using the typecasting mechanism:
char *str;
int *ip;
str = (char *)ip;
More generally, the cast (type*) will convert a pointer to type "pointer to type."
See C++ specific for a discussion of C++ typecast mechanisms.

C++ reference declarations
See also
C++ reference types are closely related to pointer types. Reference types create aliases for objects and
let you pass arguments to functions by reference. C passes arguments only by value. In C++ you can
pass arguments by value or by reference. See Referencing for complete details.

Arrays
See also
The declaration
type declarator [<constant-expression>]
declares an array composed of elements of type. An array consists of a contiguous region of storage
exactly large enough to hold all of its elements.
If an expression is given in an array declarator, it must evaluate to a positive constant integer. The value
is the number of elements in the array. Each of the elements of an array is numbered from 0 through the
number of elements minus one.
Multidimensional arrays are constructed by declaring arrays of array type. The following example shows
one way to declare a two-dimensional array. The implementation is for three rows and five columns but it
can be very easily modified to accept run-time user input.

/* DYNAMIC MEMORY ALLOCATION FOR A MULTIDIMENSIONAL OBJECT. */
#include <stdio.h>
#include <stdlib.h>

typedef long double TYPE;
typedef TYPE *OBJECT;
unsigned int rows = 3, columns = 5;

void de_allocate(OBJECT);

int main(VOID) {
 OBJECT matrix;
 unsigned int i, j;

 /* STEP 1: SET UP THE ROWS. */
 matrix = (OBJECT) calloc(rows, sizeof(TYPE *));

 /* STEP 2: SET UP THE COLUMNS. */
 for (i = 0; i < rows; ++i)
 matrix[i] = (TYPE *) calloc(columns, sizeof(TYPE));

 for (i = 0; i < rows; i++)
 for (j = 0; j < columns; j++)
 matrix[i][j] = i + j; /* INITIALIZE */

 for (i = 0; i < rows; ++i) {
 printf("\n\n");
 for (j = 0; j < columns; ++j)
 printf("%5.2Lf", matrix[i][j]);
 de_allocate(matrix);
 return 0;
 }

void de_allocate(OBJECT x) {
 int i;

 for (i = 0; i < rows; i++) /* STEP 1: DELETE THE COLUMNS */
 free(x[i]);

 free(x); /* STEP 2: DELETE THE ROWS. */
 }
This code produces the following output:
0.00 1.00 2.00 3.00 4.00
1.00 2.00 3.00 4.00 5.00
2.00 3.00 4.00 5.00 6.00
Note: See Borland C++ Library Routines for a description of calloc, free, and printf.
In certain contexts, the first array declarator of a series might have no expression inside the brackets.
Such an array is of indeterminate size. This is legitimate in contexts where the size of the array is not
needed to reserve space.
For example, an extern declaration of an array object does not need the exact dimension of the array;
neither does an array function parameter. As a special extension to ANSI C, Borland C++ also allows an
array of indeterminate size as the final member of a structure. Such an array does not increase the size
of the structure, except that padding can be added to ensure that the array is properly aligned. These
structures are normally used in dynamic allocation, and the size of the actual array needed must be
explicitly added to the size of the structure in order to properly reserve space.
Except when it is the operand of a sizeof or & operator, an array type expression is converted to a
pointer to the first element of the array.

Functions
See also
Functions are central to C and C++ programming. Languages such as Pascal distinguish between
procedure and function. For C and C++, functions play both roles.

Declarations and definitions
See also
Each program must have a single external function named main marking the entry point of the program.
Functions are usually declared as prototypes in standard or user-supplied header files, or within
program files. Functions are external by default and are normally accessible from any file in the
program. They can be restricted by using the static storage class specifier (see Linkage).
Functions are defined in your source files or made available by linking precompiled libraries.
A given function can be declared several times in a program, provided the declarations are compatible.
Nondefining function declarations using the function prototype format provide Borland C++ with detailed
parameter information, allowing better control over argument number and type checking, and type
conversions.
Note: In C++ you must always use function prototypes. We recommend that you also use them in C.
Excluding C++ function overloading, only one definition of any given function is allowed. The
declarations, if any, must also match this definition. (The essential difference between a definition and a
declaration is that the definition has a function body.

Declarations and prototypes
See also
In the Kernighan and Ritchie style of declaration, a function could be implicitly declared by its
appearance in a function call, or explicitly declared as follows

<type> func()
where type is the optional return type defaulting to int. In C++, this declaration means <type>
func(void). A function can be declared to return any type except an array or function type. This approach
does not allow the compiler to check that the type or number of arguments used in a function call match
the declaration.
This problem was eased by the introduction of function prototypes with the following declaration syntax:

<type> func(parameter-declarator-list);
Note: You can enable a warning within the IDE or with the command-line compiler: "Function

called without a prototype."
Declarators specify the type of each function parameter. The compiler uses this information to check
function calls for validity. The compiler is also able to coerce arguments to the proper type. Suppose you
have the following code fragment:
extern long lmax(long v1, long v2); /* prototype */
foo()
{
 int limit = 32;
 char ch = 'A';
 long mval;
 mval = lmax(limit,ch); /* function call */
}
Since it has the function prototype for lmax, this program converts limit and ch to long, using the
standard rules of assignment, before it places them on the stack for the call to lmax. Without the function
prototype, limit and ch would have been placed on the stack as an integer and a character, respectively;
in that case, the stack passed to lmax would not match in size or content what lmax was expecting,
leading to problems. The classic declaration style does not allow any checking of parameter type or
number, so using function prototypes aids greatly in tracking down programming errors.
Function prototypes also aid in documenting code. For example, the function strcpy takes two
parameters: a source string and a destination string. The question is, which is which? The function
prototype
char *strcpy(char *dest, const char *source);
makes it clear. If a header file contains function prototypes, then you can print that file to get most of the
information you need for writing programs that call those functions. If you include an identifier in a
prototype parameter, it is used only for any later error messages involving that parameter; it has no
other effect.
A function declarator with parentheses containing the single word void indicates a function that takes no
arguments at all:
func(void);
In C++, func() also declares a function taking no arguments
A function prototype normally declares a function as accepting a fixed number of parameters. For
functions that accept a variable number of parameters (such as printf), a function prototype can end with
an ellipsis (...), like this:
f(int *count, long total, ...)
With this form of prototype, the fixed parameters are checked at compile time, and the variable
parameters are passed with no type checking.
Note: stdarg.h and varargs.h contain macros that you can use in user-defined functions with variable

numbers of parameters.
Here are some more examples of function declarators and prototypes:
int f(); /* In C, a function returning an int with

 no information about parameters.
This is the K&R "classic style." */

int f(); /* In C++, a function taking no arguments */

int f(void); /* A function returning an int that takes
 no parameters. */

int p(int,long); /* A function returning an int that
accepts two parameters: the first,
 an int; the second, a long. */

int _ _pascal q(void); /* A pascal function returning
an int that takes no parameters at all. */

char _ _far *s(char *source, int kind); /*A function returning
a farpointer to a char
and accepting two parameters:
the first,a pointer to
a char;the second, an int. */

int printf(char *format,...; /* A function returning an int and
accepting a pointer to a char fixed
parameter and any number of additional
parameters of unknown type. */

int (*fp)(int) /* A pointer to a function returning an int
and accepting a single int parameter. */

Definitions
See also
External function definitions gives the general syntax for external function definitions.

External function definitions
file

external-definition

file external-definition

external-definition:

function-definition

declaration

asm-statement

function-definition:

<declaration-specifiers> declarator <declaration-list>

compound-statement

In general, a function definition consists of the following sections (the grammar allows for more
complicated cases):
1. Optional storage class specifiers: extern or static. The default is extern.
2. A return type, possibly void. The default is int.
3. Optional modifiers: _ _pascal, _ _cdecl, _ _export, _ _interrupt, _ _near, _ _far, _ _huge,

_ _loadds, _ _saveregs. The defaults depend on the memory model and compiler option settings.
4. The name of the function.
5. A parameter declaration list, possibly empty, enclosed in parentheses. In C, the preferred way of

showing an empty list is func(void). The old style of func is legal in C but antiquated and possibly
unsafe.

6. A function body representing the code to be executed when the function is called.
Note: You can mix elements from 1 and 2.

Formal parameter declarations
See also
The formal parameter declaration list follows a syntax similar to that of the declarators found in normal
identifier declarations. Here are a few examples:
int func(void) { // no args
int func(T1 t1, T2 t2, T3 t3=1) { // three simple parameters, one
 // with default argument
int func(T1* ptr1, T2& tref) { // A pointer and a reference arg
int func(register int i) { // Request register for arg
int func(char *str,...) { /* One string arg with a variable number
of other

 args, or with a fixed number of args with var
ying types */

In C++, you can give default arguments as shown. Parameters with default values must be the last
arguments in the parameter list. The arguments' types can be scalars, structures, unions, or
enumerations; pointers or references to structures and unions; or pointers to functions or classes.
The ellipsis (...) indicates that the function will be called with different sets of arguments on different
occasions. The ellipsis can follow a sublist of known argument declarations. This form of prototype
reduces the amount of checking the compiler can make.
The parameters declared all have automatic scope and duration for the duration of the function. The
only legal storage class specifier is register.
The const and volatile modifiers can be used with formal parameter declarators

Function calls and argument conversions
See also
A function is called with actual arguments placed in the same sequence as their matching formal
parameters. The actual arguments are converted as if by initialization to the declared types of the formal
parameters.
Here is a summary of the rules governing how Borland C++ deals with language modifiers and formal
parameters in function calls, both with and without prototypes:
 The language modifiers for a function definition must match the modifiers used in the declaration
of the function at all calls to the function.
 A function can modify the values of its formal parameters, but this has no effect on the actual
arguments in the calling routine, except for reference arguments in C++.
When a function prototype has not been previously declared, Borland C++ converts integral arguments
to a function call according to the integral widening (expansion) rules described in Standard arithmetic
conversions. When a function prototype is in scope, Borland C++ converts the given argument to the
type of the declared parameter as if by assignment
When a function prototype includes an ellipsis (...), Borland C++ converts all given function arguments
as in any other prototype (up to the ellipsis). The compiler widens any arguments given beyond the fixed
parameters, according to the normal rules for function arguments without prototypes.
If a prototype is present, the number of arguments must match (unless an ellipsis is present in the
prototype). The types need to be compatible only to the extent that an assignment can legally convert
them. You can always use an explicit cast to convert an argument to a type that is acceptable to a
function prototype.
Note: If your function prototype does not match the actual function definition, Borland C++ will detect

this if and only if that definition is in the same compilation unit as the prototype. If you create a
library of routines with a corresponding header file of prototypes, consider including that header
file when you compile the library, so that any discrepancies between the prototypes and the actual
definitions will be caught.
C++ provides type-safe linkage, so differences between expected and actual parameters will be
caught by the linker.

Structures
See also
A structure is a derived type usually representing a user-defined collection of named members (or
components). The members can be of any type, either fundamental or derived (with some restrictions to
be noted later), in any sequence. In addition, a structure member can be a bit field type not allowed
elsewhere. The Borland C++ structure type lets you handle complex data structures almost as easily as
single variables. Structure initialization is discussed in Arrays, structures, and unions.
In C++, a structure type is treated as a class type with certain differences: default access is public, and
the default for the base class is also public. This allows more sophisticated control over access to
structure members by using the C++ access specifiers: public (the default), private, and protected.
Apart from these optional access mechanisms, and from exceptions as noted, the following discussion
on structure syntax and usage applies equally to C and C++ structures.
Structures are declared using the keyword struct. For example
struct mystruct { ... }; // mystruct is the structure tag
 .
 .
 .
struct mystruct s, *ps, arrs[10];
/* s is type struct mystruct; ps is type pointer to struct mystruct;
 arrs is array of struct mystruct. */

Untagged structures and typedefs
See also
If you omit the structure tag, you can get an untagged structure. You can use untagged structures to
declare the identifiers in the comma-delimited struct-id-list to be of the given structure type (or derived
from it), but you cannot declare additional objects of this type elsewhere
struct { ... } s, *ps, arrs[10]; // untagged structure
It is possible to create a typedef while declaring a structure, with or without a tag:
typedef struct mystruct { ... } MYSTRUCT;
MYSTRUCT s, *ps, arrs[10]; // same as struct mystruct s, etc.
typedef struct { ... } YRSTRUCT; // no tag
YRSTRUCT y, *yp, arry[20];
Usually, you don't need both a tag and a typedef: either can be used in structure declarations.
Untagged structure and union members are ignored during initialization.

Structure member declarations
See also
The member-decl-list within the braces declares the types and names of the structure members using
the declarator syntax shown in Borland C++ declaration syntax.
A structure member can be of any type, with two exceptions
 The member type cannot be the same as the struct type being currently declared:
struct mystruct { mystruct s } s1, s2; // illegal

However, a member can be a pointer to the structure being declared, as in the following
example:

struct mystruct { mystruct *ps } s1, s2; // OK
Also, a structure can contain previously defined structure types when declaring an instance of a
declared structure.

 Except in C++, a member cannot have the type "function returning...," but the type "pointer to
function returning..." is allowed. In C++, a struct can have member functions.
Note: You can omit the struct keyword in C++.

Structures and functions
See also
A function can return a structure type or a pointer to a structure type:
mystruct func1(void); // func1() returns a structure
mystruct *func2(void); // func2() returns pointer to structure
A structure can be passed as an argument to a function in the following ways:
void func1(mystruct s); // directly
void func2(mystruct *sptr); // via a pointer
void func3(mystruct &sref); // as a reference (C++ only)

Structure member access
See also
Structure and union members are accessed using the following two selection operators:

. (period)
-> (right arrow)

Suppose that the object s is of struct type S, and sptr is a pointer to S. Then if m is a member identifier
of type M declared in S, the expressions s.m and sptr->m are of type M, and both represent the member
object m in S. The expression sptr->m is a convenient synonym for (*sptr).m.

The operator . is called the direct member selector and the operator -> is called the indirect (or pointer)
member selector. For example:
struct mystruct
{
 int i;
 char str[21];
 double d;
} s, *sptr = &s;
 .
 .
 .
s.i = 3; // assign to the i member of mystruct s
sptr -> d = 1.23; // assign to the d member of mystruct s
The expression s.m is an lvalue, provided that s is an lvalue and m is not an array type. The expression
sptr->m is an lvalue unless m is an array type.
If structure B contains a field whose type is structure A, the members of A can be accessed by two
applications of the member selectors
struct A {
 int j;
 double x;
};
struct B {
 int i;
 struct A a;
 double d;
} s, *sptr;
 .
 .
 .
s.i = 3; // assign to the i member of B
s.a.j = 2; // assign to the j member of A
sptr->d = 1.23; // assign to the d member of B
(sptr->a).x = 3.14 // assign to x member of A
Each structure declaration introduces a unique structure type, so that in
struct A {
 int i,j;
 double d;
} a, a1;
struct B {
 int i,j;
 double d;
} b;
the objects a and a1 are both of type struct A, but the objects a and b are of different structure types.
Structures can be assigned only if the source and destination have the same type:

a = a1; // OK: same type, so member by member assignment
a = b; // ILLEGAL: different types
a.i = b.i; a.j = b.j; a.d = b.d /* but you can assign member-by-member */

Structure word alignment
See also
Memory is allocated to a structure member-by-member from left to right, from low to high memory
address. In this example,
struct mystruct {
 int i;
 char str[21];
 double d;
} s;
the object s occupies sufficient memory to hold a 2-byte integer for a 16-bit program, or a 4-byte integer
for a 32-bit program, a 21-byte string, and an 8-byte double. The format of this object in memory is
determined by selecting the word alignment option. Without word alignment, s will be allocated 31
contiguous bytes (by the 16-bit compiler) or 33 contiguous bytes (by the 32-bit compiler).
Word alignment is off by default. If you turn on word alignment, Borland C++ pads the structure with
bytes to ensure the structure is aligned as follows:

16-bit compiler alignment
1 The structure will start on a word boundary (even address)
2 Any non-char member will have an even byte offset from the start of the structure.
3 A final byte is added (if necessary) at the end to ensure that the whole structure contains an even

number of bytes.
For the 16-bit compiler, with word alignment on, the structure would therefore have a byte added before
the double, making a 32-byte object.

32-bit compiler alignment
1 The structure boundaries are defined by 4-byte multiples.
2 For any non-char member, the offset will be a multiple of the member size. A short will be at an offset

that is some multiple of 2 ints from the start of the structure.
3 One to three bytes can be added (if necessary) at the end to ensure that the whole structure contains

a 4-byte multiple.
For the 32bit compiler, with word alignment on, three bytes would be added before the double, making
a 36-byte object.

Structure name spaces
See also
Structure tag names share the same name space with union tags and enumeration tags (but enums
within a structure are in a different name space in C++). This means that such tags must be uniquely
named within the same scope. However, tag names need not differ from identifiers in the other three
name spaces: the label name space, the member name space(s), and the single name space (which
consists of variables, functions, typedef names, and enumerators).
Member names within a given structure or union must be unique, but they can share the names of
members in other structures or unions. For example
goto s;
 .
 .
 .
s: // Label
struct s { // OK: tag and label name spaces different
 int s; // OK: label, tag and member name spaces different
 float s; // ILLEGAL: member name duplicated
} s; // OK: var name space different. In C++, this can only
 // be done if s does not have a constructor.
union s { // ILLEGAL: tag space duplicate
 int s; // OK: new member space
 float f;
} f; // OK: var name space
struct t {
 int s; // OK: different member space
 .
 .
 .
} s; // ILLEGAL: var name duplicate

Incomplete declarations
See also
A pointer to a structure type A can legally appear in the declaration of another structure B before A has
been declared:
struct A; // incomplete
struct B { struct A *pa };
struct A { struct B *pb };
The first appearance of A is called incomplete because there is no definition for it at that point. An
incomplete declaration is allowed here, because the definition of B doesn't need the size of A.

Bit fields
See also
When you write an application for a 16-bit platform, you can declare signed or unsigned integer
members as bit fields from 1 to 16 bits wide. For 32-bit platforms a bit field can be as much as 32 bits
wide. You specify the bit-field width and optional identifier as follows:

type-specifier <bitfield-id> : width;
where type-specifier is char, unsigned char, int, or unsigned int. Bit fields are allocated from low-
order to high-order bits within a word. The expression width must be present and must evaluate to a
constant integer in the range 1 to 32, depending on the target platform.
If the bit field identifier is omitted, the number of bits specified in width is allocated, but the field is not
accessible. This lets you match bit patterns in, say, hardware registers where some bits are unused. For
example:
struct mystruct
 int i : 2;
 unsigned j : 5;
 int : 4;
 int k : 1;
 unsigned m : 4;
) a, b, c;
produces the following layout:

Integer fields are stored in two's-complement form, with the leftmost bit being the MSB (most significant
bit). With int (for example, signed) bit fields, the MSB is interpreted as a sign bit. A bit field of width 2
holding binary 11, therefore, would be interpreted as 3 if unsigned, but as -1 if int. In the previous
example, the legal assignment a.i = 6 would leave binary 10 = -2 in a.i with no warning. The signed int
field k of width 1 can hold only the values -1 and 0, because the bit pattern 1 is interpreted as -1.
Bit fields can be declared only in structures, unions, and classes. They are accessed with the same
member selectors (. and ->) used for non-bit-field members. Also, bit fields pose several problems when
writing portable code, since the organization of bits-within-bytes and bytes-within-words is machine
dependent
The expression &mystruct.x is illegal if x is a bit field identifier, because there is no guarantee that
mystruct.x lies at a byte address

Unions
See also
Union types are derived types sharing many of the syntactical and functional features of structure types.
The key difference is that a union allows only one of its members to be "active" at any one time. The
size of a union is the size of its largest member. The value of only one of its members can be stored at
any time. In the following simple case,
union myunion { /* union tag = myunion */
 int i;
 double d;
 char ch;
} mu, *muptr=μ
the identifier mu, of type union myunion, can be used to hold a 2-byte int, an 8-byte double, or a
single-byte char, but only one of these at the same time
Note: Unions correspond to the variant record types of Pascal and Modula-2.
sizeof(union myunion) and sizeof(mu) both return 8, but 6 bytes are unused (padded) when mu holds
an int object, and 7 bytes are unused when mu holds a char. You access union members with the
structure member selectors (. and ->), but care is needed:
mu.d = 4.016;
printf("mu.d = %f\n",mu.d); //OK: displays mu.d = 4.016
printf("mu.i = %d\n",mu.i); //peculiar result
mu.ch = 'A';

printf("mu.ch = %c\n",mu.ch); //OK: displays mu.ch = A
printf("mu.d = %f\n",mu.d); //peculiar result
muptr->i = 3;

printf("mu.i = %d\n",mu.i); //OK: displays mu.i = 3
The second printf is legal, since mu.i is an integer type. However, the bit pattern in mu.i corresponds to
parts of the double previously assigned, and will not usually provide a useful integer interpretation.
When properly converted, a pointer to a union points to each of its members, and vice versa.

Anonymous unions (C++ only)
See also
A union that doesn't have a tag and is not used to declare a named object (or other type) is called an
anonymous union. It has the following form:
union { member-list };
Its members can be accessed directly in the scope where this union is declared, without using the x.y
or p->y syntax.

Anonymous unions can't have member functions and at file level must be declared static. In other
words, an anonymous union cannot have external linkage.

Union declarations
See also
The general declaration syntax for unions is similar to that for structures. The differences are
 Unions can contain bit fields, but only one can be active. They all start at the beginning of the
union. (Note that, because bit fields are machine dependent, they can pose problems when writing
portable code.)
 Unlike C++ structures, C++ union types cannot use the class access specifiers: public, private,
and protected. All fields of a union are public.
 Unions can be initialized only through their first declared member:
union local87 {
 int i;
 double d;
 } a = { 20 };
 A union can't participate in a class hierarchy. It can't be derived from any class, nor can it be a
base class. A union can have a constructor.

Enumerations
See also
An enumeration data type is used to provide mnemonic identifiers for a set of integer values. For
example, the following declaration,
enum days { sun, mon, tues, wed, thur, fri, sat } anyday;
establishes a unique integral type, enum days, a variable anyday of this type, and a set of enumerators
(sun, mon,...) with constant integer values
Borland C++ is free to store enumerators in a single byte when Treat enums as ints is
unchecked (O|C|Code Generation) or the -b flag is used. The default is on (meaning enums are
always ints) if the range of values permits, but the value is always promoted to an int when used in
expressions. The identifiers used in an enumerator list are implicitly of type signed char, unsigned
char, or int, depending on the values of the enumerators. If all values can be represented in a signed
or unsigned char, that is the type of each enumerator
In C, a variable of an enumerated type can be assigned any value of type int--no type checking beyond
that is enforced. In C++, a variable of an enumerated type can be assigned only one of its enumerators.
That is,
anyday = mon; // OK
anyday = 1; // illegal, even though mon == 1
The identifier days is the optional enumeration tag that can be used in subsequent declarations of
enumeration variables of type enum days:
enum days payday, holiday; // declare two variables
In C++, you can omit the enum keyword if days is not the name of anything else in the same scope
As with struct and union declarations, you can omit the tag if no further variables of this enum type are
required:
enum { sun, mon, tues, wed, thur, fri, sat } anyday;
/* anonymous enum type */
The enumerators listed inside the braces are also known as enumeration constants. Each is assigned a
fixed integral value. In the absence of explicit initializers, the first enumerator (sun) is set to zero, and
each succeeding enumerator is set to one more than its predecessor (mon = 1, tues = 2, and so on).
See Enumeration constants for more on enumeration constants
With explicit integral initializers, you can set one or more enumerators to specific values. Any
subsequent names without initializers will then increase by one. For example, in the following
declaration,
/* Initializer expression can include previously declared enumerators */
enum coins { penny = 1, tuppence, nickel = penny + 4, dime = 10,
 quarter = nickel * nickel } smallchange;
tuppence would acquire the value 2, nickel the value 5, and quarter the value 25.
The initializer can be any expression yielding a positive or negative integer value (after possible integer
promotions). These values are usually unique, but duplicates are legal.
enum types can appear wherever int types are permitted.
enum days { sun, mon, tues, wed, thur, fri, sat } anyday;
enum days payday;
typedef enum days DAYS;
DAYS *daysptr;
int i = tues;
anyday = mon; // OK
*daysptr = anyday; // OK
mon = tues; // ILLEGAL: mon is a constant
Enumeration tags share the same name space as structure and union tags. Enumerators share the

same name space as ordinary variable identifiers:
int mon = 11;
{
 enum days { sun, mon, tues, wed, thur, fri, sat } anyday;
 /* enumerator mon hides outer declaration of int mon */
 struct days { int i, j;}; // ILLEGAL: days duplicate tag
 double sat; // ILLEGAL: redefinition of sat
}
mon = 12; // back in int mon scope
In C++, enumerators declared within a class are in the scope of that class.
In C++ it is possible to overload most operators for an enumeration. However, because the =, [], (), and
-> operators must be overloaded as member functions, it is not possible to overload them for an enum.
See the example on how to overload the postfix and prefix increment operators.

How to overload enum operators

 // OVERLOAD THE POSTFIX AND PREFIX INCREMENT OPERATORS FOR enum
 #include <iostream.h>
 enum _SEASON { spring, summer, fall, winter };
 _SEASON operator++(_SEASON &s) { // PREFIX INCREMENT
 _SEASON tmp = s; // SAVE THE ORIGINAL VALUE
 // DO MODULAR ARITHMETIC AND CAST THE RESULT TO _SEASON TYPE
 s = _SEASON((s + 1) % 4); // INCREMENT THE ORIGINAL
 return s; // RETURN THE OLD VALUE
 }
 // UNNAMED int ARGUMENT IS NOT USED
 _SEASON operator++(_SEASON &s, int) { // POSTFIX INCREMENT
 _SEASON tmp = s;
 switch (s) {
 case spring: s = summer; break;
 case summer: s = fall; break;
 case fall: s = winter; break;
 case winter: s = spring; break;
 }
 return (tmp);
 }
 int main(void) {
 _SEASON season = fall;
 cout << "\nThe season is " << season;
 cout << "\nIncrement the season: "<< ++season;
 cout << "\nNo change yet when using postfix: " << season++;
 cout << "\nFinally:" << season;
 return 0;
 }
This code produces the following output:
The season is 2
Increment the season: 3
No change yet when using postfix: 3
Finally:0

Assignment to enum types
See also
The rules for expressions involving enum types have been made stricter. The compiler enforces these
rules with error messages if the compiler switch -A is turned on (which means strict ANSI C++).
Assigning an integer to a variable of enum type results in an error:
enum color
{
 red, green, blue
};

int f()
{
 color c;
 c = 0;
 return c;
}
The same applies when passing an integer as a parameter to a function. Notice that the result type of
the expression flag1|flag2 is int:
enum e
{
 flag1 = 0x01,
 flag2 = 0x02
};

void p(e);

void f()
{
 p(flag1|flag2);
}
To make the example compile, the expression flag1|flag2 must be cast to the enum type: e
(flag1|flag2).

Expressions
See also
An expression is a sequence of operators, operands, and punctuators that specifies a computation. The
formal syntax, listed in Borland C++ expressions, indicates that expressions are defined recursively:
subexpressions can be nested without formal limit. (However, the compiler will report an out-of-memory
error if it can't compile an expression that is too complex.)
Note: Borland C++ expressions shows how identifiers and operators are combined to form

grammatically legal "phrases."
Expressions are evaluated according to certain conversion, grouping, associativity, and precedence
rules that depend on the operators used, the presence of parentheses, and the data types of the
operands.The standard conversions are detailed in Methods used in standard arithmetic conversions.
The way operands and subexpressions are grouped does not necessarily specify the actual order in
which they are evaluated by Borland C++ (see Evaluation order).
Expressions can produce an lvalue, an rvalue, or no value. Expressions might cause side effects
whether they produce a value or not
The precedence and associativity of the operators are summarized in Associativity and precedence of
Borland C++ operators. The grammar in Borland C++ expressions, completely defines the precedence
and associativity of the operators

Borland C++ expressions
primary-expression:

literal

this (C++ specific)

:: identifier (C++ specific)

:: operator-function-name (C++ specific)

:: qualified-name (C++ specific)

(expression)

name

literal:

integer-constant

character-constant

floating-constant

string-literal

name:

identifier

operator-function-name (C++ specific)

conversion-function-name (C++ specific)

~ class-name (C++ specific)

qualified-name (C++ specific)

qualified-name: (C++ specific)

qualified-class-name :: name

postfix-expression:

primary-expression

postfix-expression [expression]

postfix-expression (<expression-list>)

simple-type-name (<expression-list>) (C++ specific)

postfix-expression . name

postfix-expression -> name

postfix-expression ++

postfix-expression --

const_cast < type-id > (expression) (C++ specific)

dynamic_cast < type-id > (expression) (C++ specific)

reinterpret_cast < type-id > (expression) (C++ specific)

static_cast < type-id > (expression) (C++ specific)

typeid (expression) (C++ specific)

typeid (type-name) (C++ specific)

expression-list:

assignment-expression

expression-list , assignment-expression

unary-expression:

postfix-expression

++ unary-expression

- - unary-expression

unary-operator cast-expression

sizeof unary-expression

sizeof (type-name)

allocation-expression (C++ specific)

deallocation-expression (C++ specific)

unary-operator: one of & * + - !
allocation-expression: (C++ specific)

<::> new <placement> new-type-name <initializer>

<::> new <placement> (type-name) <initializer>

placement: (C++ specific)

(expression-list)

new-type-name: (C++ specific)

type-specifiers <new-declarator>

new-declarator: (C++ specific)

ptr-operator <new-declarator>

new-declarator [<expression>]

deallocation-expression: (C++ specific)

<::> delete cast-expression

<::> delete [] cast-expression

cast-expression:

unary-expression

(type-name) cast-expression

pm-expression:

cast-expression

pm-expression .* cast-expression (C++ specific)

pm-expression ->* cast-expression (C++ specific)

multiplicative-expression:

pm-expression

multiplicative-expression * pm-expression

multiplicative-expression / pm-expression

multiplicative-expression % pm-expression

additive-expression:

multiplicative-expression

additive-expression + multiplicative-expression

additive-expression - multiplicative-expression

shift-expression:

additive-expression

shift-expression << additive-expression

shift-expression >> additive-expression

relational-expression:

shift-expression

relational-expression < shift-expression

relational-expression > shift-expression

relational-expression <= shift-expression

relational-expression >= shift-expression

equality-expression:

relational-expression

equality expression == relational-expression

equality expression != relational-expression

AND-expression:

equality-expression

AND-expression & equality-expression

exclusive-OR-expression:

AND-expression

exclusive-OR-expression ^ AND-expression

inclusive-OR-expression:

exclusive-OR-expression

inclusive-OR-expression | exclusive-OR-expression

logical-AND-expression:

inclusive-OR-expression

logical-AND-expression && inclusive-OR-expression

logical-OR-expression:

logical-AND-expression

logical-OR-expression || logical-AND-expression

conditional-expression:

logical-OR-expression

logical-OR-expression ? expression : conditional-expression

assignment-expression:

conditional-expression

unary-expression assignment-operator assignment-expression

assignment-operator: one of

= *= /= %= += -=
<< => >= &= ^= |=
expression:

assignment-expression

expression , assignment-expression

constant-expression:

conditional-expression

Expressions and C++
See also
C++ allows the overloading of certain standard C operators, as explained in Overloading Operator
Functions. An overloaded operator is defined to behave in a special way when applied to expressions of
class type. For instance, the equality operator == might be defined in class complex to test the equality
of two complex numbers without changing its normal usage with non-class data types.
An overloaded operator is implemented as a function; this function determines the operand type, lvalue,
and evaluation order to be applied when the overloaded operator is used. However, overloading cannot
change the precedence of an operator. Similarly, C++ allows user-defined conversions between class
objects and fundamental types. Keep in mind, then, that some of the C language rules for operators and
conversions might not apply to expressions in C++.

Evaluation order
See also
The order in which Borland C++ evaluates the operands of an expression is not specified, except where
an operator specifically states otherwise. The compiler will try to rearrange the expression in order to
improve the quality of the generated code. Care is therefore needed with expressions in which a value is
modified more than once. In general, avoid writing expressions that both modify and use the value of the
same object. For example, consider the expression
i = v[i++]; // i is undefined
The value of i depends on whether i is incremented before or after the assignment. Similarly,
int total = 0;
sum = (total = 3) + (++total); // sum = 4 or sum = 7 ??
is ambiguous for sum and total. The solution is to revamp the expression, using a temporary variable:
int temp, total = 0;
temp = ++total;
sum = (total = 3) + temp;
Where the syntax does enforce an evaluation sequence, it is safe to have multiple evaluations:
sum = (i = 3, i++, i++); // OK: sum = 4, i = 5
Each subexpression of the comma expression is evaluated from left to right, and the whole expression
evaluates to the rightmost value
Borland C++ regroups expressions, rearranging associative and commutative operators regardless of
parentheses, in order to create an efficiently compiled expression; in no case will the rearrangement
affect the value of the expression
You can use parentheses to force the order of evaluation in expressions. For example, if you have the
variables a, b, c, and f, then the expression f = a + (b + c) forces (b + c) to be evaluated before adding
the result to a.

Errors and overflows
See also
Associativity and precedence of Borland C++ operators. summarizes the precedence and associativity
of the operators. During the evaluation of an expression, Borland C++ can encounter many problematic
situations, such as division by zero or out-of-range floating-point values. Integer overflow is ignored (C
uses modulo 2n arithmetic on n-bit registers), but errors detected by math library functions can be
handled by standard or user-defined routines.See _matherr and signal.

Equality operators
See also
There are two equality operators: == and !=. They test for equality and inequality between arithmetic or
pointer values, following rules very similar to those for the relational operators.
Note: Notice that == and != have a lower precedence than the relational operators < and >, <=, and >=.

Also, == and != can compare certain pointer types for equality and inequality where the relational
operators would not be allowed.

The syntax is
equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression

Statements
See also
Statements specify the flow of control as a program executes. In the absence of specific jump and
selection statements, statements are executed sequentially in the order of appearance in the source
code. Borland C++ statements shows the syntax for statements.

Borland C++ statements
statement:

labeled-statement

compound-statement

expression-statement

selection-statement

iteration-statement

jump-statement

asm-statement

declaration (C++ specific)

labeled-statement:

identifier : statement

case constant-expression : statement

default : statement

compound-statement:

{ <declaration-list> <statement-list> }

declaration-list:

declaration

declaration-list declaration

statement-list:

statement

statement-list statement

expression-statement:

<expression> ;

asm-statement:

asm tokens newline

asm tokens;

asm { tokens; <tokens;>= <tokens;>}

selection-statement:

if (expression) statement

if (expression) statement else statement

switch (expression) statement

iteration-statement:

while (expression) statement

do statement while (expression) ;

for (for-init-statement <expression> ; <expression>) statement

for-init-statement:

expression-statement

declaration (C++ specific)

jump-statement:

goto identifier ;

continue ;

break ;

return <expression> ;

Blocks
See also
A compound statement, or block, is a list (possibly empty) of statements enclosed in matching braces
({ }). Syntactically, a block can be considered to be a single statement, but it also plays a role in the
scoping of identifiers. An identifier declared within a block has a scope starting at the point of declaration
and ending at the closing brace. Blocks can be nested to any depth.

Labeled statements
See also
A statement can be labeled in two ways:
 label-identifier : statement

The label identifier serves as a target for the unconditional goto statement. Label identifiers have
their own name space and have function scope. In C++ you can label both declaration and non-
declaration statements.

 case constant-expression : statement
default : statement

Case and default labeled statements are used only in conjunction with switch statements.

Expression statements
See also
Any expression followed by a semicolon forms an expression statement:

<expression>;
Borland C++ executes an expression statement by evaluating the expression. All side effects from this
evaluation are completed before the next statement is executed. Most expression statements are
assignment statements or function calls
The null statement is a special case, consisting of a single semicolon (;). The null statement does
nothing, and is therefore useful in situations where the Borland C++ syntax expects a statement but your
program does not need one.

Selection statements
See also
Selection or flow-control statements select from alternative courses of action by testing certain values.
There are two types of selection statements: the if...else and the switch.

Iteration statements
See also
Iteration statements let you loop a set of statements. There are three forms of iteration in Borland C++:
while, do while, and for loops.

Jump statements
See also
A jump statement, when executed, transfers control unconditionally. There are four such statements:
break, continue, goto, and return

C++ specifics
See also
C++ is an object-oriented programming language based on C. Generally speaking, you can compile C
programs under C++, but you can’t compile a C++ program under C if the program uses any constructs
specific to C++. Some situations require special care. For example, the same function func declared
twice in C with different argument types invokes a duplicated name error. Under C++, however, func will
be interpreted as an overloaded function; whether or not this is legal depends on other circumstances.
Although C++ introduces new keywords and operators to handle classes, some of the capabilities of C+
+ have applications outside of any class context. This topic discusses the aspects of C++ that can be
used independently of classes, then describes the specifics of classes and class mechanisms.
See C++ Exception Handling and C-Based Structured Exceptions for details on compiling C and C++
programs with exception handling.

Referencing
See also
While in C, you pass arguments only by value; in C++, you can pass arguments by value or by
reference. C++ reference types, closely related to pointer types, create aliases for objects and let you
pass arguments to functions by reference. See the following topics for a discussion of referencing.
Simple references
Reference arguments
Reference/Indirect operators
Note: C++ specific pointer referencing and dereferencing is discussed in C++ specific operators.

Simple references
See also
The reference declarator can be used to declare references outside functions:
int i = 0;
int &ir = i; // ir is an alias for i
ir = 2; // same effect as i = 2
Note that type& var, type &var, and type & var are all equivalent.
This creates the lvalue ir as an alias for i, provided the initializer is the same type as the reference. Any
operations on ir have precisely the same effect as operations on i. For example, ir = 2 assigns 2 to i,
and &ir returns the address of i.

Reference arguments
See also
The reference declarator can also be used to declare reference type parameters within a function:
void func1 (int i);
void func2 (int &ir); // ir is type "reference to int"
 .
 .
 .
int sum=3;
func1(sum); // sum passed by value
func2(&sum); // sum passed by reference
The sum argument passed by reference can be changed directly by func2. On the other hand, func1
gets a copy of the sum argument (passed by value), so sum itself cannot be altered by func1.
When an actual argument x is passed by value, the matching formal argument in the function receives a
copy of x. Any changes to this copy within the function body are not reflected in the value of x itself. Of
course, the function can return a value that could be used later to change x, but the function cannot
directly alter a parameter passed by value.
The C method for changing x uses the actual argument &x, the address of x, rather than x itself.
Although &x is passed by value, the function can access x through the copy of &x it receives. Even if the
function does not need to change x, it is still useful (though subject to potentially dangerous side effects)
to pass &x, especially if x is a large data structure. Passing x directly by value involves wasteful copying
of the data structure.
Compare the three implementations of the function treble:
Implementation 1
int treble_1(int n)
{
 return 3 * n;
}
 .
 .
 .
int x, i = 4;
x = treble_1(i); // x now = 12, i = 4
 .
 .
 .
Implementation 2
void treble_2(int* np)
{
 *np = (*np) * 3;
}
 .
 .
 .
treble_2(int& i); // i now = 12
Implementation 3
void treble_3(int& n) // n is a reference type
{
 n = 3 * n;
}
 .

 .
 .
treble_3(i); // i now = 36
The formal argument declaration type& t (or equivalently, type& t) establishes t as type “reference to
type.” So, when treble_3 is called with the real argument i, i is used to initialize the formal reference
argument n. n therefore acts as an alias for i, so n = 3*n also assigns 3 * i to i.

If the initializer is a constant or an object of a different type than the reference type, creates a temporary
object for which the reference acts as an alias:
int& ir = 6; /* temporary int object created, aliased by ir, gets value 6
*/

float f;
int& ir2 = f; /* creates temporary int object aliased by ir2; f converted
 before assignment */
ir2 = 2.0 // ir2 now = 2, but f is unchanged
The automatic creation of temporary objects permits the conversion of reference types when formal and
actual arguments have different (but assignment-compatible) types. When passing by value, of course,
there are fewer conversion problems, since the copy of the actual argument can be physically changed
before assignment to the formal argument.

Classes
See also
C++ classes offer extensions to the predefined type system. Each class type represents a unique set of
objects and the operations (methods) and conversions available to create, manipulate, and destroy such
objects. Derived classes can be declared that inherit the members of one or more base (or parent)
classes.
In C++, structures and unions are considered as classes with certain access defaults.
A simplified, “first-look” syntax for class declarations is
class-key {<distance-attrib> <distance-attrib>} <type-info> class-name
<: base-list> { <member-list> };
class-key is one of class, struct, or union.
The optional type-info indicates a request for run-time type information about the class. You can compile
with the –RT compiler option, or you can use the _ _rtti keyword. See the discussion of class typeinfo
for more information.
The optional base-list lists the base class or classes from which the class class-name will derive (or
inherit) objects and methods. If any base classes are specified, the class class-name is called a derived
class. The base-list has default and optional overriding access specifiers that can modify the access
rights of the derived class to members of the base classes.
The optional member-list declares the class members (data and functions) of class-name with default
and optional overriding access specifiers that can affect which functions can access which members.

Class memory model specifications
See also
For 16-bit applications only, distance modifiers can be applied to a class declaration. The modifier(s)
applied to a class declaration determine the addressing of the class’s this pointer and the class’s table
of virtual functions (vtable). The distance modifiers allowed for class declarations, and their effect on the
addressing of this and the vtable are as follows:

Class memory model specifications
Modifier *this vtable
_ _near near near
_ _far far near
_ _huge far far
_ _huge _ _near near far
_ _export far far
_ _import far far

If you’re importing classes that are declared with the modifier _ _huge, you must change the modifier to
the keyword _ _import. The _ _huge modifier merely causes far addressing of the virtual tables (the
same effect as the –Vf compiler option). The _ _import modifier makes all function and static addresses
default to far
See Exporting and Importing Classes for a discussion of declaration of classes used in DLLs.

Class names
See also
class-name is any identifier unique within its scope. With structures, classes, and unions, class-name
can be omitted. See Untagged structures and typedefs for discussion of untagged structures.

Class types
See also
The declaration creates a unique type, class type class-name. This lets you declare further class objects
(or instances) of this type, and objects derived from this type (such as pointers to, references to, arrays
of class-name, and so on):
class X { ... };
X x, &xr, *xptr, xarray[10];
/* four objects: type X, reference to X, pointer to X and array of X */
struct Y { ... };
Y y, &yr, *yptr, yarray[10];
// C would have
// struct Y y, *yptr, yarray[10];
union Z { ... };
Z z, &zr, *zptr, zarray[10];
// C would have
// union Z z, *zptr, zarray[10];
Note the difference between C and C++ structure and union declarations: The keywords struct and
union are essential in C, but in C++, they are needed only when the class names, Y and Z, are hidden
(see Class name scope)

Class name scope
See also
The scope of a class name is local. There are some special requirements if the class name appears
more than once in the same scope. Class name scope starts at the point of declaration and ends with
the enclosing block. A class name hides any class, object, enumerator, or function with the same name
in the enclosing scope. If a class name is declared in a scope containing the declaration of an object,
function, or enumerator of the same name, the class can be referred to only by using the elaborated
type specifier. This means that the class key, class, struct, or union, must be used with the class
name. For example,
struct S { ... };
int S(struct S *Sptr);
void func(void) {
 S t; // ILLEGAL declaration: no class key and function S in scope
 struct S s; // OK: elaborated with class key
 S(&s); // OK: this is a function call
}
C++ also allows an incomplete class declaration:
class X; // no members, yet!
Incomplete declarations permit certain references to class name X (usually references to pointers to
class objects) before the class has been fully defined. See Structure member declarations for more
information. Of course, you must make a complete class declaration with members before you can
define and use class objects.

Class objects
See also
Class objects can be assigned (unless copying has been restricted), passed as arguments to functions,
returned by functions (with some exceptions), and so on. Other operations on class objects and
members can be user-defined in many ways, including definition of member and friend functions and the
redefinition of standard functions and operators when used with objects of a certain class.
Redefined functions and operators are said to be overloaded. Operators and functions that are restricted
to objects of a certain class (or related group of classes) are called member functions for that class. C++
offers the overloading mechanism that allows the same function or operator name can be called to
perform different tasks, depending on the type or number of arguments or operands.

Class member list
See also
The optional member-list is a sequence of data declarations (of any type, including enumerations, bit
fields and other classes), function declarations, and definitions, all with optional storage class specifiers
and access modifiers. The objects thus defined are called class members. The storage class specifiers
auto, extern, and register are not allowed. Members can be declared with the static storage class
specifiers.

Member functions
See also
A function declared without the friend specifier is known as a member function of the class. Functions
declared with the friend modifier are called friend functions.
The same name can be used to denote more than one function, provided they differ in argument type or
number of arguments.

The keyword this
See also
Nonstatic member functions operate on the class type object they are called with. For example, if x is an
object of class X and f() is a member function of X, the function call x.f() operates on x. Similarly, if
xptr is a pointer to an X object, the function call xptr->f() operates on *xptr. But how does f know
which instance of X it is operating on? C++ provides f with a pointer to x called this. this is passed as a
hidden argument in all calls to nonstatic member functions.
this is a local variable available in the body of any nonstatic member function. this does not need to be
declared and is rarely referred to explicitly in a function definition. However, it is used implicitly within the
function for member references. If x.f(y) is called, for example, where y is a member of X, this is set to
&x and y is set to this->y, which is equivalent to x.y.

Inline functions
See also
You can declare a member function within its class and define it elsewhere. Alternatively, you can both
declare and define a member function within its class, in which case it is called an inline function.
Borland C++ can sometimes reduce the normal function call overhead by substituting the function call
directly with the compiled code of the function body. This process, called an inline expansion of the
function body, does not affect the scope of the function name or its arguments. Inline expansion is not
always possible or feasible. The inline specifier indicates to the compiler you would like an inline
expansion.
Note: The Borland C++ compiler can ignore requests for inline expansion.
Explicit and implicit inline requests are best reserved for small, frequently used functions, such as the
operator functions that implement overloaded operators. For example, the following class declaration of
func:
int i; // global int
class X {
public:
 char* func(void) { return i; } // inline by default
 char* i;
};
is equivalent to:
inline char* X::func(void) { return i; }
func is defined outside the class with an explicit inline specifier. The i returned by func is the char* i of
class X (see Member scope).

Inline functions and exceptions
An inline function with an exception-specification will never be expanded inline by Borland C++. For
example,
inline void f1() throw(int)
 {
 // Warning: Functions with exception specifications are not expanded inli
ne

 }
The remaining restrictions apply only when destructor cleanup is enabled.
Note: Destructors are called by default. See Setting Exception Handling Options for information about

exception-handling switches.
An inline function that takes at least one parameter that is of type ’class with a destructor’ will not be
expanded inline. Note that this restriction does not apply to classes that are passed by reference.
Example:
struct foo {
 foo();
 ~foo();
 };
inline void f2(foo& x) {
 // no warning, f2() can be expanded inline
 }
inline void f3(foo x) {
 // Warning: Functions taking class-by-value argument(s) are
 // not expanded inline in function f3(foo)
 }
An inline function that returns a class with a destructor by value will not be expanded inline whenever

there are variables or temporaries that need to be destructed within the return expression:
struct foo {
 foo();
 ~foo();
 };
inline foo f4() {
 return foo();
 // no warning, f4() can be expanded inline
 }
inline foo f5() {
 foo X;
 return foo(); // Object X needs to be destructed
 // Warning: Functions containing some return statements are
 // not expanded inline in function f5()
 }
inline foo f6() {
 return (foo(), foo()); // temporary in return value
 // Warning: Functions containing some return statements are
 // not expanded inline in function f6()
 }

Static members
See also
The storage class specifier static can be used in class declarations of data and function members. Such
members are called static members and have distinct properties from nonstatic members. With
nonstatic members, a distinct copy “exists” for each instance of the class; with static members, only one
copy exists, and it can be accessed without reference to any particular object in its class. If x is a static
member of class X, it can be referenced as X::x (even if objects of class X haven’t been created yet). It
is still possible to access x using the normal member access operators. For example, y.x and yptr->x,
where y is an object of class X and yptr is a pointer to an object of class X, although the expressions y
and yptr are not evaluated. In particular, a static member function can be called with or without the
special member function syntax:
class X {
 int member_int;
public:
 static void func(int i, X* ptr);
};
void g(void); {
 X obj;
 func(1, &obj); // error unless there is a global func()
 // defined elsewhere
 X::func(1, &obj); // calls the static func() in X
 // OK for static functions only
 obj.func(1, &obj); // so does this (OK for static and
 // nonstatic functions)
}
Because static member functions can be called with no particular object in mind, they don’t have a this
pointer, and therefore cannot access nonstatic members without explicitly specifying an object with . or -
>. For example, with the declarations of the previous example, func might be defined as follows:
void X::func(int i, X* ptr)
{
 member_int = i; // which object does member_int
 // refer to? Error
 ptr->member_int = i; // OK: now we know!
}
Apart from inline functions, static member functions of global classes have external linkage. Static
member functions cannot be virtual functions. It is illegal to have a static and nonstatic member function
with the same name and argument types.
The declaration of a static data member in its class declaration is not a definition, so a definition must be
provided elsewhere to allocate storage and provide initialization.
Static members of a class declared local to some function have no linkage and cannot be initialized.
Static members of a global class can be initialized like ordinary global objects, but only in file scope.
Static members, nested to any level, obey the usual class member access rules, except they can be
initialized.
class X {
 static int x;
 class inner {
 static float f;
 void func(void); // nested declaration
 };
};
int X::x = 1;
float X::inner::f = 3.14; // initialization of nested static
X::inner::func(void) { /* define the nested function */ }

The principal use for static members is to keep track of data common to all objects of a class, such as
the number of objects created, or the last-used resource from a pool shared by all such objects. Static
members are also used to
 Reduce the number of visible global names
 Make obvious which static objects logically belong to which class
 Permit access control to their names

Member scope
See also
The expression X::func() in the example in Inline functions and exceptions uses the class name X
with the scope access modifier to signify that func, although defined “outside” the class, is indeed a
member function of X and exists within the scope of X. The influence of X:: extends into the body of the
definition. This explains why the i returned by func refers to X::i, the char* i of X, rather than the global
int i. Without the X:: modifier, the function func would represent an ordinary non-class function, returning
the global int i.
All member functions, then, are in the scope of their class, even if defined outside the class.
Data members of class X can be referenced using the selection operators . and -> (as with C
structures). Member functions can also be called using the selection operators (see The keyword this).
For example:
class X {
public:
 int i;
 char name[20];
 X *ptr1;
 X *ptr2;
 void Xfunc(char*data, X* left, X* right); // define elsewhere
};
void f(void);
{
 X x1, x2, *xptr=&x1;
 x1.i = 0;
 x2.i = x1.i;
 xptr–>i = 1;
 x1.Xfunc("stan", &x2, xptr);
}
If m is a member or base member of class X, the expression X::m is called a qualified name; it has the
same type as m, and it is an lvalue only if m is an lvalue. It is important to note that, even if the class
name X is hidden by a non-type name, the qualified name X::m will access the correct class member, m.
Class members cannot be added to a class by another section of your program. The class X cannot
contain objects of class X, but can contain pointers or references to objects of class X (note the
similarity with C’s structure and union types).

Nested types
See also
Tag or typedef names declared inside a class lexically belong to the scope of that class. Such names
can, in general, be accessed only by using the xxx::yyy notation, except when in the scope of the
appropriate class.
A class declared within another class is called a nested class. Its name is local to the enclosing class;
the nested class is in the scope of the enclosing class. This is a purely lexical nesting. The nested class
has no additional privileges in accessing members of the enclosing class (and vice versa).
Classes can be nested in this way to an arbitrary level. Nested classes can be declared inside some
class and defined later. For example,
struct outer
{
 typedef int t; // 'outer::t' is a typedef name
 struct inner // 'outer::inner' is a class
 {
 static int x;
 };
 static int x;
 int f();
 class deep; // nested declaration
};
int outer::x; // define static data member
int outer::f() {
 t x; // 't' visible directly here
 return x;
 }
int outer::inner::x; // define static data member
outer::t x; // have to use 'outer::t' here
class outer::deep { }; // define the nested class here
With Borland C++ 2.0, any tags or typedef names declared inside a class actually belong to the global
(file) scope. For example:
struct foo
{
 enum bar { x }; // 2.0 rules: 'bar' belongs to file scope
 // 2.1 rules: 'bar' belongs to 'foo' scope
};
bar x;
The preceding fragment compiles without errors. But because the code is illegal under the 2.1 rules, a
warning is issued as follows:
Warning: Use qualified name to access nested type 'foo::bar'

Member access control
See also
Members of a class acquire access attributes either by default (depending on class key and declaration
placement) or by the use of one of the three access specifiers: public, private, and protected. The
significance of these attributes is as follows:

public: The member can be used by any function.
private: The member can be used only by member functions and friends of the class it’s declared

in.
protected: Same as for private. Additionally, the member can be used by member functions and

friends of classes derived from the declared class, but only in objects of the derived type. (Derived
classes are explained in Base and derived class access.)
Note: Friend function declarations are not affected by access specifiers (see Friends of classes for

more information).
Members of a class are private by default, so you need explicit public or protected access specifiers to
override the default.
Members of a struct are public by default, but you can override this with the private or protected
access specifier.
Members of a union are public by default; this cannot be changed. All three access specifiers are
illegal with union members.
A default or overriding access modifier remains effective for all subsequent member declarations until a
different access modifier is encountered. For example,
class X {
 int i; // X::i is private by default
 char ch; // so is X::ch
public:
 int j; // next two are public
 int k;
protected:
 int l; // X::l is protected
};
struct Y {
 int i; // Y::i is public by default
private:
 int j; // Y::j is private
public:
 int k; // Y::k is public
};
union Z {
 int i; // public by default; no other choice
 double d;
};
Note: The access specifiers can be listed and grouped in any convenient sequence. You can save

typing effort by declaring all the private members together, and so on.

Base and derived class access
See also
When you declare a derived class D, you list the base classes B1, B2, ... in a comma-delimited base-list:

class-key D : base-list { <member-list> }
D inherits all the members of these base classes. (Redefined base class members are inherited and can
be accessed using scope overrides, if needed.) D can use only the public and protected members of
its base classes. But, what will be the access attributes of the inherited members as viewed by D? D
might want to use a public member from a base class, but make it private as far as outside functions
are concerned. The solution is to use access specifiers in the base-list.
Note: Since a base class can itself be a derived class, the access attribute question is recursive: you

backtrack until you reach the basest of the base classes, those that do not inherit.
When declaring D, you can use the access specifier public, protected, or private in front of the classes
in the base-list:
class D : public B1, private B2, ... {
 .
 .
 .
}
These modifiers do not alter the access attributes of base members as viewed by the base class,
though they can alter the access attributes of base members as viewed by the derived class.
The default is private if D is a class declaration, and public if D is a struct declaration.
Note: Unions cannot have base classes, and unions cannot be used as base classes.
The derived class inherits access attributes from a base class as follows:
 public base class: public members of the base class are public members of the derived class.
protected members of the base class are protected members of the derived class. private members of
the base class remain private to the base class.
 protected base class: Both public and protected members of the base class are protected
members of the derived class. private members of the base class remain private to the base class.
 private base class: Both public and protected members of the base class are private members
of the derived class. private members of the base class remain private to the base class.
Note that private members of a base class are always inaccessible to member functions of the derived
class unless friend declarations are explicitly declared in the base class granting access. For example,
/* class X is derived from class A */
class X : A { // default for class is private A
 .
 .
 .
}
/* class Y is derived (multiple inheritance) from B and C
 B defaults to private B */
class Y : B, public C { // override default for C
 .
 .
 .
}
/* struct S is derived from D */
struct S : D { // default for struct is public D
 .
 .
 .
}

/* struct T is derived (multiple inheritance) from D and E
 E defaults to public E */
struct T : private D, E { // override default for D
 // E is public by default
 .
 .
 .
}
The effect of access specifiers in the base list can be adjusted by using a qualified-name in the public or
protected declarations of the derived class. For example:
class B {
 int a; // private by default
public:
 int b, c;
 int Bfunc(void);
};
class X : private B { // a, b, c, Bfunc are now private in X
 int d; // private by default, NOTE: a is not
 // accessible in X
public:
 B::c; // c was private, now is public
 int e;
 int Xfunc(void);
};
int Efunc(X& x); // external to B and X
The function Efunc() can use only the public names c, e, and Xfunc().
The function Xfunc() is in X, which is derived from private B, so it has access to
 The “adjusted-to-public” c
 The “private-to-X” members from B: b and Bfunc()
 X’s own private and public members: d, e, and Xfunc()
However, Xfunc() cannot access the “private-to-B” member, a.

Virtual base classes
See also
A virtual class is a base class that is passed to more than one derived class, as might happen with
multiple inheritance.
You cannot specify a base class more than once in a derived class:
class B { ...};
class D : B, B { ... }; // ILLEGAL
However, you can indirectly pass a base class to the derived class more than once:
class X : public B { ... }
class Y : public B { ... }
class Z : public X, public Y { ... } // OK
In this case, each object of class Z has two sub-objects of class B.
If this causes problems, add the keyword virtual to the base class specifier. For example,
class X : virtual public B { ... }
class Y : virtual public B { ... }
class Z : public X, public Y { ... }
B is now a virtual base class, and class Z has only one sub-object of class B.

Constructors for Virtual Base Classes
Constructors for virtual base classes are invoked before any non-virtual base classes.
If the hierarchy contains multiple virtual base classes, the virtual base class constructors invoke in the
order they were declared.
Any non-virtual bases are then constructed before the derived class constructor is called.
If a virtual class is derived from a non-virtual base, that non-virtual base will be first, so that the virtual
base class can be properly constructed. For example, this code
class X : public Y, virtual public Z
 X one;
produces this order:
Z(); // virtual base class initialization
Y(); // non-virtual base class
X(); // derived class

Friends of classes
See also
A friend F of a class X is a function or class, although not a member function of X, with full access rights
to the private and protected members of X. In all other respects, F is a normal function with respect to
scope, declarations, and definitions.
Since F is not a member of X, it is not in the scope of X, and it cannot be called with the x.F and xptr->F
selector operators (where x is an X object and xptr is a pointer to an X object).
If the specifier friend is used with a function declaration or definition within the class X, it becomes a
friend of X.
friend functions defined within a class obey the same inline rules as member functions (see Inline
functions). friend functions are not affected by their position within the class or by any access specifiers.
For example:
class X {
 int i; // private to X
 friend void friend_func(X*, int);
/* friend_func is not private, even though it's declared in the private sect
ion */

public:
 void member_func(int);
};
/* definitions; note both functions access private int i */
void friend_func(X* xptr, int a) { xptr–>i = a; }
void X::member_func(int a) { i = a; }

X xobj;
/* note difference in function calls */
friend_func(&xobj, 6);
xobj.member_func(6);
You can make all the functions of class Y into friends of class X with a single declaration:
class Y; // incomplete declaration
class X {
 friend Y;
 int i;
 void member_funcX();
};
class Y; { // complete the declaration
 void friend_X1(X&);
 void friend_X2(X*);

 .
 .
 .

};
The functions declared in Y are friends of X, although they have no friend specifiers. They can access
the private members of X, such as i and member_funcX.
It is also possible for an individual member function of class X to be a friend of class Y:
class X {

 .
 .
 .

 void member_funcX();
}
class Y {

 int i;
 friend void X::member_funcX();

 .
 .
 .

};
Class friendship is not transitive: X friend of Y and Y friend of Z does not imply X friend of Z. Friendship
is not inherited.

Introduction to constructors and destructors
See also
There are several special member functions that determine how the objects of a class are created,
initalized, copied, and destroyed. Constructors and destructors are the most important of these. They
have many of the characteristics of normal member functions—you declare and define them within the
class, or declare them within the class and define them outside—but they have some unique features:
 They do not have return value declarations (not even void).
 They cannot be inherited, though a derived class can call the base class’s constructors and
destructors.
 Constructors, like most C++ functions, can have default arguments or use member initialization
lists.
 Destructors can be virtual, but constructors cannot. (See Virtual destructors.)

You can’t take their addresses.
int main (void)
{
 .
 .
 .
 void *ptr = base::base; // illegal
 .
 .
 .
}

 Constructors and destructors can be generated by Borland C++ if they haven’t been explicitly
defined; they are also invoked on many occasions without explicit calls in your program. Any constructor
or destructor generated by the compiler will be public.
 You cannot call constructors the way you call a normal function. Destructors can be called if you
use their fully qualified name.

{
 .
 .
 .
 X *p;
 .
 .
 .
 p–>X::~X(); // legal call of destructor
 X::X(); // illegal call of constructor
 .
 .
 .
}

 The compiler automatically calls constructors and destructors when defining and destroying
objects.
 Constructors and destructors can make implicit calls to operator new and operator delete if
allocation is required for an object.
 An object with a constructor or destructor cannot be used as a member of a union.
 If no constructor has been defined for some class X to accept a given type, no attempt is made to
find other constructors or conversion functions to convert the assigned value into a type acceptable to a
constructor for class X. Note that this rule applies only to any constructor with one parameter and no
initializers that use the “=” syntax.
class X { /* ... */ X(int); };
class Y { /* ... */ Y(X); };
Y a = 1; // illegal: Y(X(1)) not tried

If class X has one or more constructors, one of them is invoked each time you define an object x of
class X. The constructor creates x and initializes it. Destructors reverse the process by destroying the
class objects created by constructors.
Constructors are also invoked when local or temporary objects of a class are created; destructors are
invoked when these objects go out of scope.

Constructors
See also
Constructors are distinguished from all other member functions by having the same name as the class
they belong to. When an object of that class is created or is being copied, the appropriate constructor is
called implicitly.
Constructors for global variables are called before the main function is called. When the #pragma
startup directive is used to install a function prior to the main function, global variable constructors are
called prior to the startup functions.
Local objects are created as the scope of the variable becomes active. A constructor is also invoked
when a temporary object of the class is created.
class X {
public:
 X(); // class X constructor
};
A class X constructor cannot take X as an argument:
class X {
public:
 X(X); // illegal
};
The parameters to the constructor can be of any type except that of the class it’s a member of. The
constructor can accept a reference to its own class as a parameter; when it does so, it is called the copy
constructor . A constructor that accepts no parameters is called the default constructor .

Constructor defaults
See also
The default constructor for class X is one that takes no arguments; it usually has the form X::X(). If no
user-defined constructors exist for a class, Borland C++ generates a default constructor. On a
declaration such as X x, the default constructor creates the object x.
Like all functions, constructors can have default arguments. For example, the constructor
X::X(int, int = 0)
can take one or two arguments. When presented with one argument, the missing second argument is
assumed to be a zero int. Similarly, the constructor
X::X(int = 5, int = 6)
could take two, one, or no arguments, with appropriate defaults. However, the default constructor
X::X() takes no arguments and must not be confused with, say, X::X(int = 0), which can be
called with no arguments as a default constructor, or can take an argument.
You should avoid ambiguity in calling constructors. In the following case, the two default constructors are
ambiguous:
class X
{
public:
 X();
 X(int i = 0);
};
int main() {
 X one(10); // OK; uses X::X(int)
 X two; // illegal; ambiguous whether to call X::X() or
 // X::X(int = 0)
 return 0;
}

The copy constructor
See also
A copy constructor for class X is one that can be called with a single argument of type X as follows:
X::X(X&)
or
X::X(const X&)
or
X::X(const X&, int = 0)
Default arguments are also allowed in a copy constructor. Copy constructors are invoked when
initializing a class object, typically when you declare with initialization by another class object:
X x1;
X x2 = x1;
X x3(x1);
Borland C++ generates a copy constructor for class X if one is needed and no other constructor has
been defined in class X. The copy constructor that is generated by the Borland C++ compiler lets you
safely start programming with simple data types. You need to make your own definition of the copy
constructor if your program creates aggregate, complex types such as class, struct, and arrays The
copy constructor is also called when you pass a class argument by value to a function.
See also the discussion of member-by-member class assignment. You should define the copy
constructor if you overload the assignment operator.

Overloading constructors
See also
Constructors can be overloaded, allowing objects to be created, depending on the values being used for
initialization.
class X {
 int integer_part;
 double double_part;
public:
 X(int i) { integer_part = i; }
 X(double d) { double_part = d; }
};
int main() {
 X one(10); // invokes X::X(int) and sets integer_part to 10
 X one(3.14); // invokes X::X(double) setting double_part to 3.14
 return 0;
}

Order of calling constructors
See also
In the case where a class has one or more base classes, the base class constructors are invoked before
the derived class constructor. The base class constructors are called in the order they are declared.
For example, in this setup,
class Y {...}
class X : public Y {...}
X one;
the constructors are called in this order:
Y(); // base class constructor
X(); // derived class constructor
For the case of multiple base classes,
class X : public Y, public Z
X one;
the constructors are called in the order of declaration:
Y(); // base class constructors come first
Z();
X();
Constructors for virtual base classes are invoked before any nonvirtual base classes. If the hierarchy
contains multiple virtual base classes, the virtual base class constructors are invoked in the order in
which they were declared. Any nonvirtual bases are then constructed before the derived class
constructor is called.
If a virtual class is derived from a nonvirtual base, that nonvirtual base will be first so that the virtual
base class can be properly constructed. The code:
class X : public Y, virtual public Z
X one;
produces this order:
Z(); // virtual base class initialization
Y(); // nonvirtual base class
X(); // derived class
Or, for a more complicated example:
class base;
class base2;
class level1 : public base2, virtual public base;
class level2 : public base2, virtual public base;
class toplevel : public level1, virtual public level2;
toplevel view;
The construction order of view would be as follows:
base(); // virtual base class highest in hierarchy
 // base is constructed only once
base2(); // nonvirtual base of virtual base level2
 // must be called to construct level2
level2(); // virtual base class
base2(); // nonvirtual base of level1
level1(); // other nonvirtual base
toplevel();
If a class hierarchy contains multiple instances of a virtual base class, that base class is constructed
only once. If, however, there exist both virtual and nonvirtual instances of the base class, the class
constructor is invoked a single time for all virtual instances and then once for each nonvirtual occurrence

of the base class.
Constructors for elements of an array are called in increasing order of the subscript.

Class initialization
See also
An object of a class with only public members and no constructors or base classes (typically a structure)
can be initialized with an initializer list. If a class has a constructor, its objects must be either initialized or
have a default constructor. The latter is used for objects not explicitly initialized.
Objects of classes with constructors can be initialized with an expression list in parentheses. This list is
used as an argument list to the constructor. An alternative is to use an equal sign followed by a single
value. The single value can be the same type as the first argument accepted by a constructor of that
class, in which case either there are no additional arguments, or the remaining arguments have default
values. It could also be an object of that class type. In the former case, the matching constructor is
called to create the object. In the latter case, the copy constructor is called to initialize the object.
class X
{
 int i;
public:
 X(); // function bodies omitted for clarity
 X(int x);
 X(const X&);
};
void main()
{
 X one; // default constructor invoked
 X two(1); // constructor X::X(int) is used
 X three = 1; // calls X::X(int)
 X four = one; // invokes X::X(const X&) for copy
 X five(two); // calls X::X(const X&)
}
The constructor can assign values to its members in two ways:
 It can accept the values as parameters and make assignments to the member variables within
the function body of the constructor:
class X
{
 int a, b;
public:
 X(int i, int j) { a = i; b = j }
};
 An initializer list can be used prior to the function body:
class X
{
 int a, b, &c; // Note the reference variable.
public:
 X(int i, int j) : a(i), b(j), c(a) {}
};
The initializer list is the only place to initialize a reference variable.
In both cases, an initialization of X x(1, 2) assigns a value of 1 to x::a and 2 to x::b. The second
method, the initializer list, provides a mechanism for passing values along to base class constructors.
Note: Base class constructors must be declared as either public or protected to be called from a

derived class.
class base1
{
 int x;
public:

 base1(int i) { x = i; }
};

class base2
{
 int x;
public:
 base2(int i) : x(i) {}
};
class top : public base1, public base2
{
 int a, b;
public:
 top(int i, int j) : base1(i*5), base2(j+i), a(i) { b = j;}
};
With this class hierarchy, a declaration of top one(1, 2) would result in the initialization of base1 with
the value 5 and base2 with the value 3. The methods of initialization can be intermixed.
As described previously, the base classes are initialized in declaration order. Then the members are
initialized, also in declaration order, independent of the initialization list.
class X
{
 int a, b;
public:
 X(int i, j) : a(i), b(a+j) {}
};
With this class, a declaration of X x(1,1) results in an assignment of 1 to x::a and 2 to x::b.

Base class constructors are called prior to the construction of any of the derived classes members. If the
values of the derived class are changed, they will have no effect on the creation of the base class.
class base
{
 int x;
public:
 base(int i) : x(i) {}
};
class derived : base
{
 int a;
public:
 derived(int i) : a(i*10), base(a) { } // Watch out! Base will be
 // passed an uninitialized ’a’
};
With this class setup, a call of derived d(1) will not result in a value of 10 for the base class member
x. The value passed to the base class constructor will be undefined.
When you want an initializer list in a non-inline constructor, don’t place the list in the class definition.
Instead, put it at the point at which the function is defined.
derived::derived(int i) : a(i)
{
 .
 .
 .
}

Destructors
See also
The destructor for a class is called to free members of an object before the object is itself destroyed.
The destructor is a member function whose name is that of the class preceded by a tilde (~). A
destructor cannot accept any parameters, nor will it have a return type or value declared.
#include <stdlib.h>
class X
{
public:
 ~X(){}; // destructor for class X
};
If a destructor isn’t explicitly defined for a class, the compiler generates one.

Invoking destructors
See also
A destructor is called implicitly when a variable goes out of its declared scope. Destructors for local
variables are called when the block they are declared in is no longer active. In the case of global
variables, destructors are called as part of the exit procedure after the main function.
When pointers to objects go out of scope, a destructor is not implicitly called. This means that the delete
operator must be called to destroy such an object.
Destructors are called in the exact opposite order from which their corresponding constructors were
called (see Order of calling constructors).

atexit, #pragma exit, and destructors
See also
All global objects are active until the code in all exit procedures has executed. Local variables, including
those declared in the main function, are destroyed as they go out of scope. The order of execution at the
end of a Borland C++ program is as follows:
 atexit() functions are executed in the order they were inserted.
 #pragma exit functions are executed in the order of their priority codes.
 Destructors for global variables are called.

exit and destructors
See also
When you call exit from within a program, destructors are not called for any local variables in the current
scope. Global variables are destroyed in their normal order.

abort and destructors
See also
If you call abort anywhere in a program, no destructors are called, not even for variables with a global
scope.
A destructor can also be invoked explicitly in one of two ways: indirectly through a call to delete, or
directly by using the destructor’s fully qualified name. You can use delete to destroy objects that have
been allocated using new. Explicit calls to the destructor are necessary only for objects allocated a
specific address through calls to new
#include <stdlib.h>
class X {
public:
 .
 .
 .
 ~X(){};
 .
 .
 .
};
void* operator new(size_t size, void *ptr)
{
 return ptr;
}
char buffer[sizeof(X)];
void main() {
 X* pointer = new X;
 X* exact_pointer;
 exact_pointer = new(&buffer) X; // pointer initialized at
 // address of buffer

 .
 .
 .

 delete pointer; // delete used to destroy pointer
 exact_pointer–>X::~X(); // direct call used to deallocate
}

Virtual destructors
See also
A destructor can be declared as virtual. This allows a pointer to a base class object to call the correct
destructor in the event that the pointer actually refers to a derived class object. The destructor of a class
derived from a class with a virtual destructor is itself virtual.
/* How virtual affects the order of destructor calls.
 Without a virtual destructor in the base class, the derived
 class destructor won't be called. */
#include <iostream.h>
class color {
public:
 virtual ~color() { // Virtual destructor
 cout << "color dtor\n";
 }
};
class red : public color {
public:
 ~red() { // This destructor is also virtual
 cout << "red dtor\n";
 }
};
class brightred : public red {
public:
 ~brightred() { // This destructor is also virtual
 cout << "brightred dtor\n";
 }
};
int main() {
 color *palette[3];
 palette[0] = new red;
 palette[1] = new brightred;
 palette[2] = new color;

 // The destructors for red and color are called.
 delete palette[0];
 cout << endl;

 // The destructors for bright red, red, and color are called.
 delete palette[1];
 cout << endl;

 // The destructor for color is called.
 delete palette[2];
 return 0;
}

Program Output:
red dtor
color dtor

brightred dtor
red dtor
color dtor

color dtor

However, if no destructors are declared as virtual, delete palette[0], delete palette[1], and delete
palette[2] would all call only the destructor for class color. This would incorrectly destruct the first two
elements, which were actually of type red and brightred.

Polymorphic classes
See also
Classes that provide an identical interface, but can be implemented to serve different specific
requirements, are referred to as polymorphic classes. A class is polymorphic if it declares or inherits at
least one virtual (or pure virtual) function. The only types that can support polymorphism are class and
struct.

Virtual functions
See also
virtual functions allow derived classes to provide different versions of a base class function. You can
use the virtual keyword to declare a virtual function in a base class. By declaring the function prototype
in the usual way and then prefixing the declaration with the virtual keyword. To declare a pure function
(which automatically declares an abstract class), prefix the prototype with the virtual keyword, and set
the function equal to zero.
virtual int funct1(void); // A virtual function declaration.
virtual int funct2(void) = 0; // A pure function declaration.
virtual void funct3(void) = 0 { // This is a valid declaration.
 // Some code here.
 };
Note: See Abstract classes for a discussion of pure virtual functions.
When you declare virtual functions, keep these guidelines in mind:
 They can be member functions only.
 They can be declared a friend of another class.
 They cannot be a static member.
A virtual function does not need to be redefined in a derived class. You can supply one definition in the
base class so that all calls will access the base function.
To redefine a virtual function in any derived class, the number and type of arguments must be the same
in the base class declaration and in the derived class declaration. (The case for redefined virtual
functions differing only in return type is discussed below.) A redefined function is said to override the
base class function.
You can also declare the functions int Base::Fun(int) and int Derived::Fun(int) even
when they are not virtual. In such a case, int Derived::Fun(int) is said to hide any other versions
of Fun(int) that exist in any base classes. In addition, if class Derived defines other versions of Fun(),
(that is, versions of Fun() with different signatures) such versions are said to be overloaded versions of
Fun().

Virtual function return types
Generally, when redefining a virtual function, you cannot change just the function return type. To
redefine a virtual function, the new definition (in some derived class) must exactly match the return type
and formal parameters of the initial declaration. If two functions with the same name have different
formal parameters, C++ considers them different, and the virtual function mechanism is ignored.
However, for certain virtual functions in a base class, their overriding version in a derived class can have
a return type that is different from the overridden function. This is possible only when both of the
following conditions are met:
 The overridden virtual function returns a pointer or reference to the base class.
 The overriding function returns a pointer or reference to the derived class.
If a base class B and class D (derived publicly from B) each contain a virtual function vf, then if vf is
called for an object d of D, the call made is D::vf(), even when the access is via a pointer or
reference to B. For example,
struct X {}; // Base class.
struct Y : X {}; // Derived class.
struct B {
 virtual void vf1();
 virtual void vf2();
 virtual void vf3();
 void f();
 virtual X* pf(); // Return type is a pointer to base. This can
 // be overridden.
 };

class D : public B {
public:
 virtual void vf1(); // Virtual specifier is legal but redundant.
 void vf2(int); // Not virtual, since it's using a different
 // arg list. This hides B::vf2().
// char vf3(); // Illegal: return-type-only change!
 void f();
 Y* pf(); // Overriding function differs only
 // in return type. Returns a pointer to
 // the derived class.
 };
void extf() {
 D d; // Instantiate D
 B* bp = &d; // Standard conversion from D* to B*
 // Initialize bp with the table of functions

// provided for object d. If there is no entry for a
 // function in the d-table, use the function
 // in the B-table.
 bp–>vf1(); // Calls D::vf1
 bp–>vf2(); // Calls B::vf2 since D's vf2 has different args
 bp–>f(); // Calls B::f (not virtual)
 X* xptr = bp–>pf(); // Calls D::pf() and converts the result
 // to a pointer to X.
 D* dptr = &d;
 Y* yptr = dptr–>pf(); // Calls D::pf() and initializes yptr.
 // No further conversion is done.
 }
The overriding function vf1 in D is automatically virtual. The virtual specifier can be used with an
overriding function declaration in the derived class. If other classes will be derived from D, the virtual
keyword is required. If no further classes will be derived from D, the use of virtual is redundant.
The interpretation of a virtual function call depends on the type of the object it is called for; with
nonvirtual function calls, the interpretation depends only on the type of the pointer or reference denoting
the object it is called for.
virtual functions exact a price for their versatility: each object in the derived class needs to carry a
pointer to a table of functions in order to select the correct one at run time (late binding).

Abstract classes
See also
An abstract class is a class with at least one pure virtual function. A virtual function is specified as pure
by setting it equal to zero.
An abstract class can be used only as a base class for other classes. No objects of an abstract class
can be created. An abstract class cannot be used as an argument type or as a function return type.
However, you can declare pointers to an abstract class. References to an abstract class are allowed,
provided that a temporary object is not needed in the initialization. For example,
class shape { // abstract class
 point center;

 .
 .
 .

public:
 where() { return center; }
 move(point p) { center = p; draw(); }
 virtual void rotate(int) = 0; // pure virtual function
 virtual void draw() = 0; // pure virtual function
 virtual void hilite() = 0; // pure virtual function

 .
 .
 .

}
shape x; // ERROR: attempt to create an object of an abstract class
 shape* sptr; // pointer to abstract class is OK
 shape f(); // ERROR: abstract class cannot be a return type
int g(shape s); // ERROR: abstract class cannot be a function argument typ
e

shape& h(shape&); // reference to abstract class as return
 // value or function argument is OK
Suppose that D is a derived class with the abstract class B as its immediate base class. Then for each
pure virtual function pvf in B, if D doesn’t provide a definition for pvf, pvf becomes a pure member
function of D, and D will also be an abstract class.
For example, using the class shape previously outlined,
class circle : public shape { // circle derived from abstract class
 int radius; // private
public:
 void rotate(int) { } // virtual function defined: no action
 // to rotate a circle
 void draw(); // circle::draw must be defined somewhere
}
Member functions can be called from a constructor of an abstract class, but calling a pure virtual
function directly or indirectly from such a constructor provokes a run-time error.

C++ scope
See also
The lexical scoping rules for C++, apart from class scope, follow the general rules for C, with the proviso
that C++, unlike C, permits both data and function declarations to appear wherever a statement might
appear. The latter flexibility means that care is needed when interpreting such phrases as “enclosing
scope” and “point of declaration.”

Class scope
See also
The name M of a member of a class X has class scope “local to X”; it can be used only in the following
situations:
 In member functions of X
 In expressions such as x.M, where x is an object of X
 In expressions such as xptr->M, where xptr is a pointer to an object of X
 In expressions such as X::M or D::M, where D is a derived class of X
 In forward references within the class of which it is a member
Names of functions declared as friends of X are not members of X; their names simply have enclosing
scope.

Hiding
See also
A name can be hidden by an explicit declaration of the same name in an enclosed block or in a class. A
hidden class member is still accessible using the scope modifier with a class name: X::M. A hidden file
scope (global) name can be referenced with the unary operator :: (for example, ::g). A class name X can
be hidden by the name of an object, function, or enumerator declared within the scope of X, regardless
of the order in which the names are declared. However, the hidden class name X can still be accessed
by prefixing X with the appropriate keyword: class, struct, or union.
The point of declaration for a name x is immediately after its complete declaration but before its
initializer, if one exists.

C++ scoping rules summary
See also
The following rules apply to all names, including typedef names and class names, provided that C++
allows such names in the particular context discussed:
 The name itself is tested for ambiguity. If no ambiguities are detected within its scope, the access
sequence is initiated.
 If no access control errors occur, the type of the object, function, class, typedef, and so on, is
tested.
 If the name is used outside any function and class, or is prefixed by the unary scope access
operator ::, and if the name is not qualified by the binary :: operator or the member selection operators .
and ->, then the name must be a global object, function, or enumerator.
 If the name n appears in any of the forms X::n, x.n (where x is an object of X or a reference to X),
or ptr->n (where ptr is a pointer to X), then n is the name of a member of X or the member of a class from
which X is derived.
 Any name that hasn’t been discussed yet and that is used in a static member function must either
be declared in the block it occurs in or in an enclosing block, or be a global name. The declaration of a
local name n hides declarations of n in enclosing blocks and global declarations of n. Names in different
scopes are not overloaded.
 Any name that hasn’t been discussed yet and that is used in a nonstatic member function of class
X must either be declared in the block it occurs in or in an enclosing block, be a member of class X or a
base class of X, or be a global name. The declaration of a local name n hides declarations of n in
enclosing blocks, members of the function’s class, and global declarations of n. The declaration of a
member name hides declarations of the same name in base classes.
 The name of a function argument in a function definition is in the scope of the outermost block of
the function. The name of a function argument in a nondefining function declaration has no scope at all.
The scope of a default argument is determined by the point of declaration of its argument, but it can’t
access local variables or nonstatic class members. Default arguments are evaluated at each point of call.
 A constructor initializer (see ctor-initializer in the class declarator syntax in Borland C++
declaration syntax,) is evaluated in the scope of the outermost block of its constructor, so it can refer to
the constructor’s argument names.

Preprocessor Directives
Preprocessor directives are usually placed at the beginning of your source code, but they can legally
appear at any point in a program. The Borland C++ preprocessor detects preprocessor directives (also
known as control lines) and parses the tokens embedded in them. Borland C++ supports these
preprocessor directives:
(null directive) #ifdef
#define #ifndef
#elif #include
#else #line
#endif #pragma
#error #undef
#if
Any line with a leading # is taken as a preprocessing directive, unless the # is within a string literal, in a
character constant, or embedded in a comment. The initial # can be preceded or followed by whitespace
(excluding new lines).

(null directive)
Directives

Syntax
#
Description
The null directive consists of a line containing the single character #. This line is always ignored.

#define
See also Example Directives

Syntax
#define macro_identifier <token_sequence>
Description
The #define directive defines a macro. Macros provide a mechanism for token replacement with or
without a set of formal, function-like parameters.
Each occurrence of macro_identifier in your source code following this control line will be replaced in the
original position with the possibly empty token_sequence (there are some exceptions, which are noted
later). Such replacements are known as macro expansions. The token sequence is sometimes called
the body of the macro.
An empty token sequence results in the removal of each affected macro identifier from the source code.
After each individual macro expansion, a further scan is made of the newly expanded text. This allows
for the possibility of nested macros: The expanded text can contain macro identifiers that are subject to
replacement. However, if the macro expands into what looks like a preprocessing directive, such a
directive will not be recognized by the preprocessor. There are these restrictions to macro expansion:

Any occurrences of the macro identifier found within literal strings, character constants, or
comments in the source code are not expanded.

A macro won't be expanded during its own expansion (so #define A A won't expand
indefinitely).

Example
#define HI "Have a nice day!"
#define empty
#define NIL ""
#define GETSTD #include <stdio.h>

#error
Example Directives

Syntax
#error errmsg
Description
The #error directive generates the message:
Error: filename line# : Error directive: errmsg
This directive is usually embedded in a preprocessor conditional statement that catches some undesired
compile-time condition. In the normal case, that condition will be false. If the condition is true, you want
the compiler to print an error message and stop the compile. You do this by putting an #error directive
within a conditional statement that is true for the undesired case.

Example
#if (MYVAL != 0 && MYVAL != 1)
#error MYVAL must be defined to either 0 or 1
#endif

#if, #elif, #else, and #endif
See also Directives

Syntax
#if constant-expression-1
<section-1>
<#elif constant-expression-2 newline section-2>
 .
 .
 .
<#elif constant-expression-n newline section-n>
<#else <newline> final-section>
#endif
Description
Borland C++ supports conditional compilation by replacing the appropriate source-code lines with a
blank line. The lines thus ignored are those lines that are not to be compiled as a result of the directives.
All conditional compilation directives must be completed in the source or include file in which they are
begun.
The conditional directives #if, #elif, #else, and #endif work like the normal C conditional operators. If
the constant-expression-1 (subject to macro expansion) evaluates to nonzero (true), the lines of code
(possibly empty) represented by section-1, whether preprocessor command lines or normal source
lines, are preprocessed and, as appropriate, passed to the Borland C++ compiler. Otherwise, if
constant-expression-1 evaluates to zero (false), section-1 is ignored (no macro expansion and no
compilation).
In the true case, after section-1 has been preprocessed, control passes to the matching #endif (which
ends this conditional sequence) and continues with next-section. In the false case, control passes to the
next #elif line (if any) where constant-expression-2 is evaluated. If true, section-2 is processed, after
which control moves on to the matching #endif. Otherwise, if constant-expression-2 is false, control
passes to the next #elif, and so on, until either #else or #endif is reached. The optional #else is used
as an alternative condition for which all previous tests have proved false. The #endif ends the
conditional sequence.
The processed section can contain further conditional clauses, nested to any depth; each #if must be
matched with a closing #endif.
The net result of the preceding scenario is that only one section (possibly empty) is passed on for further
processing. The bypassed sections are relevant only for keeping track of any nested conditionals, so
that each #if can be matched with its correct #endif.
The constant expressions to be tested must evaluate to a constant integral value.

#ifdef and #ifndef
See also Directives

Syntax
#ifdef identifier
#ifndef identifier
Description
The #ifdef and #ifndef conditional directives let you test whether an identifier is currently defined or not;
that is, whether a previous #define command has been processed for that identifier and is still in force.
The line
#ifdef identifier
has exactly the same effect as
#if 1
if identifier is currently defined, and the same effect as
#if 0
if identifier is currently undefined.
#ifndef tests true for the "not-defined" condition, so the line
#ifndef identifier
has exactly the same effect as
#if 0
if identifier is currently defined, and the same effect as
#if 1
if identifier is currently undefined.
The syntax thereafter follows that of the #if, #elif, #else, and #endif.
An identifier defined as NULL is considered to be defined.

#include
Example Directives

Syntax
#include <header_name>
#include "header_name"
#include macro_identifier
Description
The #include directive pulls in other named files, known as include files, header files, or headers, into
the source code. The syntax has three versions:

The first and second versions imply that no macro expansion will be attempted; in other words,
header_name is never scanned for macro identifiers. header_name must be a valid DOS file name with
an extension (traditionally .h for header) and optional path name and path delimiters.

The third version assumes that neither < nor " appears as the first non-whitespace character
following #include; further, it assumes a macro definition exists that will expand the macro identifier into a
valid delimited header name with either of the <header_name> or "header_name" formats.
The preprocessor removes the #include line and conceptually replaces it with the entire text of the
header file at that point in the source code. The source code itself is not changed, but the compiler
"sees" the enlarged text. The placement of the #include can therefore influence the scope and duration
of any identifiers in the included file.
If you place an explicit path in the header_name, only that directory will be searched.
The difference between the <header_name> and "header_name" formats lies in the searching algorithm
employed in trying to locate the include file.

Example
This #include statement causes it to look for stdio.h in the standard include directory.
#include <stdio.h>

This #include statement causes it to look for MYINCLUD.H in the current directory, then in the default
directories.
#include "myinclud.h"

After expansion, this #include statement causes the preprocessor to look in C:\BC5\INCLUDE\
MYSTUFF.H and nowhere else.
#define myinclud "C:\BC5\INCLUDE\MYSTUFF.H"
/* Note: Single backslashes OK here; within a C statement you would
 need "C:\BC5\INCLUDE\\MYSTUFF.H" */
#include myinclud
/* macro expansion */

#line
Directives

Syntax
#line integer_constant <"filename">
Description
You can use the #line directive to supply line numbers to a program for cross-reference and error
reporting. If your program consists of sections derived from some other program file, it is often useful to
mark such sections with the line numbers of the original source rather than the normal sequential line
numbers derived from the composite program.
The #line directive indicates that the following source line originally came from line number
integer_constant of filename. Once the filename has been registered, subsequent #line commands
relating to that file can omit the explicit filename argument.
Macros are expanded in #line arguments as they are in the #include directive.
The #line directive is primarily used by utilities that produce C code as output, and not in human-written
code.

#pragma summary
Directives

Syntax
#pragma directive-name
Description
With #pragma, Borland C++ can define the directives it wants without interfering with other compilers
that support #pragma. If the compiler doesn't recognize directive-name, it ignores the #pragma
directive without any error or warning message.
Borland C++ supports the following #pragma directives:
#pragma argsused
#pragma anon_struct
#pragma codeseg
#pragma comment
#pragma exit
#pragma hdrfile
#pragma hdrstop
#pragma inline
#pragma intrinsic
#pragma message
#pragma option
#pragma saveregs
#pragma startup
#pragma warn

#pragma argsused
See also #pragma

Syntax
#pragma argused
Description
The argsused pragma is allowed only between function definitions, and it affects only the next function.
It disables the warning message:
"Parameter name is never used in function func-name"

#pragma anon_struct
See also #pragma

Syntax
#pragma anon_struct on
#pragma anon_struct off
Description
The anon_struct directive allows you to compile anonymous structures embedded in classes.
#pragma anon_struct on
struct S {
 int i;
 struct { // Embedded anonymous struct
 int j ;
 float x ;
 };
 class { // Embedded anonymous class
 public:
 long double ld;
 };
S() { i = 1; j = 2; x = 3.3; ld = 12345.5;}
};
#pragma anon_struct off

void main() {
 S mystruct;
 mystruct.x = 1.2; // Assign to embedded data.
 }

#pragma codeseg
See also #pragma

Syntax
#pragma codeseg <seg_name> <"seg_class"> <group>
Description
The codeseg directive lets you name the segment, class, or group where functions are allocated. If the
pragma is used without any of its options arguments, the default code segment is used for function
allocation.

#pragma comment
See also #pragma

Syntax
#pragma comment (comment type, "string")
Description
The comment directive lets you write a comment record into an output file. The comment type can be
one of the following values:

Value Explanation
exestr The linker writes string into an .OBJ file. Your specified string is placed in the

executable file. Such a string is never loaded into memory but can be found in
the executable file by use of a suitable file search utility.

lib Writes a comment record into an .OBJ file. The comment record is used by the
linker as a library-search directory. A library module that is not specified in the
linker's response-file can be specified by the comment LIB directive. The linker
includes the library module name specified in string as the last library. Multiple
modules can be named and linked in the order in which they are named.

user The compiler writes string into the .OBJ file. The specified string is ignored by the
linker.

#pragma exit and #pragma startup
See also #pragma

Syntax
#pragma startup function-name <priority>
#pragma exit function-name <priority>
Description
These two pragmas allow the program to specify function(s) that should be called either upon program
startup (before the main function is called), or program exit (just before the program terminates through
_exit).
The specified function-name must be a previously declared function taking no arguments and returning
void; in other words, it should be declared as:
void func(void);
The optional priority parameter should be an integer in the range 64 to 255. The highest priority is 0.
Functions with higher priorities are called first at startup and last at exit. If you don't specify a priority, it
defaults to 100.
Note: Priorities from 0 to 63 are used by the C libraries, and should not be used by the user.

#pragma hdrfile
See also #pragma

Syntax
#pragma hdrfile "filename.CSM"
Description
This directive sets the name of the file in which to store precompiled headers.
If you aren't using precompiled headers, this directive has no effect. You can use the command-line
compiler option -H=filename or Use Precompiled Headers to change the name of the file used to store
precompiled headers.

#pragma hdrstop
See also #pragma

Syntax
#pragma hdrstop
Description
This directive terminates the list of header files eligible for precompilation. You can use it to reduce the
amount of disk space used by precompiled headers.

#pragma inline
See also #pragma

Syntax
#pragma inline
Description
This directive is equivalent to the -B command-line compiler option or the IDE inline option.
This is best placed at the top of the file, because the compiler restarts itself with the -B option when it
encounters #pragma inline.

#pragma intrinsic
See also Example #pragma

Syntax
#pragma intrinsic [-]function-name
Description
Use #pragma intrinsic to override command-line switches or IDE options to control the inlining of
functions.
When inlining an intrinsic function, always include a prototype for that function before using it.

Example
This example causes the compiler to generate code for strcpy in your function:
#pragma intrinsic strcpy
 while this version prevents the compiler from inlining strcpy:
#pragma intrinsic -strcpy

#pragma message
See also Example #pragma

Syntax
#pragma message ("text" ["text"["text" ...]])
#pragma message text
Description
Use #pragma message to specify a user-defined message within your program code.
The first form requires that the text consist of one or more string constants, and the message must be
enclosed in parentheses. (This form is compatible with MSC.) The second form uses the text following
the #pragma for the text of the warning message. With both forms of the #pragma, any macro
references are expanded before the message is displayed.
Display of user-defined messages is on by default and can be turned on or off with the User-Defined
Warnings (Options|Project|Messages|General) in the IDE. This option corresponds to the 16/32 bit compiler's -
wmsg switch.

Example
The following example displays either "You are compiling using version xxx of BC++" (where xxx is the
version number) or "Sorry, you are not using the Borland C++ compiler".
#ifdef __BORLANDC__
#pragma message You are compiling using version __BORLANDC__ of BC++.
#else
#pragma message ("Sorry, you are not using the Borland C++ compiler")
#endif

#pragma option
See also #pragma

Syntax
#pragma option [options...]
Description
Use #pragma option to include command-line options within your program code.
options can be any command-line option (except those listed in the following paragraph). Any number of
options can appear in one directive. Any of the toggle options (such as -a or -K) can be turned on and
off as on the command line. For these toggle options, you can also put a period following the option to
return the option to its command-line, configuration file, or option-menu setting. This allows you to
temporarily change an option, then return it to its default, without having to remember (or even needing
to know) what the exact default setting was.
Options that cannot appear in a pragma option include:
-B -c -dname
-Dname=string -efilename -E
-Fx -h -lfilename
-lexset -M -o
-P -Q -S
-T -Uname -V
-X -Y
You can use #pragmas, #includes, #define, and some #ifs in the following cases:

Before the use of any macro name that begins with two underscores (and is therefore a possible
built-in macro) in an #if, #ifdef, #ifndef or #elif directive.

Before the occurrence of the first real token (the first C or C++ declaration).
Certain command-line options can appear only in a #pragma option command before these events.
These options are:
-Efilename -f -i#
-m* -npath -ofilename
-u -W -z
*
Other options can be changed anywhere. The following options will only affect the compiler if they get
changed between functions or object declarations:
-1 -h -r
-2 -k -rd
-a -N -v
-ff -O -y
-G -p -Z
The following options can be changed at any time and take effect immediately:
-A -gn -zE
-b -jn -zF
-C -K -zH
-d -wxxx
The options can appear followed by a dot (.) to reset the option to its command-line state.

#pragma saveregs
See also #pragma

Syntax
#pragma saveregs
Description
The saveregs pragma guarantees that a huge function will not change the value of any of the registers
when it is entered. This directive is sometimes needed for interfacing with assembly language code. The
directive should be placed immediately before the function definition. It applies to that function alone.

#pragma warn
See also Example #pragma

Syntax
#pragma warn [+|-|.]www
Description
The warn pragma lets you override specific -wxxx command-line options or check Display Warningsl in
the Messages options.

Example
If your source code contains the directives:
#pragma warn +xxx
#pragma warn -yyy
#pragma warn .zzz
the xxx warning will be turned on, the yyy warning will be turned off, and the zzz warning will be restored
to the value it had when compilation of the file began. See the command-line options summary for a
complete list of the three-letter abbreviations and the warnings to which they apply.

#undef
See also Example Directives

Syntax
#undef macro_identifier
Description
You can undefine a macro using the #undef directive. #undef detaches any previous token sequence
from the macro identifier; the macro definition has been forgotten, and the macro identifier is undefined.
No macro expansion occurs within #undef lines.
The state of being defined or undefined turns out to be an important property of an identifier, regardless
of the actual definition. The #ifdef and #ifndef conditional directives, used to test whether any identifier
is currently defined or not, offer a flexible mechanism for controlling many aspects of a compilation.
After a macro identifier has been undefined, it can be redefined with #define, using the same or a
different token sequence.
Attempting to redefine an already defined macro identifier will result in a warning unless the new
definition is exactly the same token-by-token definition as the existing one. The preferred strategy where
definitions might exist in other header files is as follows:
#ifndef BLOCK_SIZE
 #define BLOCK_SIZE 512
#endif
The middle line is bypassed if BLOCK_SIZE is currently defined; if BLOCK_SIZE is not currently
defined, the middle line is invoked to define it.
No semicolon (;) is needed to terminate a preprocessor directive. Any character found in the token
sequence, including semicolons, will appear in the macro expansion. The token sequence terminates at
the first non-backslashed new line encountered. Any sequence of whitespace, including comments in
the token sequence, is replaced with a single-space character.

Example
#define BLOCK_SIZE 512
 .
 .
 .
#undef BLOCK_SIZE
/* use of BLOCK_SIZE now would be illegal "unknown" identifier */
 .
 .
 .
#define BLOCK_SIZE 128 /* redefinition */

Using the -D and -U command-line options
See also
Identifiers can be defined and undefined using the command-line compiler options -D and -U.
The command line
BCC32 -Ddebug=1; paradox=0; X -Umysym myprog.c
is equivalent to placing
#define debug 1
#define paradox 0
#define X
#undef mysym
in the program.

Keywords and Protected Words as Macros
It is legal but ill-advised to use Borland C++ keywords as macro identifiers:
#define int long /* legal but probably catastrophic */
#define INT long /* legal and possibly useful */
The following predefined global identifiers cannot appear immediately following a #define or #undef
directive:
_ _DATE_ _ _ _FILE_ _ _ _LINE_ _
_ _STDC_ _ _ _TIME_ _

Macros with Parameters
See also
The following syntax is used to define a macro with parameters:
#define macro_identifier(<arg_list>) token_sequence
Any comma within parentheses in an argument list is treated as part of the argument, not as an
argument delimiter.
Note there can be no whitespace between the macro identifier and the (. The optional arg_list is a
sequence of identifiers separated by commas, not unlike the argument list of a C function. Each comma-
delimited identifier plays the role of a formal argument or placeholder.
Such macros are called by writing
macro_identifier<whitespace>(<actual_arg_list>)
in the subsequent source code. The syntax is identical to that of a function call; indeed, many standard
library C "functions" are implemented as macros. However, there are some important semantic
differences, side effects, and potential pitfalls.
The optional actual_arg_list must contain the same number of comma-delimited token sequences,
known as actual arguments, as found in the formal arg_list of the #define line: There must be an actual
argument for each formal argument. An error will be reported if the number of arguments in the two lists
is different.
A macro call results in two sets of replacements. First, the macro identifier and the parenthesis-enclosed
arguments are replaced by the token sequence. Next, any formal arguments occurring in the token
sequence are replaced by the corresponding real arguments appearing in the actual_arg_list.
As with simple macro definitions, rescanning occurs to detect any embedded macro identifiers eligible
for expansion.

Nesting Parentheses and Commas
The actual_arg_list can contain nested parentheses provided that they are balanced; also, commas
appearing within quotes or parentheses are not treated like argument delimiters.

Token Pasting with ##
You can paste (or merge) two tokens together by separating them with ## (plus optional whitespace on
either side). The preprocessor removes the whitespace and the ##, combining the separate tokens into
one new token. You can use this to construct identifiers.

Converting to Strings with #
The # symbol can be placed in front of a formal macro argument in order to convert the actual argument
to a string after replacement.

Using the Backslash (\) for Line Continuation
A long token sequence can straddle a line by using a backslash (\). The backslash and the following
newline are both stripped to provide the actual token sequence used in expansions.

Side Effects and Other Dangers
The similarities between function and macro calls often obscure their differences. A macro call has no
built-in type checking, so a mismatch between formal and actual argument data types can produce
bizarre, hard-to-debug results with no immediate warning. Macro calls can also give rise to unwanted
side effects, especially when an actual argument is evaluated more than once.

Header File Search with <header_name>
The <header_name> version specifies a standard include file; the search is made successively in each
of the include directories in the order they are defined. If the file is not located in any of the default
directories, an error message is issued.

Header File Search with "header_name"
The "header_name" version specifies a user-supplied include file; the file is sought first in the current
directory (usually the directory holding the source file being compiled). If the file is not found there, the
search continues in the include directories as in the <header_name> situation.

Global Variables
Borland C++ provides you with predefined global variables for many common needs, such as dates,
times, command-line arguments, and so on. For a list of obsolete global variables, see Obsolete Global
Variables.
_8087 _osminor
_argc _osversion
_argv _psp
_ctype _sys_errlist
_daylight _sys_nerr
_directvideo _threadid
_doserrno _ _throwExceptionName
_environ _ _throwFileName
_errno _ _throwLineNumber
_floatconvert _timezone
_fmode _tzname
_new_handler _version
_osmajor _wscroll

_8087
Portability Global Variables

Syntax
extern int _8087;
Header File
dos.h

Description
The _8087 variable is set to a nonzero value if the startup code autodetection logic detects a floating-
point coprocessor.

_8087 Math
Value Coprocessor

1 8087
2 80287
3 80387
0 (none detected)

The autodetection logic can be overridden by setting the 87 environment variable to YES or NO. (The
commands are SET 87=YES and SET 87=NO; it is essential that there be no spaces before or after the
equal sign.) In this case, the _8087 variable will reflect the override.

_argc
Portability Example Global Variables

Syntax
extern int _argc;
Header File
dos.h

Description
_argc has the value of argc passed to main when the program starts.

/* _argc and _argv example */
#include <iostream.h>
#include <dos.h> // TO GET THE GLOBAL _arg VALUES

void func() {
 cout << "argc= " << _argc << endl;

 for (int i = 0; i < _argc; ++i)
 cout << _argv[i] << endl;
 }

void main(int argc, char ** argv) {
 func(); // THIS FUNCTION KNOWS ALL THE main() ARGUMENTS
 }

_argv, _wargv
Portability Example Global Variables

Syntax
extern char **_argv;
extern wchar_t ** _wargv
Header File
dos.h

Description
_argv points to an array containing the original command-line arguments (the elements of argv[]) passed
to main when the program starts.
_wargv is the Unicode version of _argv.

_ctype
Portability Global Variables

Syntax
extern char _ctype[];
Header File
ctype.h

Description
_ctype is an array of character attribute information indexed by ASCII value + 1. Each entry is a set of
bits describing the character. This array is used by isdigit, isprint, and so on.

_daylight
See also Portability Global Variables

Syntax
extern int _daylight;
Header File
time.h

Description
_daylight is used by the time and date functions. It is set by the tzset, ftime, and localtime functions to 1
for daylight saving time, 0 for standard time.
On Win32, the value of _daylight is obtained from the operating system.

_directvideo
Portability Global Variables

Syntax
extern int _directvideo;
Header File
conio.h

Description
_directvideo controls whether your program's console output goes directly to the video RAM
(_directvideo = 1) or goes via ROM BIOS calls (_directvideo = 0).
The default value is _directvideo = 1 (console output goes directly to video RAM). To use _directvideo =
1, the video hardware on your system must be identical to IBM display adapters. Setting _directvideo =
0 allows your console output to work on any system that is IBM BIOS-compatible.
_directvideo should be used only in character-based applications. It is not allowed in 16-bit Windows,
Win32s, or Win32 GUI applications.

_environ, _wenviron
See also Portability Global Variables

Syntax
extern char ** _environ;
extern wchar_t ** _wenviron
Header File
dos.h

Description
_environ is an array of pointers to strings; it is used to access and alter the operating system
environment variables. Each string is of the form:
envvar = varvalue
where envvar is the name of an environment variable (such as PATH), and varvalue is the string value to
which envvar is set (such as C:\BIN;C:\DOS). The string varvalue can be empty.
When a program begins execution, the operating system environment settings are passed directly to the
program. Note that env, the third argument to main, is equal to the initial setting of _environ.
The _environ array can be accessed by getenv; however, the putenv function is the only routine that
should be used to add, change or delete the _environ array entries. This is because modification can
resize and relocate the process environment array, but _environ is automatically adjusted so that it
always points to the array.

errno
Portability Example Global Variables

Syntax
extern int errno;
Header File
errno.h

Description
errno is used by perror to print error messages when certain library routines fail to accomplish their
appointed tasks.
When an error in a math or system call occurs, errno is set to indicate the type of error. Sometimes
errno and _doserrno are equivalent. At other times, errno does not contain the actual operating system
error code, which is contained in _doserrno. Still other errors might occur that set only errno, not
_doserrno.

/* errno, _doserrno, _sys_errlist, and _sys_nerr example */
/* DISPLAY THE SYSTEM ERRORS. */
#include <errno.h>
#include <stdio.h>

extern char *_sys_errlist[];

main()
{
 int i = 0;

 while(_sys_errlist[i++]) printf("%s\n", _sys_errlist[i]);
 return 0;
}

_doserrno
Portability Example Global Variables

Syntax
extern int _doserrno;
Header File
errno.h

Description
_doserrno is a variable that maps many operating system error codes to errno; however, perror does not
use _doserrno directly.
When an operating system call results in an error, _doserrno is set to the actual operating system error
code. errno is a parallel error variable inherited from UNIX.
The following list gives mnemonics for the actual DOS error codes to which _doserrno can be set. (This
value of _doserrno may or may not be mapped (through errno) to an equivalent error message string in
_sys_errlist.

Mnemonic DOS error code
E2BIG Bad environ
EACCES Access denied
EACCES Bad access
EACCES Is current dir
EBADF Bad handle
EFAULT Reserved
EINVAL Bad data
EINVAL Bad function
EMFILE Too many open
ENOENT No such file or directory
ENOEXEC Bad format
ENOMEM Mcb destroyed
ENOMEM Out of memory
ENOMEM Bad block
EXDEV Bad drive
EXDEV Not same device

Refer to your DOS reference manual for more information about DOS error return codes.

_sys_errlist
Portability Example Global Variables

Syntax
extern char * _sys_errlist[];
Header File
errno.h

Description
_sys_errlist is used by perror to print error messages when certain library routines fail to accomplish
their appointed tasks.
To provide more control over message formatting, the array of message strings is provided in
_sys_errlist. You can use errno as an index into the array to find the string corresponding to the error
number. The string does not include any newline character.
The following table gives mnemonics and their meanings for the values stored in _sys_errlist. The list is
alphabetically ordered for ease your reading convenience. For the numerical ordering, see the header
file errno.h.

Mnemonic 16-bit Description 32-bit Description
E2BIG Arg list too long Arg list too long
EACCES Permission denied Permission denied
EBADF Bad file number Bad file number
ECHILD No child process
ECONTR Memory blocks destroyed Memory blocks destroyed
ECURDIR Attempt to remove CurDir Attempt to remove CurDir
EDEADLOCK Locking violation
EDOM Domain error Math argument
EEXIST File already exists File already exists
EFAULT Unknown error Unknown error
EINTR Interrupted function call
EINVACC Invalid access code Invalid access code
EINVAL Invalid argument Invalid argument
EINVDAT Invalid data Invalid data
EINVDRV Invalid drive specified Invalid drive specified
EINVENV Invalid environment Invalid environment
EINVFMT Invalid format Invalid format
EINVFNC Invalid function number Invalid function number
EINVMEM Invalid memory block address Invalid memory block address
EIO input/output error
EMFILE Too many open files Too many open files
ENAMETOOLONG File name too long
ENFILE Too many open files
ENMFILE No more files No more files
ENODEV No such device No such device
ENOENT No such file or directory No such file or directory
ENOEXEC Exec format error Exec format error
ENOFILE No such file or directory File not found
ENOMEM Not enough memory Not enough core
ENOPATH Path not found Path not found
ENOSPC No space left on device
ENOTSAM Not same device Not same device
ENXIO No such device or address
EPERM Operation not permitted
EPIPE Broken pipe
ERANGE Result out of range Result too large
EROFS Read-only file system

ESPIPE Illegal seek
EXDEV Cross-device link Cross-device link
EZERO Error 0 Error 0

Refer to your DOS reference manual for more information about DOS error return codes.

_sys_nerr
Portability Example Global Variables

Syntax
extern int _sys_nerr;
Header File
errno.h

Description
_sys_nerr is used by perror to print error messages when certain library routines fail to accomplish their
appointed tasks.
This variable is defined as the number of error message strings in _sys_errlist.

_floatconvert
Portability Example Global Variables

Syntax
extern int _floatconvert;
Header File
stdio.h

Description
Floating-point output requires linking of conversion routines used by printf, scanf, and any variants of
these functions. In order to reduce executable size, the floating-point formats are not automatically
linked. However, this linkage is done automatically whenever your program uses a mathematical routine
or the address is taken of some floating-point number. If neither of these actions occur, the missing
floating-point formats can result in a run-time error.

/* _floatconvert example */
/* PREPARE TO OUTPUT FLOATING-POINT NUMBERS. */
#include <stdio.h>
#pragma extref _floatconvert

void main() {
 printf("d = %lf\n", 1);
}

_fmode
Portability Global Variables

Syntax
extern int _fmode;
Header File
fcntl.h

Description
_fmode determines in which mode (text or binary) files will be opened and translated. The value of
_fmode is O_TEXT by default, which specifies that files will be read in text mode. If _fmode is set to
O_BINARY, the files are opened and read in binary mode. (O_TEXT and O_BINARY are defined in
fcntl.h.)
In text mode, carriage-return/linefeed (CR/LF) combinations are translated to a single linefeed character
(LF) on input. On output, the reverse is true: LF characters are translated to CR/LF combinations.
In binary mode, no such translation occurs.
You can override the default mode as set by _fmode by specifying a t (for text mode) or b (for binary
mode) in the argument type in the library functions fopen, fdopen, and freopen. Also, in the function
open, the argument access can include either O_BINARY or O_TEXT, which will explicitly define the file
being opened (given by the open pathname argument) to be in either binary or text mode.

_new_handler
Portability Global Variables

Syntax
typedef void (*pvf)();
pvf _new_handler;
Header File
new.h

Description
_new_handler contains a pointer to a function that takes no arguments and returns void. If operator
new() is unable to allocate the space required, it will call the function pointed to by _new_handler; if that
function returns it will try the allocation again. By default, the function pointed to by _new_handler simply
terminates the application. The application can replace this handler, however, with a function that can try
to free up some space. This is done by assigning directly to _new_handler or by calling the function
set_new_handler,, which returns a pointer to the former handler.
As an alternative, you can set using the function set_new_handler, like this:
pvf set_new_handler(pvf p);
_new_handler is provided primarily for compatibility with C++ version 1.2. In most cases this
functionality can be better provided by overloading operator new().

_osmajor
See also Portability Global Variables

Syntax
extern unsigned char _osmajor;
Header File
dos.h

Description
The major version number of the operating system is available individually through _osmajor. For
example, if you are running DOS version 3.2, _osmajor will be 3.
This variable can be useful when you want to write modules that will run on DOS versions 2.x and 3.x.
Some library routines behave differently depending on the DOS version number, while others only work
under DOS 3.x and higher. For example, refer to creatnew, ioctl, and _rtl_open.

_osminor
See also Portability Global Variables

Syntax
extern unsigned char _osminor;
Header File
dos.h

Description
The minor version number of the operating system is available individually through _osminor. For
example, if you are running DOS version 3.2, _osminor will be 20.
This variables can be useful when you want to write modules that will run on DOS versions 2.x and 3.x.
Some library routines behave differently depending on the DOS version number, while others only work
under DOS 3.x and higher. For example, refer to creatnew, ioctl, and _rtl_open.

_osversion
See also Portability Global Variables

Syntax
extern unsigned _osversion;
Header File
dos.h

Description
_osversion contains the operating system version number, with the major version number in the low byte
and the minor version number in the high byte. (For DOS version x.y, the x is the major version number,
and y is the minor version number.)
_osversion is functionally identical to _version.

_psp
Portability Global Variables

Syntax
extern unsigned int _psp;
Header Files
dos.h
process.h
stdlib.h

Description
_psp specifies the address of the program segment prefix (PSP) of a program. The PSP is a DOS
process descriptor; it contains initial DOS information about the program.
Note: _psp cannot be used in DLLs.

_ _throwExceptionName
See also Portability Global Variables

Syntax
extern char * _ _throwExceptionName;
Header File
except.h

Description
Use this global variable to get the name of a thrown exception. The output for this variable is a printable
character string.

_ _throwFileName
See also Portability Global Variables

Syntax
extern char * _ _throwFileName;
Header File
except.h

Description
Use this global variable to get the name of a thrown exception. The output for this variables is a
printable character string.
To get the file name for a thrown exception with __throwFileName, you must compile the module with
the -xp compiler option.

_ _throwLineNumber
See also Portability Global Variables

Syntax
extern char * _ _throwLineNumber;
Header File
except.h

Description
Use this global variable to get the name of a thrown exception. The output for this variables is a
printable character string.
To get the line number for a thrown exception with __throwLineNumber, you must compile the module
with the -xp compiler option.

_threadid
Portability Global Variables

Syntax
extern long _threadid;
Header File
stddef.h

Description
_threadid is a long integer that contains the ID of the currently executing thread. It is implemented as a
macro, and should be declared only by including stddef.h.

_timezone
See also Portability Global Variables

Syntax
extern long _timezone;
Header File
time.h

Description
_timezone is used by the time-and-date functions. It is calculated by the tzset function; it is assigned a
long value that is the difference, in seconds, between the current local time and Greenwich mean time.
On Win32, the value of _timezone is obtained from the operating system.

_tzname, _wtzname
See also Portability Global Variables

Syntax
extern char * _tzname[2]
extern wchar_t *const _wtzname[2]
Header File
time.h

Description
The global variable _tzname is an array of pointers to strings containing abbreviations for time zone
names. _tzname[0] points to a three-character string with the value of the time zone name from the TZ
environment string. The global variable _tzname[1] points to a three-character string with the value of
the daylight saving time zone name from the TZ environment string. If no daylight saving name is
present, _tzname[1] points to a null string.
On Win32, the value of _tzname is obtained from the operating system.

_version
See also Portability Global Variables

Syntax
extern unsigned _version;
Header File
dos.h

Description
_version contains the operating system version number, with the major version number in the low byte
and the minor version number in the high byte. (For DOS version x.y, the x is the major version number,
and y is the minor.)

_wscroll
Portability Global Variables

Syntax
extern int _wscroll
Header File
conio.h

Description
_wscroll is a console I/O flag. Its default value is 1. If you set _wscroll to 0, scrolling is disabled. This can
be useful for drawing along the edges of a window without having your screen scroll.
_wscroll should be used only in character-based applications. It is available for EasyWin but is not
allowed in 16-bit Windows, Win32s, or Win32 GUI applications.

Portability

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2
 + + + +

Portability

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2
 + + +

Portability

DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2
 + + +

Obsolete Global Variables
See also
The following global variables have been renamed to comply with ANSI naming requirements. You
should always use the new names.
If you link with libraries that were compiled with Borland C++ 3.1 (or earlier) header files, the following
message is generated:
Error: undefined external <varname> in module <LIBNAME>.LIB
You should recompile a library module that results in such an error. If you cannot recompile the code for
such libraries, you can link with OBSOLETE.LIB to resolve the external variable names.

The following global variables have been renamed:

Old Name New Name Header File
daylight _daylight time.h
directvideo _directvideo conio.h
environ _environ stdlib.h
sys_errlist _sys_errlist errno.h
sys_nerr _sys_nerr errno.h
timezone _timezone time.h
tzname _tzname time.h

_mexcep (typedef)
See also

Defined In
math.h

Description
The typedef _mexcep enumerates these constants that represent possible mathematical errors.

_mexcep
Constant Mathematical error

DOMAIN Argument was not in domain of function
Example: log(-1)

SING Argument would result in a singularity
Example: pow(0, -2)

OVERFLOW Argument would produce a function result > MAXDOUBLE
Example: exp(1000)

UNDERFLOW Argument would produce a function result < MINDOUBLE
Example: exp(-1000)

TLOSS Argument would produce function result with total loss of significant digits
Example: sin(10**70)

The symbolic constants MAXDOUBLE and MINDOUBLE are defined in VALUES.H.

div_t and ldiv_t (typedef struct)

Defined In
stdlib.h

Syntax
typedef struct{
 int quot; /* quotient */
 int rem; /* remainder */
} div_t;
Description
The div_t type is a structure of integers used by div.

Syntax
typedef struct{
 long int quot; /* quotient */
 long int rem; /* remainder */
} ldiv_t;
Description
The ldiv_t type is a structure of longs used by ldiv.

jmp_buf (typedef struct)

Defined In
setjmp.h

Syntax
typedef struct{
 unsigned j_sp, j_ss;
 unsigned j_flag, j_cs;
 unsigned j_ip, j_bp;
 unsigned j_di, j_es;
 unsigned j_si, j_ds;
} jmp_buf[1];
Description
A buffer of type jmp_buf is used to save and restore the program task state.

FILE (typedef struct)

Defined In
stdio.h

Syntax
typedef struct{
 short level;
 unsigned flags;
 char fd;
 unsigned char hold;
 short bsize;
 unsigned char *buffer, *curp;
 unsigned istemp;
 short token;
} FILE;
Description
File control structure for streams.

dosSearchInfo (typedef struct)

Defined In
dos.h

Declaration
typedef struct{
 char drive;
 char pattern [13];
 char reserved [7];
 char attrib;
 short time;
 short date;
 long size;
 char nameZ [13];
} dosSearchInfo;

atexit_t (type)

Defined In
stdlib.h

Syntax
typedef void (* atexit_t)(void);
Description
Type of exit function passed to atexit.

size_t (type)

Defined in
stddef.h

Description
Type which is an unsigned integer returned by the sizeof operator.

ptrdiff_t (type)

Defined In
stddef.h

Description
A signed integer that represents the result of subtracting two pointers.

fpos_t (type)

Defined In
stdio.h

Description
A file position type.

time_t (type)

Defined In
time.h
sys\types.h

Description
This variable type defines the value used by the time functions declared in time.h.
The time_t value will not work after the hour of 3:14:07 on the year 01/19/2038.
The functions that use the time_t value are as follows:
char ctime(const time_t *time);
double difftime(time_t time2, time_t time1);
struct tm * gmtime(const time_t *timer);
struct tm * localtime(const time_t *timer);
time_t time(time_t *timer);
time_t mktime(struct tm *timeptr);
int stime(time_t *tp);

clock_t (type)
Defined In
time.h

Description
The CLK_TCK constant defines the number of clock ticks per second. This data type is returned by the
clock function stores an elapsed time measured in clock ticks.

sig_atomic_t (type)

Defined In
signal.h

Description
Atomic entity type.

wchar_t (type)

Defined In
stddef.h

Description
Wide-character constant (C only). In a C++ file, wchar_t is a keyword.
A character constant preceded by an L is a wide-character constant.

O_xxxx #defines

Header File
fcntl.h

Description
These #defines are bit definitions for a file-access argument.
These RTL file-open functions use some (not all) of these definitions:
 _dos_open

 fdopen
 fopen
 freopen
 _fsopen
 open
 _rtl_open
 sopen
_dos_open and sopen also use file-sharing symbolic constants in the file-access argument.

Category
Constant Description

Read/Write flag (Used by _dos_open, open, _rtl_open, and sopen)
O_RDONLY Open for reading only
O_WRONLY Open for writing only
O_RDWR Open for reading and writing

Other access flags (Used by open and sopen)
O_NDELAY Not used; for UNIX compatibility.
O_APPEND Append to end of file

If set, the file pointer is set to the end of the file prior to each write.
O_CREAT Create and open file

If the file already exists, has no effect.
If the file does not exist, the file is created.

O_EXCL Exclusive open: Used only with O_CREAT.
If the file already exists, an error is returned.

O_TRUNC Open with truncation
If the file already exists, its length is truncated to 0. The file attributes remain

unchanged.
Binary-mode/Text-mode flags(Used by fdopen, fopen, freopen, _fsopen, open and sopen)

O_BINARY No translation: Explicitly opens the file in binary mode
O_TEXT CR-LF translation: Explicitly opens the file in text mode

Additional values available under DOS 3.x (Used by _rtl_open)
O_NOINHERIT Child processes inherit file
O_DENYALL Error if opened for read/write
O_DENYWRITE Error if opened for write
O_DENYREAD Error if opened for read
O_DENYNONE Allow concurrent access

Note: Only one of the O_DENYxxx options can be included in a single open. These file-sharing
attributes are in addition to any locking performed on the files.

DO NOT MODIFY these special read-only bits described in DOS documentation!
O_CHANGED Special DOS read-only bit
O_DEVICE Special DOS read-only bit

SEEK_xxx
See also

Header File
io.h
stdio.h

Description
#defines that set seek starting points

Constant Value File Location

SEEK_SET 0 Seeks from beginning of file
SEEK_CUR 1 Seeks from current position
SEEK_END 2 Seeks from end of file

SH_xxxx

Header File
share.h

Description
File-sharing mode for use with _dos_open and sopen (under DOS 3.0 or later).

Constant Meaning

SH_COMPAT Sets compatibility mode:
Allows other opens with SH_COMPAT. The call will fail if the file has already been
opened in any other shared mode.

SH_DENYNONE Permits read/write access
Allows other shared opens to the file, but not other SH_COMPAT opens

SH_DENYNO Permits read/write access (provided for compatibility)
SH_DENYRD Denies read access. Allows only writes from any other open to the file
SH_DENYRW Denies read/write access. Only the current handle may have access to the file
SH_DENYWR Denies write access. Allows only reads from any other open to the file
O_NOINHERIT The file is not passed to child programs

These file-sharing attributes are in addition to any locking performed on the files.

P_xxxx

Header File
process.h

Description
Modes used by the spawn... functions.

Constant Meaning

P_WAIT Child runs separately, parent waits until exit
P_DETACH Child and parent run concurrently with child process in background mode
P_NOWAIT Child and parent run concurrently (Not implemented)
P_NOWAITO Child and parent run concurrently, but the child process is not saved
P_OVERLAY Child replaces parent so that parent no longer exists

SIG_xxx
See also

Header File
signal.h

Description
Predefined functions for handling signals generated by raise or by external events.

Name Meaning

SIG_DFL Terminate the program
SIG_IGN No action, ignore signal
SIG_ERR Return error code

SIGxxxx

Header File
signal.h

Description
Signal types used by raise and signal.

Signal Note Meaning Default Action

SIGABRT (*) Abnormal termination = to calling _exit(3)

SIGFPE Bad floating-point operation = to calling _exit(1)
Arithmetic error caused by
division by 0, invalid operation, etc.

SIGILL (#) Illegal operation = to calling _exit(1)
SIGINT Control-C interrupt Is to do an INT 23h
SIGSEGV (#) Invalid access to storage = to calling _exit(1)
SIGTERM (*) Request for program termination = to calling _exit(1)

(*) Signal types marked with a (*) aren't generated by DOS or Borland C++ during normal operation.
However, they can be generated with raise.
(#) Signals marked by (#) can't be generated asynchronously on 8088 or 8086 processors but can be
generated on some other processors (see signal for details).

stdaux, stderr, stdin, stdout, and stdprn

Header File
stdio.h

Description
Predefined streams automatically opened when the program is started.

Name Meaning

stdin Standard input device
stdout Standard output device
stderr Standard error output device
stdaux Standard auxiliary device
stdprn Standard printer

S_Ixxxx

Header File
sys\stat.h

Description
Definitions used for file status and directory functions.

Name Meaning

S_IFMT File type mask
S_IFDIR Directory
S_IFIFO FIFO special
S_IFCHR Character special
S_IFBLK Block special
S_IFREG Regular file
S_IREAD Owner can read
S_IWRITE Owner can write
S_IEXEC Owner can execute

NULL #define

Header File
stddef.h

Description
Null pointer constant that is compatible with any data object pointer. It is not compatible with function
pointers. When a pointer is equivalent to NULL it is guaranteed not to point to any data object defined
within the program.

Bit Definitions for fnsplit

Header File
dir.h

Description
Bit definitions returned from fnsplit to identify which pieces of a file name were found during the split.

Flag Component

DIRECTORY Path includes a directory (and possibly subdirectories)
DRIVE Path includes a drive specification (see DIR.H)
EXTENSION Path includes an extension
FILENAME Path includes a file name
WILDCARDS Path contains wildcards (* or ?)

MAXxxxx

Header File
dir.h

Description
These symbols define the maximum number of characters in a file specification for fnsplit (including
room for a terminating NULL).

Name Meaning

MAXPATH Complete file name with path
MAXDRIVE Disk drive (e.g., "A:")
MAXDIR File subdirectory specification
MAXFILE File name without extension
MAXEXT File extension

_F_xxxx

Header File
stdio.h

Description
File status flags of streams

Name Meaning

_F_RDWR Read and write
_F_READ Read-only file
_F_WRIT Write-only file
_F_BUF Malloc'ed buffer data
_F_LBUF Line-buffered file
_F_ERR Error indicator
_F_EOF EOF indicator
_F_BIN Binary file indicator
_F_IN Data is incoming
_F_OUT Data is outgoing
_F_TERM File is a terminal

FA_xxxx

Header File
dos.h

Description
DOS file attributes

Constant Description

FA_RDONLY Read-only attribute
FA_HIDDEN Hidden file
FA_SYSTEM System file
FA_LABEL Volume label
FA_DIREC Directory
FA_ARCH Archive

For more detailed information about these attributes, refer to your DOS reference manuals.

EXIT_xxxx

Header File
stdlib.h

Description
Constants defining exit conditions for calls to the exit function.

Name Meaning

EXIT_SUCCESS Normal program termination
EXIT_FAILURE Abnormal program termination

_IOxxx
See also

Header File
stdio.h

Description
Constants for defining buffering style to be used with a file.

Name Meaning

_IOFBF The file is fully buffered. When a buffer is empty, the next input operation will attempt
to fill the entire buffer.

 On output, the buffer will be completely filled before any data is written to the file.
_IOLBF The file is line buffered. When a buffer is empty, the next input operation will still

attempt to fill the entire buffer.
 On output, however, the buffer will be flushed whenever a newline character is

written to the file.
_IONBF The file is unbuffered. The buf and size parameters are ignored. Each input

operation will read directly from the file, and each output operation will immediately
write the data to the file.

BUFSIZ

Header File
stdio.h

Description
Default buffer size used by setbuf function.

EOF

Header File
stdio.h

Description
A constant indicating that end-of-file has been reached on a file.

_IS_xxx

Header File
ctype.h

Description
Bit settings in the _ctype[] used by the is... character macros.

Name Meaning

_IS_SP Is space
_IS_DIG Is digit
_IS_UPP Is uppercase
_IS_LOW Is lowercase
_IS_HEX [A-F] or [a-f]
_IS_CTL Control
_IS_PUN Punctuation

CHAR_xxx

Header File
LIMITS.H

Description
Name Meaning

CHAR_BIT Type char, number of bits
CHAR_MAX Type char, minimum value
CHAR_MIN Type char, maximum value

These values are independent of whether type char is defined as signed or unsigned by default.

SCHAR_xxx

Header File
limits.h

Description
Name Meaning

SCHAR_MAX Type char, maximum value
SCHAR_MIN Type char, minimum value

Uxxxx_MAX

Header File
limits.h

Description
Name Maximum value for type xxx

UCHAR_MAX unsigned char
USHRT_MAX unsigned short
UINT_MAX unsigned integer
ULONG_MAX unsigned long

SHRT_xxx

Header File
limits.h

Description
Name Meaning

SHRT_MAX Type short, maximum value
SHRT_MIN Type short, minimum value

INT_xxx

Header File
limits.h

Description
Maximum and minimum value for type int.

Name Meaning

INT_MAX Type int, maximum value
INT_MIN Type int, minimum value

LONG_xxx

Header File
limits.h

Description
Maximum and minimum value for type long.

Name Meaning

LONG_MAX Type long, maximum value
LONG_MIN Type long, minimum value

CW_DEFAULT

Header File
float.h

Description
Default control word for 8087/80287 math coprocessor.

EDOM, ERANGE, HUGE_VAL

Header File
errno.h
math.h

Description
Name Meaning

EDOM Error code for math domain error
ERANGE Error code for result out of range
HUGE_VAL Overflow value for math functions

NDEBUG

Header File
assert.h

Description
NDEBUG means "Use #define to treat assert as a macro or a true function".
Can be defined in a user program. If defined, assert is a true function; otherwise assert is a macro.

NFDS

Header File
dos.h

Description
Maximum number of file descriptors.

MAXxxxx

Header File
values.h

Description
Maximum values for integer data types

Name Meaning

MAXSHORT Largest short
MAXINT Largest int
MAXLONG Largest long

M_E, M_LOGxxx, M_LNxx

Header File
math.h

Description
The constant values for logarithm functions.

Name Meaning

M_E The value of e
M_LOG2E The value of log(e)
M_LOG10E The value of log10(e)
M_LN2 The value of ln(2)
M_LN10 The value of ln(10)

PI constants

Header File
math.h

Description
Common constants of pi

Name Meaning

M_PI pi
M_PI_2 One-half pi
M_PI_4 One-fourth pi
M_1_PI One divided by pi
M_2_PI Two divided by pi
M_1_SQRTPI One divided by the square root of pi
M_2_SQRTPI Two divided by the square root of pi

M_SQRTxxx

Header File
math.h

Description
Constant values for square roots of 2.

Name Meaning

M_SQRT2 Square root of 2
M_SQRT_2 1/2 the square root of 2

L_ctermid

Header File
stdio.h

Description
The length of a device id string.

L_tmpnam

Header File
stdio.h

Description
Size of an array large enough to hold a temporary file name string.

TMP_MAX

Header File
stdio.h

Description
Maximum number of unique file names.

OPEN

Header File
stdio.h

Description
Number of files that can be open simultaneously.

Name Meaning

FOPEN_MAX Maximum files per process
SYS_OPEN Maximum files for system

HANDLE_MAX

Header File
io.h

Description
Maximum number of handles.

RAND_MAX

Header File
stdlib.h

Syntax

Description
Maximum value returned by rand function.

BITSPERBYTE

Header File
values.h

Description
Number of bits in a byte.

Float and Double Limits

Header File
values.h

Description

UNIX System V compatible:
_LENBASE Base to which exponent applies

Limits for double float values
_DEXPLEN Number of bits in exponent
DMAXEXP Maximum exponent allowed
DMAXPOWTWO Largest power of two allowed
DMINEXP Minimum exponent allowed
DSIGNIF Number of significant bits
MAXDOUBLE Largest magnitude double value
MINDOUBLE Smallest magnitude double value

Limits for float values
_FEXPLEN Number of bits in exponent
FMAXEXP Maximum exponent allowed
FMAXPOWTWO Largest power of two allowed
FMINEXP Minimum exponent allowed
FSIGNIF Number of significant bits
MAXFLOAT Largest magnitude float value
MINFLOAT Smallest magnitude float value

HIBITxxx

Header File
values.h

Description
Bit mask for the high (sign) bit of standard integer types.

Name Meaning
HIBITS For type short
HIBITI For type int
HIBITL For type long

Error Numbers in errno

Header File
errno.h

Description
These are the mnemonics and meanings for the error numbers found in errno.
Each value listed can be used to index into the sys_errlist array for displaying messages.
Also, perror will display messages.

Mnemonic Meaning
EZERO Error 0
EINVFNC Invalid function number
ENOFILE File not found
ENOPATH Path not found
ECONTR Memory blocks destroyed
EINVMEM Invalid memory block address
EINVENV Invalid environment
EINVFMT Invalid format
EINVACC Invalid access code
EINVDAT Invalid data
EINVDRV Invalid drive specified
ECURDIR Attempt to remove CurDir
ENOTSAM Not same device
ENMFILE No more files
ENOENT No such file or directory
EMFILE Too many open files
EACCES Permission denied
EBADF Bad file number
ENOMEM Not enough memory
ENODEV No such device
EINVAL Invalid argument
E2BIG Arg list too long
ENOEXEC Exec format error
EXDEV Cross-device link
EDOM Math argument
ERANGE Result too large
EFAULT Unknown error
EEXIST File already exists

Bit fields
A bit field is an element of a structure that is defined in terms of bits. Using a special type of struct
definition, you can declare a structure element that can range from 1 to 16 bits in length.
For example, this struct
struct bit_field {
 int bit_1 : 1;
 int bits_2_to_5 : 4;
 int bit_6 : 1;
 int bits_7_to_16 : 10;
} bit_var;
corresponds to this collection of bit fields:
|----------------------------|---|---------|---|
16 15 14 13 12 11 10 9 8 7	6	5 4 3 2	1
See Also
class
union

ftime
header: IO.H
A file's time and date. Used by the functions getftime and setftime.
struct ftime {
 unsigned ft_tsec : 5; /* Two seconds */
 unsigned ft_min : 6; /* Minutes */
 unsigned ft_hour : 5; /* Hours */
 unsigned ft_day : 5; /* Days */
 unsigned ft_month : 4; /* Months */
 unsigned ft_year : 7; /* Year - 1980 */
};

_exception and _exceptionl
header: MATH.H
The format of error information for math routines.
Struct exception is used by _matherr:
struct _exception {
 int type;
 char *name;
 double arg1, arg2, retval;
};
Struct _exceptionl is used by _matherrl:
struct _exceptionl {
 int type;
 char *name;
 long double arg1, arg2, retval;
};

Member What It Is (Or Represents)
type The type of mathematical error that occurred; an enum type defined in the typedef

_mexcep.
name A pointer to a null-terminated string holding the name of the math library function that

resulted in an error.
arg1, The arguments (passed to the function *name) that caused the error.
arg2 If only one argument was passed to the function, it is stored in arg1.
retval The default return value for matherr; you can modify this value.

complex and _complexl
header: MATH.H
Complex number representation.
Struct complex is used by the complex function cabs.
struct complex {
 double x, y;
};
Struct _complexl is used by the long double complex function cabsl.
struct _complexl {
 long double x, y;
};
x is the real part, and y is the imaginary part.

tm
header: TIME.H
A structure defining the broken-down time.
Used by the functions asctime, gmtime,localtime, mktime, and strftime.
struct tm {
 int tm_sec; /* Seconds */
 int tm_min; /* Minutes */
 int tm_hour; /* Hour (0--23) */
 int tm_mday; /* Day of month (1--31) */
 int tm_mon; /* Month (0--11) */
 int tm_year; /* Year (calendar year minus 1900) */
 int tm_wday; /* Weekday (0--6; Sunday = 0) */
 int tm_yday; /* Day of year (0--365) */
 int tm_isdst; /* 0 if daylight savings time is not in effect) */
};

timeb
header: SYS\TIMEB.H
Current time information filled out by the ftime function.
struct timeb {
 long time ; /* seconds since 00:00:00, 1/1/70, GMT */
 short millitm ; /* fraction of second (in milliseconds) */
 short timezone ; /* difference between local time and GMT */
 short dstflag ; /* 0 if daylight savings time is not in effect */
};
timezone is computed going west from GMT.
ftime gets this field from timezone, which is set by tzset.

stat
header: SYS\STAT.H
A structure containing information about a file or directory. Used by the fstat and stat functions.
struct stat {
 short st_dev, st_ino;
 short st_mode, st_nlink;
 int st_uid, st_gid;
 short st_rdev;
 long st_size, st_atime;
 long st_mtime, st_ctime;
};

Element What It Is
st_dev Drive number of disk containing the file, or file handle if the file is on a device
st_mode Bit mask giving information about the open file's mode
st_nlink Set to the integer constant 1
st_rdev Same as st_dev
st_size Size of the open file in bytes
st_atime Most recent time the open file was modified
st_mtime Same as st_atime
st_ctime Same as st_atime
st_ino These elements contain values
st_uid that are not meaningful under
st_gid DOS.

ffblk
header: DIR.H
DOS file control block structure.
struct ffblk {
 char ff_reserved[21]; /* reserved by DOS */
 char ff_attrib; /* attribute found */
 int ff_ftime; /* file time */
 int ff_fdate; /* file date */
 long ff_fsize; /* file size */
 char ff_name[13]; /* found file name */
};
Remarks
ff_ftime and ff_fdate are 16-bit structures divided into bit fields for referring to the current date and
time.
The structure of these fields was established by DOS.

See Also
findfirst
ftime structure
find_t structure

fcb
header: DOS.H
The structure of the MS-DOS file control blocks.
struct fcb {
 char fcb_drive;
 char fcb_name[8], fcb_ext[3];
 short fcb_curblk, fcb_recsize;
 long fcb_filsize;
 short fcb_date;
 char fcb_resv[10], fcb_currec;
 long fcb_random;
};

xfcb
header: DOS.H
The MS-DOS extended file control block structure.
struct xfcb {
 char xfcb_flag;
 char xfcb_resv[5];
 char xfcb_attr;
 struct fcb xfcb_fcb;
};

dfree
header: DOS.H
The structure of the information returned by the getdfree function.
struct dfree {
 unsigned df_avail; /* Available clusters */
 unsigned df_total; /* Total clusters */
 unsigned df_bsec; /* Bytes per sector */
 unsigned df_sclus; /* Sectors per cluster */
};

fatinfo
header: DOS.H
The structure of the file allocation table information filled in by the getfat and getfatd functions.
struct fatinfo {
 char fi_sclus; /* sectors per cluster */
 char fi_fatid; /* the FAT id byte */
 int fi_nclus; /* number of clusters */
 int fi_bysec; /* bytes per sector */
};

time
header: DOS.H
Structure of the time as used by these functions:
dostounix
gettime
settime
unixtodos
struct time {
 unsigned char ti_min; /* minutes */
 unsigned char ti_hour; /* hours */
 unsigned char ti_hund; /* hundredths of seconds */
 unsigned char ti_sec; /* seconds */
};

date
header: DOS.H
Structure of the date as used by these functions:
dostounix
getdate
setdate
unixtodos
struct date {
 int da_year; /* current year */
 char da_day; /* day of the month */
 char da_mon; /* month (1 = Jan) */
};

REGS (union)
header: DOS.H
The union REGS is used to pass information to and from these functions:
int86
int86x
intdos
intdosx
union REGS {
 struct WORDREGS x;
 struct BYTEREGS h;
};
See Also
struct REGPACK

BYTEREGS and WORDREGS
header: DOS.H
Structures for storing byte and word registers
struct BYTEREGS {
 unsigned char al, ah, bl, bh;
 unsigned char cl, ch, dl, dh;
};
struct WORDREGS {
 unsigned int ax, bx, cx, dx;
 unsigned int si, di, cflag, flags;
};

SREGS
header: DOS.H
The structure of the segment registers passed to and filled in by these functions:
int86x
intdosx
segread
struct SREGS {
 unsigned int es;
 unsigned int cs;
 unsigned int ss;
 unsigned int ds;
};

REGPACK
header: DOS.H
The structure of the values passsed to and returned by the intr function call.
struct REGPACK {
 unsigned r_ax, r_bx, r_cx, r_dx;
 unsigned r_bp, r_si, r_di;
 unsigned r_ds, r_es, r_flags;
};
See Also
REGS

COUNTRY
header: DOS.H
The structure COUNTRY specifies how certain country-dependent data is to be formatted.
struct COUNTRY {
 int co_date; /* date format */
 char co_curr[5]; /* currency symbol */
 char co_thsep[2]; /* thousands separator */
 char co_desep[2]; /* decimal separator */
 char co_dtsep[2]; /* date separator */
 char co_tmsep[2]; /* time separator */
 char co_currstyle; /* currency style */
 char co_digits; /* significant digits in currency */
 char co_time; /* time format */
 long co_case; /* case map */
 char co_dasep[2]; /* data separator */
 char co_fill[10]; /* filler */
};
This is the date format in co_date:

Value Style Format
0 U.S. (Month, Day, Year)
1 European (Day, Month, Year)
2 Japanese (Year, Month, Day)

This is the currency display style in co_currstyle:

Style Example Meaning
0 $10.52 Currency symbol precedes value with no spaces between the symbol and

the number
1 10.52$ Currency symbol follows value with no spaces between the number and

the symbol
2 $ 10.52 Currency symbol precedes value with a space after the symbol.

3 10.52 $ Currency symbol follows the number with a space before the symbol.

devhdr
header: DOS.H
Header structure for MS-DOS device drivers.
struct devhdr {
 long dh_next;
 short dh_attr;
 unsigned short dh_strat;
 unsigned short dh_inter;
 char dh_name[8];
};

lconv
Used by localeconv.
struct lconv {
 char *decimal_point;
 char *thousands_sep;
 char *grouping;
 char *int_curr_symbol;
 char *currency_symbol;
 char *mon_decimal_point;
 char *mon_thousands_sep;
 char *mon_grouping;
 char *positive_sign;
 char *negative_sign;
 char int_frac_digits;
 char frac_digits;
 char p_cs_precedes;
 char p_sep_by_space;
 char n_cs_precedes;
 char n_sep_by_space;
 char p_sign_posn;
 char n_sign_posn;
};

DOSERROR
header: DOS.H
Used by dosexterr to return extended DOS errors.
struct DOSERROR {
 int de_exterror; /* extended error */
 char de_class; /* error class */
 char de_action; /* action */
 char de_locus; /* error locus */
};
See Also
_doserrno
errno

Example
DOSERROR

/* DOSERROR example */
#include <stdio.h>
#include <dos.h>
 int main(void) {
 FILE *fp;
 struct DOSERROR info;
 fp = fopen("perror.dat","r");
 if (!fp) perror("Unable to open file for reading");
 dosexterr(&info);
 printf("Extended DOS error information:\n");
 printf(" Extended error: %d\n",info.de_exterror);
 printf(" Class: %x\n",info.de_class);
 printf(" Action: %x\n",info.de_action);
 printf(" Error Locus: %x\n",info.de_locus);
 return 0;
}

find_t
header: DOS.H
DOS file control block structure used by _dos_findfirst and _dos_findnext.
The find_t structure corresponds exactly to the ffblk structure.
struct find_t {
 char reserved[21]; /* Microsoft reserved - do not change*/
 char attrib; /* attribute byte for matched file */
 unsigned wr_time; /* time of last write to file */
 unsigned wr_date; /* date of last write to file */
 long size; /* size of file */
 char name[13]; /* asciiz name of matched file */
};

dirent
header: DIRENT.H
Structure that corresponds to a single directory entry. Used by readdir.
In addition to non-accessible members, dirent contains the member
char d_name[];
where d_name is an array of characters containing the null-terminated file name for the current
directory entry.
The size of the array is indeterminate; use strlen to determine the length of the file name.

dosdate_t
header: DOS.H
Structure used by _dos_getdate and _dos_setdate.
struct dosdate_t {
 unsigned char day; /* 1--31 */
 unsigned char month; /* 1--12 */
 unsigned int year; /* 1980--2099 */
 unsigned char dayofweek; /* 0--6; 0 = Sunday */
};

dostime_t
header: DOS.H
Structure used by _dos_gettime and _dos_settime.
struct dostime_t {
 unsigned char hour; /* Hours */
 unsigned char minute; /* Minutes */
 unsigned char second; /* Seconds */
 unsigned char hsecond; /* Hundredths of seconds */
};

diskfree_t
header: DOS.H
Structure used by _dos_getdiskfree.
struct diskfree_t {
 unsigned total_clusters;
 unsigned avail_clusters;
 unsigned sectors_per_cluster;
 unsigned bytes_per_sector;
};

utimbuf
header: UTIME.H
Structure used by utime.
struct utimbuf {
 time_t actime; /* access time */
 time_t modtime; /* modification time */
};
Because the DOS file system supports only a modification time, utime ignores actime and uses only
modtime to set the file's modification time.

Keywords
{button A,JI(`',`keywords_a')} {button B,JI(`',`keywords_b')} {button C,JI(`',`keywords_c')} {button D,JI(`',`keywords_d')} {button
E,JI(`',`keywords_e')} {button F,JI(`',`keywords_f')} {button G,JI(`',`keywords_g')} {button H,JI(`',`keywords_h')} {button
I,JI(`',`keywords_i')} {button J,JI(`',`keywords_i')} {button l,JI(`',`keywords_l')} {button N,JI(`',`keywords_n')} {button
O,JI(`',`keywords_o')} {button P,JI(`',`keywords_p')} {button R,JI(`',`keywords_r')} {button S,JI(`',`keywords_s')} {button
T,JI(`',`keywords_t')} {button U,JI(`',`keywords_u')} {button V,JI(`',`keywords_v')} {button W,JI(`',`keywords_w')}
Keywords are words reserved for special purposes and must not be used as normal identifier names.
You can set options in the IDE or for the command-line compiler to select ANSI keywords only, UNIX
keywords only, or to support all keywords--including the Borland C++ extensions.
This is an alphabetical listing of the keywords supported in this release of Borland C++. For a functional
listing of the keywords, see Keywords (by Category).

A
__asm
_asm
asm
auto

B
break
bool

C
case
catch
__cdecl
_cdecl
cdecl
char
class
const
const_cast
continue
__cs
_cs

D
__declspec
default
delete
do
double
_ds
__ds
dynamic_cast

E
else
enum
_es
__es
__except
explicit
_export
__export
extern

F
false
__far
_far
far

__fastcall
_fastcall
__finally
float
for
friend

G
goto

H
__huge
_huge
huge

I
if
__import
_import
inline
interrupt
int

__int8
__int16
__int32
__int64

__interrupt
_interrupt

L
__loadds
_loadds
long
mutable

N
namespace
__near
_near
near
new

O
operator

P
__pascal
_pascal
pascal
private
protected
public

R
register
reinterpret_cast
return
__rtti

S
__saveregs

_saveregs
__seg
_seg
short
signed
sizeof
__ss
_ss
static
static_cast
__stdcall
_stdcall
struct
switch

T
template
this
__thread
throw
true
__try
try
typedef
typename
typeid

U
union
using
unsigned

V
virtual
void
volatile

W
wchar_t
while

Keywords (by Category)
This is a categorical listing of the keywords Borland C++ supports. For an alphabetical listing of the
keywords, see Keywords (Alphabetical).
Borland C++ Extensions keywords unique to Borland C++
C++ Specific keywords recognized only in C++ programs
Modifiers keywords that change one or more attributes of an identifier associated with an

object
Operators keywords that invoke functions against objects or identifiers
Statements keywords that specify program control during execution
Storage Class Specifiers keywords that define the location and duration of an identifier
Type Specifiers keywords that determine how memory is allocated and bit patterns are

interpreted

Borland C++ Keyword Extensions
Borland C++ provides additional keywords that are not part of the ANSI or UNIX conventions. You
cannot use these keywords in your programs if you set the IDE or command-line options to recognize
only ANSI or UNIX keywords.
The Borland C++ keyword extensions are:
_asm
__asm
_cdecl
cdecl
_cs
__declspec
__ds
_ds
__es
_es
__except
__export
_export
far
_far
__far
__fastcall
_fastcall
__finally
__huge
_huge
huge
_import
__import
__interrupt
_interrupt
interrupt
_loadds
__loadds
near
__near
_near
_pascal
__pascal
pascal
__rtti
__saveregs
_saveregs
__seg
_seg
_ss
__thread
__try

Table of C++ Specific Keywords
There are several keywords specific to C++. They are not available if you are writing a C-only program.
The keywords specific to C++ are:
asm mutable this
bool namespace throw
catch new true
class operator try
const_cast private typeid
delete explicit protected reinterpret_cast
dynamic_cast public using
false __rtti virtual
friend static_cast wchar_t
inline template typename

Modifiers
A declaration uses modifiers to alter aspects of the identifier/object mapping.
The Borland C++ modifiers are:
__cdecl
const
__cs
__declspec
__ds
__es
__export
__far
__fastcall
__huge
__import
__interrupt
__loadds
__near
__pascal
__rtti
__ss
__stdcall
volatile

Operator Keywords
See also
Several Borland C++ keywords denote operators that invoke functions against objects and identifiers.
The keyword operators supported by Borland C++ are:
delete operator typeid
new sizeof

Statement Keywords
Statements specify the flow of control in a program. In the absence of specific jumps and selection
statements, statements execute sequentially as they appear in the source code.
The statement keywords in Borland C++ are:
break else switch
case __finally throw
catch for __try
continue goto try
default if while
do return
__except

Storage Class Specifiers
Storage classes specifiers are also called type specifiers. They dictate the location (data segment,
register, heap, or stack) of an object and its duration or lifetime (the entire running time of the program,
or during execution of some blocks of code). Storage class can be established by the declaration
syntax, by its placement in the source code, or by both of these factors.

The keyword mutable does not affect the lifetime of the class member to which it is applied.
The storage class specifiers in Borland C++ are:
auto mutable static
__declspec
extern register typedef

Type Specifiers
The type determines how much memory is allocated to an object and how the program interprets the bit
patterns found in the object's storage allocation. A data type is the set of values (often implementation-
dependent) identifiers can assume, together with the set of operations allowed on those values.
The type specifier with one or more optional modifiers is used to specify the type of the declared
identifier:
int i; // declare i as an integer
unsigned char ch1, ch2; // declare two unsigned chars
By long-standing tradition, if the type specifier is omitted, type signed int (or equivalently, int) is the
assumed default. However, in C++, a missing type specifier can lead to syntactic ambiguity, so C++
practice requires you to explicitly declare all int type specifiers
The type specifier keywords in Borland C++ are:
char float signed wchar_t
class int struct
double long union
enum short unsigned

Use the sizeof operators to find the size in bytes of any predefined or user-defined type.

asm, _asm, _ _asm
See also Example Keywords

Syntax
asm <opcode> <operands> <; or newline>
_asm <opcode> <operands> <; or newline>
__asm <opcode> <operands> <; or newline>
Description
Use the asm, _asm, or _ _asm keyword to place assembly language statements in the middle of your C
or C++ source code. Any C++ symbols are replaced by the appropriate assembly language equivalents.
You can group assembly language statements by beginning the block of statements with the asm
keyword, then surrounding the statements with braces ({}). The initial brace must be on the same line
as the asm keyword; placing it on the following line generates a syntax error.

Examples
// This example places a single assembler statement in your code:
asm pop dx

// If you want to include several of asm statements,
// surround them with braces:
asm {
 mov ax, 0x0e07
 xor bx, bx
 int 0x10 // makes the system beep
}

auto
Example Keywords

Syntax
[auto] <data-definition> ;
Description
Use the auto modifer to define a local variable as having a local lifetime.
This is the default for local variables and is rarely used.

Example
int main()
{
 auto int i;
 i = 5;
 return i;
}

break
See also Example Keywords

Syntax
break ;
Description
Use the break statement within loops to pass control to the first statement following the innermost
enclosing brace.

Example
/* Illustrates the use of keywords break, case, default, and switch. */
#include <conio.h>
#include <stdio.h>

int main(void) {
 int ch;

 printf("\tPRESS a, b, OR c. ANY OTHER CHOICE WILL "
 "TERMINATE THIS PROGRAM.");
 for (/* FOREVER */; ((ch = getch()) != EOF);)
 switch (ch) {
 case 'a' : /* THE CHOICE OF a HAS ITS OWN ACTION. */
 printf("\nOption a was selected.\n");
 break;
 case 'b' : /* BOTH b AND c GET THE SAME RESULTS. */
 case 'c' :
 printf("\nOption b or c was selected.\n");
 break;
 default :
 printf("\nNOT A VALID CHOICE! Bye ...");
 return(-1);
 }
 return(0);
 }

bool
See also Example Keywords

Syntax
bool <identifier>;

Description
Use bool and the literals false and true to make Boolean logic tests.
The bool keyword represents a type that can take only the value false or true. The keywords false and
true are Boolean literals with predefined values. false is numericallly zero and true is numerically one.
These Boolean literals are rvalues; you cannot make an assignment to them.
You can convert an rvalue that is bool type to an rvalue that is int type. The numerical conversion sets
false to zero and true becomes one.
You can convert arithmetic, enumeration, pointer, or pointer to member rvalue types to an rvalue of type
bool. A zero value, null pointer value, or null member pointer value is converted to false. Any other
value is converted to true.

Example
/* How to make Boolean tests with bool, true, and false. */
#include <iostream.h>

bool func() { // Function returns a bool type
 return NULL; // NULL is converted to Boolean false
// return false; // This statement is Boolean equivalent to the one above.
 }

int main() {
 bool val = false; // Boolean variable
 int i = 1; // i is neither Boolean-true nor Boolean-false
 int g = 3;
 int *iptr = 0; // null pointer
 float j = 1.01; // j is neither Boolean-true nor Boolean-false

 // Tests on integers
 if (i == true) cout << "True: value is 1" << endl;
 if (i == false) cout << "False: value is 0" << endl;

 if (g) cout << "g is true.";
 else cout << "g is false.";

 // Test on pointer
 if (iptr == false) cout << "Invalid pointer." << endl;
 if (iptr == true) cout << "Valid pointer." << endl;

 // To test j's truth value, cast it to bool type.
 if (bool(j) == true) cout << "Boolean j is true." << endl;

 // Test Boolean function return value
 val = func();
 if (val == false)
 cout << "func() returned false.";
 if (val == true)
 cout << "func() returned true.";
 return false; // false is converted to 0
}
Program output:
True: value is 1
Unknown truth value for g.
Invalid pointer.
Boolean j is true.
func() returned false.

case
See also Example Keywords

Syntax
switch (<switch variable>){
 case <constant expression> : <statement>; [break;]
 .
 .
 .
 default : <statement>;
}
Description
Use the case statement in conjunction with switches to determine which statements evalute.
The list of possible branch points within <statement> is determined by preceding substatements with
case <constant expression> : <statement>;
where <constant expression> must be an int and must be unique.

The <constant expression> values are searched for a match for the <switch variable>.
If a match is found, execution continues after the matching case statement until a break statement is
encountered or the end of the switch statement is reached.
If no match is found, control is passed to the default case.
Note: It is illegal to have duplicate case constants in the same switch statement.

catch
See also Keywords

Syntax
catch (exception-declaration) compound-statement
Description
The exception handler is indicated by the catch keyword. The handler must be used immediately after
the statements marked by the try keyword. The keyword catch can also occur immediately after another
catch. Each handler will only evaluate an exception that matches, or can be converted to, the type
specified in its argument list.

cdecl, _cdecl, _ _cdecl
Example Keywords

Syntax
cdecl <data/function definition> ;
_cdecl <data/function definition> ;
__cdecl <data/function definition> ;
Description
Use a cdecl, _cdecl, or _ _cdecl modifier to declare a variable or a function using the C-style naming
conventions (case-sensitive, with a leading underscore appended). When you use cdecl, _cdecl, or _
_cdecl in front of a function, it effects how the parameters are passed (last parameter is pushed first,
and the caller cleans up the stack). The _ _cdecl modifier overrides the compiler directives and IDE
options and allows the function to be called as a regular C function.
The cdecl, _cdecl, and __cdecl keywords are specific to Borland C++.

Example
int cdecl FileCount;
long far cdecl HisFunc(int x);

char
See also Keywords

Syntax
[signed|unsigned] char <variable_name>
Description
Use the type specifier char to define a character data type. Variables of type char are 1 byte in length.
A char can be signed, unsigned, or unspecified. By default, signed char is assumed.
Objects declared as characters (char) are large enough to store any member of the basic ASCII
character set.

class
See also Example Keywords

Syntax
<classkey> <classname> [<:baselist>] { <member list> }

<classkey> is either a class, struct, or union.
<classname> can be any name unique within its scope.
<baselist> lists the base class(es) that this class derives from. <baselist> is optional
<member list> declares the class's data members and member functions.

Description
Use the class keyword to define a C++ class.
Within a class:

the data are called data members
the functions are called member functions

Example
class stars {
 int magnitude; // Data member
 int starfunc(void); // Member function
};

const
See also Example Keywords

Syntax
const <variable name> [= <value>] ;
<function name> (const <type>*<variable name> ;)
<function name> const;
Description
Use the const modifier to make a variable value unmodifiable.
Use the const modifier to assign an initial value to a variable that cannot be changed by the program.
Any future assignments to a const result in a compiler error.
A const pointer cannot be modified, though the object to which it points can be changed. Consider the
following examples.
 const float pi = 3.14;
 const maxint = 12345; // When used by itself, const is equivalent to
int.
 char *const str1 = "Hello, world"; // A constant pointer
 char const *str2 = "Borland International"; // A pointer to a constant
character string.
Given these declarations, the following statements are legal.
pi = 3.0; // Assigns a value to a const.
i = maxint++; // Increments a const.
str1 = "Hi, there!" // Points str1 to something else.
Using the const Keyword in C++ Programs
C++ extends const to include classes and member functions. In a C++ class definition, use the const
modifier following a member function declaration. The member function is prevented from modifying any
data in the class.
A class object defined with the const keyword attempts to use only member functions that are also
defined with const. If you call a member function that is not defined as const, the compiler issues a
warning that the a non-const function is being called for a const object. Using the const keyword in this
manner is a safety feature of C.
Warning: A pointer can indirectly modify a const variable, as in the following:

*(int *)&my_age = 35;
If you use the const modifier with a pointer parameter in a function's parameter list, the function cannot
modify the variable that the pointer points to. For example,
int printf (const char *format, ...);
printf is prevented from modifying the format string.

Example
class X {
 int j;
public:
 X::X() { j = 0; };
 int lowerBound() const; // DOES NOT MODIFY ANY DATA MEMBERS
 int dimension(X x1, const X &x2) { // x2 DATA MEMBERS WON'T BE MODIFIED
 x1.j = 3; // OKAY; x1 OBJECT IS MODIFIABLE
 x2.j = 5; // ERROR; x2 IS NOT MODIFIABLE
 return x2.j;
 }
};
Example 2
#include <iostream.h>

class Alpha {
 int num;
public:
 Alpha(int j = 0) { num = j; }
 int func(int i) const {
 cout << "Non-modifying function." << endl;
 return i++;
 }
 int func(int i) {
 cout << "Modify private data" << endl;
 return num = i;
 }
 int f(int i) { cout << "Non-const function called with i = " << i <<
endl; return i;}

};

void main() {
 Alpha alpha_mod; // Calls the non-const functions.
 const Alpha alpha_inst; // Attempts to call the const functions.

 alpha_mod.func(1);
 alpha_mod.f(1); // Causes a compiler warning.

 alpha_inst.func(1);
 alpha_inst.f(1);
 }

Output:
Modify private data
Non-const function called with i = 1
Non-modifying function.
Non-const function called with i = 1

continue
See also Example Keywords

Syntax
continue ;
Description
Use the continue statement within loops to pass control to the end of the innermost enclosing brace; at
which point the loop continuation condition is re-evaluated.

Example
void main ()
{
 for (i = 0; i < 20; i++) {
 if (array[i] == 0)
 continue;
 array[i] = 1/array[i];
 }
}

_ _declspec
See also Example Keywords

Syntax
__declspec(decl-modifier)
Description
Use the _ _declspec keyword to indicate the storage class attributes for a DLL.
The _ _declspec keyword extends the attribute syntax for storage class modifiers so that their
placement in a declarative statement is more flexible. The _ _declspec keyword and its argument can
appear anywhere in the declarator list, as opposed to the old-style modifiers which could only appear
immediately preceding the identifier to be modified.
__export void f(void); // illegal
void __export f(void) // correct
void __declspec(dllexport) f(void); // correct
__declspec(dllexport)void f(void); // correct
class __declspec(dllexport) ClassName { } // correct
The decl-modifier argument can only be one of dllexport, dllimport, or thread. The meaning of these
arguments is equivalent to the following storage class attribute keywords.

Argument Storage Class Compiler Support
dllexport __export 32- and 16-bit
dllimport __import 32- bit (legal, but no affect on 16-bit programs)
thread __thread 32- bit only

Example
/* Examples of __declspec declarations follow. */
__declspec(dllimport) void func(void);
__declspec(dllimport) int a;
__declspec(dllexport) void bar (void);

/** Use thread argument only with static storage data. **/
__declspec(thread) int th;
int __declspec(thread) th1;

default
See also Example Keywords

Syntax
switch (<switch variable>){
 case <constant expression> : <statement>; [break;]
 .
 .
 .
 default : <statement>;
}
Description
Use the default statement in switch statement blocks.

If a case match is not found and the default statement is found within the switch statement, the
execution continues at this point.

If no default is defined in the switch statement, control passes to the next statement that follows
the switch statement block.

operator delete
See also Example Operators

Syntax
<::> delete <cast-expression>
<::> delete [] <cast-expression>
delete <array-name> [];
Description
The delete operator offers dynamic storage deallocation, deallocating a memory block allocated by a
previous call to new. It is similar but superior to the standard library function free.
You should use the delete operator to remove arrays that you no longer need. Failure to free memory
can result in memory leaks.

The delete Operator with Arrays
Arrays are deleted by operator delete[](). You must use the syntax delete [] expr when deleting an array.
After C++ 2.1, the array dimension should not be specified within the brackets:
char * p;

void func()
{
 p = new char[10]; // allocate 10 chars
 delete[] p; // delete 10 chars
}
C++ 2.0 code required the array size. In order to allow 2.0 code to compile, Borland C++ issues a
warning and simply ignores any size that is specified. For example, if the preceding example reads
delete[10] p and is compiled, the warning is as follows:
Warning: Array size for 'delete' ignored in function func()

Overloading the Operator delete
Example
The global operators, ::operator delete(), and ::operator delete[]() cannot be overloaded. However, you
can override the default version of each of these operators with your own implementation. Only one
instance of the each global delete function can exist in the program.
The user-defined operator delete must have a void return type and void* as its first argument; a second
argument of type size_t is optional. A class T can define at most one version of each of T::operator
delete[]() and T::operator delete(). To overload the delete operators, use the following prototypes.

void operator delete(void *Type_ptr, [size_t Type_size]); // For
Non-array

void operator delete[](size_t Type_ptr, [size_t Type_size]); // For
arrays

do
See also Example Keywords

Syntax
do <statement> while (<condition>);
Description
The do statement executes until the condition becomes false.
<statement> is executed repeatedly as long as the value of <condition> remains true.

Since the conditon tests after each the loop executes the <statement>, the loop will execute at least
once.

do Example
/* This example prompts users for a password */
/* and continued to prompt them until they */
/* enter one that matches the value stored in */
/* checkword. */

#include <stdio.h>
#include <string.h>

int main ()
{
 char checkword[80] = "password";
 char password[80] = "";

 do {
 printf ("Enter password: ");
 scanf("%s", password);
 } while (strcmp(password, checkword));

 return 0;
}

double
See also Keywords

Syntax
[long] double <identifier>
Description
Use the double type specifier to define an identifier to be a floating-point data type. The optional
modifier long extends the accuracy of the floating-point value.
If you use the double keyword, the Borland C++ IDE will automatically link the floating-point math
package into your program.

enum
See also Example Keywords

Syntax
enum [<type_tag>] {<constant_name> [= <value>], ...} [var_list];

<type_tag> is an optional type tag that names the set.
<constant_name> is the name of a constant that can optionally be assigned the value of

<value>. These are also called enumeration constants.
<value> must be an integer. If <value> is missing, it is assumed to be:

<prev> + 1
where <prev> is the value of the previous integer constant in the list. For the first integer constant
in the list, the default value is 0.

<var_list> is an optional variable list that assigns variables to the enum type.

Description
Use the enum keyword to define a set of constants of type int, called an enumeration data type.
An enumeration data type provides mnemonic identifiers for a set of integer values. Borland C++ stores
enumerators in a single byte if you uncheck Treat Enums As Ints (O|C|Code Generation) or use the -b
flag.
Enums are always interpreted as ints if the range of values permits, but if they are not ints the value
gets promoted to an int in expressions. Depending on the values of the enumerators, identifiers in an
enumerator list are implicitly of type signed char, unsigned char, or int.
In C, an enumerated variable can be assigned any value of type int--no type checking beyond that is
enforced. In C++, an enumerated variable can be assigned only one of its enumerators.
In C++, lets you omit the enum keyword if <tag_type> is not the name of anything else in the same
scope. You can also omit <tag_type> if no further variables of this enum type are required.

In the absence of a <value> the first enumerator is assigned the value of zero. Any subsequent names
without initializers will then increase by one. <value> can be any expression yielding a positive or
negative integer value (after possible integer promotions). These values are usually unique, but
duplicates are legal.
Enumeration tags share the same name space as structure and union tags. Enumerators share the
same name space as ordinary variable identifiers.
In C++, enumerators declared within a class are in the scope of that class.

Examples
enum days { sun, mon, tues, wed, thur, fri, sat } anyday;
establishes a unique integral type, enum days, a variable anyday of this type, and a set of enumerators
(sun, mon,...) with constant integer values.
enum modes { LASTMODE = -1, BW40=0, C40, BW80, C80, MONO = 7 };
/*
 "modes" is the type tag.
 "LASTMODE", "BW40", "C40", etc. are the constant names.
 The value of C40 is 1 (BW40 + 1); BW80 = 2 (C40 + 1), etc.
*/

_ _except
See also Keywords

Syntax
__except (expression) compound-statement
Description
The _ _except keyword specifies the action that should be taken when the exception specified by
expression has been raised.

explicit
See also

Syntax
explicit <single-parameter constructor declaration>
Description
Normally, a class with a single-parameter constructor can be assigned a value that matches the
constructor type. This value is automatically (implicitly) converted into an object of the class type to
which it is being assigned. You can prevent this kind of implicit conversion from occurring by declaring
the constructor of the class with the explicit keyword. Then all objects of that class must be assigned
values that are of the class type; all other assignments result in a compiler error.
Objects of the following class can be assigned values that match the constructor type or the class type:
class X {
public:
 X(int);
 X(const char*, int = 0);
};
Then, the following assignment statements are legal.
void f(X arg) {
 X a = 1;
 X B = "Jessie";
 a = 2;
}

However, objects of the following class can be assigned values that match the class type only:
class X {
public:
 explicit X(int);
 explicit X(const char*, int = 0);
};
The explicit constructors then require the values in the following assignment statements to be
converted to the class type to which they are being assigned.
void f(X arg) {
 X a = X(1);
 X b = X("Jessie",0);
 a = X(2);
}

_export, _ _export
See also Keywords

Form 1
class _export <class name>
Form 2
return_type _export <function name>
Form 3
data_type _export <data name>
Description
These modifiers are used to export classes, functions, and data.
The linker enters functions flagged with _export or _ _export into an export table for the module.
Using _export or _ _export eliminates the need for an EXPORTS section in your module definition file.
Note: Exported functions must be declared as _ _far. You can use the FAR type, defined in windows.h.
Functions that are not modified with _export or _ _export receive abbreviated prolog and epilog code,
resulting in a smaller object file and slightly faster execution.
Note: If you use _export or _ _export to export a function, that function will be exported by name rather

than by ordinal (ordinal is usually more efficient).
If you want to change various attributes from the default, you'll need a module definition file.

Prologs, Epilogs, and Exports: A Summary
See also Keywords
Prologs and epilogs are required when exporting functions in a 16-bit Windows application. They ensure
that the correct data segment is active during callback functions and mark near and far stack frames for
Windows stack crawling.
Two steps are required to export a function.
1. The compiler must create the correct prolog and epilog for the function.
2. The linker must create an entry for every export function in the header section of the executable.
In 32-bit Windows the binding of data segments does not apply. However, DLLs must have entries in the
header so the loader can find the function to link to when an .EXE loads the DLL.
If a function is flagged with the _ _export keyword and any of the Windows compiler options are used, it
will be compiled as exportable and linked as an export.
If a function is not flagged with the _ _export keyword, then one of the following situations will determine
whether the function is exportable

If you compile with the -tW/-tWC or -tWD/-tWCD option (or with the All Functions Exportable IDE
equivalent), the function will be compiled as exportable.

If the function is listed in the EXPORTS section of the module definition file, the function will be
linked as an export. If it is not listed in the module definition file, or if no module definition file is linked, it
won’t be linked as an export.

If you compile with the -tWE or -tWDE/-tWCDE option (or with the Explicit Functions Exported
IDE equivalent), the function will not be compiled as exportable. Including this function in the EXPORTS
section of the module definition will cause it be exported, but, because the prolog is incorrect, the program
will run incorrectly. You may get a Windows error message in the 16-bit environment.
See the table, Compiler options and the _export keyword, for a summary of the effect of the combination
of the Windows compiler options and the _ _export keyword.

Compiler Options and the _ _export Keyword
See also Keywords
This table summarizes the effect of the combination of various Windows options and the _ _export
keyword:

The compiler
option is: *

-tW·or
-tWD

-tWE·or
-tWDE

-tW·or
-tWD

-tWE·or
-tWDE

-tW·or
-tWD

-tWE·or
-tWDE

-tW·or
-tWD

-tWE·or
-tWDE

Function flagged
with __export? Yes Yes Yes Yes No No No No
Function·listed in
EXPORTS? Yes Yes No No Yes Yes No No
Is·function
exportable? Yes Yes Yes Yes Yes No Yes No

Will function be
exported? Yes Yes Yes Yes Yes Yes ** No *** No

* Or the 32-bit console-mode application equivalents.
** The function will be exported in some sense, but because the prolog and epilog will not be correct,

the function will not work as expected.
*** This combination also makes little sense. It is inefficient to compile all functions as exportable if

you do not actually export some of them.

Smart Callbacks and the _export Keyword
See also Keywords
If you use the Smart Callbacks IDE option at compile time, callback functions do not need to be listed in
the EXPORTS statement or flagged with the _export keyword.
Functions compile them so that they are callback functions.

Exportable Functions in DLLs
See also
There are two ways to compile a function f1() in a DLL as exportable and then export it.

Compile the DLL with all functions exportable (with the Windows DLL All Functions Exportable
option in the IDE) and list f1() in the EXPORTS section of the module definition file, or

Flag the function f1() with the _export keyword.

Using _export with C++ Classes
See also Keywords
Whenever you declare a class as _export, the compiler treats it as huge (with 32-bit pointers), and
exports all of its non-inline member functions and static data members.
You cannot declare a class as _export and as _far or _huge (_export implies _huge, which implies
_far).
If you declare the class in an include file that is included in both the DLL source files and the source files
of the application that use the DLL, declare the class

as _export when compiling the DLL
as _huge when compiling the application

To do this, use the __DLL__ macro, which the compiler defines when it's building a DLL.
Note: In the mangled name, the compiler encodes the information that a given class member is a

member of a huge class. This ensures that the linker will catch any mismatches when a program
is using huge and non-huge classes.

Exporting and importing templates
See also
The declaration of a template function or template class needs to be sufficiently flexible to allow it to be
used in either a DLL or an EXE file. The same template declaration should be available as an import
and/or export, or without a modifier. To be completely flexible, the header file template declarations
should not use _ _export or _ _import modifiers. This allows the user to apply the appropriate modifier
at the point of instantiation depending on how the instantiation is to be used.
The following steps demonstrate exporting and importing of templates. The source code is organized in
three files. Using the header file, code is generated in the DLL. A DLL library is created and linked to an
EXE file.
1. Exportable/Importable Template Declarations

The header file contains all template class and template function declarations. An export/import
version of the templates can be instantiated by defining the appropriate macro at compile time.

2. Compiling Exportable Templates
Write the source code for a DLL. When compiled, this DLL has reusable export code for templates.

3. Using ImportTemplates
Now you can write a calling function that uses templates. This file is linked to the DLL. Only objects
that are not declared in the header file and which are instantiated in the main function cause the
compiler to generate new code. Code for a newly instantiated object is written into MAIN.OBJ file.

Using Import Templates
Program Output
// Before you compile this file you need to create the dynamic link library.
// You can use the command IMPLIB DLL_SRC.LIB DLL_SRC.DLL
// TO COMPILE THIS FILE, USE BCC32 -DUSING_DLL_IMPORTS MAIN DLL_SRC.LIB
#include <iostream.h>
#include "exporter.h"

int main () {
 int small = 5;
 int big = 10;
 double smalld = 1.2;
 double bigd = 12.3;

 // No new code is generated for these objects.
 Receive <double> Test_d(0.01);
 Receive <int> Test_i(5);

 // Generate code in MAIN.OBJ for this object.
 Receive <float> Test_f(3.14);
 cout << "Test_d.display() = " << Test_d.display() << endl;
 cout << "Test_i.display() = " << Test_i.display() << endl;

 cout << "min(5, 10): " << another_min(small, big) << endl;
 cout << "min(12.3, 1.2): " << another_min(bigd, smalld)<<endl;
 cout << "Test_f.display() = " << Test_f.display() << endl;

 return 0;
}

Program Output

Test_d.display() = 0.01
Test_i.display() = 5
min(5, 10): 5
min(12.3, 1.2): 1.2
Test_f.display() = 3.14

Compiling Exportable Templates

// In file DLL_SRC.CPP.
// GENERATE CODE FOR EXPORTABLE CLASSES AND FUNCTIONS.
// TO COMPILE THIS FILE, USE BCC32 -tWD -DBUILD_DLL_EXPORTS DLL_SRC.CPP
#define STRICT
#include <windows.h>
#include "exporter.h"

BOOL WINAPI DllEntryPoint(HINSTANCE hinstdll,
 DWORD fdwReason, LPVOID lpvReserved)
{
 return 1;
}

Exportable/Importable Template Declarations

// In file EXPORTER.H
#include<iostream.h>
if defined (BUILD_DLL_EXPORTS)
define DECLSPEC __export
elif defined (USING_DLL_IMPORTS)
define DECLSPEC __import
endif

///
// Receive CLASS DEFINITIONS
template <class T> class Receive
{
 T value;
public:
 Receive(const T val) : value(val){}
 T display();
};

template<class T> T Receive<T>::display()
{
 return value;
}

// TEMPLATE FUNCTION DEFINITION
template <class T>
T another_min(T a, T b) { return a < b ? a : b;}

#if (defined (BUILD_DLL_EXPORTS) || defined(USING_DLL_IMPORTS))
////// INSTANTIATED TEMPLATE CLASSES /////
template class DECLSPEC Receive<double>;
template class DECLSPEC Receive<int>;
template class DECLSPEC Receive<char>;

////// INSTANTIATED TEMPLATE FUNCTIONS /////
template int DECLSPEC another_min<int>(int, int);
template double DECLSPEC another_min<double>(double, double);
#endif

extern
See also Example Keywords

Syntax
extern <data definition> ;
[extern] <function prototype> ;
Description
Use the extern modifier to indicate that the actual storage and initial value of a variable, or body of a
function, is defined in a separate source code module. Functions declared with extern are visible
throughout all source files in a program, unless you redefine the function as static.
The keyword extern is optional for a function prototype.
Use extern "c" to prevent function names from being mangled in C++ programs.

Examples
extern int _fmode;
extern void Factorial(int n);
extern "c" void cfunc(int);

far, _far, _ _far
Example Keywords

Syntax
<type> far <pointer definition> ;
<type> far <function definition>
<type> _far <pointer definition> ;
<type> _far <function definition>
<type> __far <pointer definition> ;
<type> __far <function definition>
Description
Use the far, _far and __far modifiers to generate function code for calls and returns using variables that
are outside of the data segment.
The first version of far, _far, or __far declares a pointer to be two words with a range of 1 megabyte.
Use _ _far when compiling small or compact models to force pointers to be _ _far.

Examples
char __far *s;
void * __far * p;
int __far my_func() {}

_fastcall, _ _fastcall
See also Keywords

Syntax
return-value _fastcall function-name(parm-list)
return-value __fastcall function-name(parm-list)
Description
Use the _fastcall modifiers to declare functions that expect parameters to be passed in registers.
The compiler treats this calling convention as a new language specifier, along the lines of _cdecl and
_pascal
Functions declared using _cdecl or _pascal cannot also have the _fastcall modifiers because they use
the stack to pass parameters. Likewise, the _fastcall modifiers cannot be used together with _export or
_loadds.
The compiler generates a warning if you mix functions of these types or if you use the _fastcall
modifiers in a dangerous situation. You can, however, use functions that use the _fastcall or __fastcall
conventions in overlaid modules (for example, with modules that will use VROOMM).
The compiler prefixes the _fastcall function name with an at-sign ("@"). This prefix applies to both
unmangled C function names and to mangled C++ function names.
Note: The __fastcall modifier is subject to name mangling. See the description of the -VC option.

Parameter Types and Possible Registers Used
The compiler uses the following rules when deciding which parameters are to be passed in registers.

Parameter TypeRegisters
char (signed and unsigned) AL, DL, BL
int (signed and unsigned) AX, DX, BX
long (signed and unsigned) DX:AX
near pointer AX, DX, BX

Only three parameters can be passed in registers to any one function.
Do not assume the assignment of registers will reflect the ordering of the parameters to a function. Far
pointer, union, structure, and floating-point (float, double, and long) parameters are pushed on the
stack.

_ _finally
See also Keywords

Syntax
__finally {compound-statement}
Description
The _ _finally keyword specifies actions that should be taken regardless of how the flow within the
preceding _ _try exits.
The _ _finally keyword is supported only in C programs.

float
See also Keywords

Syntax
float <identifier>
Description
Use the float type specifier to define an identifier to be a floating-point data type.

Type Length Range

float 32 bits 3.4 * (10**-38) to 3.4 * (10**+38)

The Borland C++ IDE automatically links the floating-point math package into you program if you use
floating-point values or operators.

for
Example Keywords

Syntax
for ([<initialization>] ; [<condition>] ; [<increment>]) <statement>
Description
The for statement implements an iterative loop.
<statement> is executed repeatedly UNTIL the value of <condition> is false.

Before the first iteration of the loop, <initialization> initializes variables for the loop.
After each iteration of the loop, <increments> increments a loop counter. Consequently, j++

is functionally the same as ++j.
In C++, <initialization> can be an expression or a declaration.

The scope of any identifier declared within the for loop extends to the end of the control statement only.
A variable defined in the for-initialization expression is in scope only within the for-block. See the
description of the -Vd option.
All the expressions are optional. If <condition> is left out, it is assumed to be always true.

Examples
// An example of the scope of variables in for-expressions.
// The example compiles if you use the -Vd option.
#include <iostream.h>

int main() {
 for (int i = 0; i < 10; i++)
 if (i == 8)
 cout << "\ni = " << i;
return i; // Undefined symbol ‘i’ in function main().
}

friend
Example Keywords

Syntax
friend <identifier>;
Description
Use friend to declare a function or class with full access rights to the private and protected members of
an outside class, without being a member of that class.
In all other respects, the friend is a normal function in terms of scope, declarations, and definitions.

Example
class stars {
 friend galaxy;
 int magnitude;
 int starfunc(void);
};

class galaxy {
 long int number_of_stars;
 void stars_magnitude(stars&);
 void stars_func(stars*);
}

goto
Example Keywords

Syntax
goto <identifier> ;
Description
Use the goto statement to transfer control to the location of a local label specified by <identifier>.
Labels are always terminated by a colon.

Example
Again: /* this is the label */
;
.
.
.
goto Again;

huge, _huge, _ _huge
See also Keywords

Syntax
<type> huge <pointer-definition> ;
<type> _huge <pointer-definition> ;
<type> __huge <pointer-definition> ;
Description
The _huge modifiers are similar to the _far modifier except for two additional features.

Its segment is normalized during pointer arithmetic so that pointer comparisons are accurate.
Huge pointers can be incremented without suffering from segment wraparound.

if
See also Example Keywords

Syntax
if (<condition>) <statement1>;

if (<condition>) <statement1>;
else <statement2>;
Description
Use if to implement a conditional statement.
You can declare variables in the condition expression. For example,
 if (int val = func(arg))
is valid syntax. The variable val is in scope for the if statement and extends to an else block when it
exists.
The condition statement must convert to a bool type. Otherwise, the condition is ill-formed.
When <condition> evaluates to true, <statement1> executes.

If <condition> is false, <statement2> executes.

The else keyword is optional, but no statements can come between an if statement and an else.
The #if and #else preprocessor statements (directives) look similar to the if and else statements, but
have very different effects. They control which source file lines are compiled and which are ignored.

Examples
if (int val = func(count)) { /* statements */ }
else {
 /* take other action */
 cout << “val is false”
 }

_import, _ _import
Keywords

Form 1
class _import <class name>
class __import <class name>
Form 2
return_type _import <function name> //32-bit only
return_type __import <function name> //32-bit only
Form 3
data_type _import <data name> //32-bit only
data_type __import <data name> //32-bit only
Description
This keyword can be used as a class modifier for 16-bit programs; and as a class, function, or data
modifier in 32-bit programs. If you're importing classes that are declared with the modifier _ _huge, you
must change the modifier to the keyword _ _import. The _ _huge modifier merely causes far
addressing of the virtual tables (the same effect as the -Vf compiler option). The _ _import modifier
makes all function and static addresses default to _far.

inline
Example Keywords

Syntax
inline <datatype> <class>_<function> (<parameters>) { <statements>; }
Description
Use the inline keyword to declare or define C++ inline functions.
Inline functions are best reserved for small, frequently used functions.

Example
inline char* cat_func(void) { return char*; }

int
See also Keywords

Syntax
[signed|unsigned] int <identifier> ;
Description
Use the int type specifier to define an integer data type.
Variables of type int can be signed (default) or unsigned.

_ _interrupt functions
Example Keywords

Syntax
interrupt <function-definition> ;
_interrupt <function-definition> ;
__interrupt <function-definition> ;
Description
Use the _ _interrupt function modifier to define a function as an interrupt handler. This keyword is only
available in BCC.EXE for use in 16-bit applications.
The __interrupt modifier is specific to Borland C++. __interrupt functions are designed to be used with
interrupt vectors.
Interrupt functions compile with extra function entry and exit code so that all CPU registers are saved.
The BP, SP, SS, CS, and IP registers are preserved as part of the C-calling sequence or as part of the
interrupt handling itself. The function uses an IRET instruction to return, so that the function can be used
as harware and software interrupts.
Declare interrupt functions to be of type void and can be declared in any memory model. For all
memory models except huge, DS is set to the program data segment. For the huge memory model, DS
is set to the module's data segment.

Example
void interrupt myhandler()
{
...

}

_loadds, _ _loadds
Keywords

Syntax
_loadds <function-name>
__loadds <function-name>
Description
Use the _ _loadds keyword to indicate that a function should set the DS register, just as a huge function
does.
These keywords are useful for writing low-level interface routines, such as mouse support routines.

long
See also Keywords

Syntax
long [int] <identifier> ;
[long] double <identifier> ;
Description
When used to modify an int, it doubles the number of bytes available to store the integer value.
When used to modify a double, it defines a floating-point data type with 80 bits of precision instead of
64.
The Borland C++ IDE links the floating-point math package if you use floating-point values or operators
anywhere in your program.

near, _near, _ _near
Example Keywords

Syntax
<type> near <pointer definition> ;
<type> near <function definition>
<type> _near <pointer definition> ;
<type> _near <function definition>
<type> __near <pointer definition> ;
<type> __near <function definition>
Description
Use near and _near type modifiers to force pointers to be near and to generate function code for a near
call and a near return.
The first version of _near declares a pointer to be one word with a range of 64K.
Use this type modifier when compiling in the medium, large, or huge memory models to force pointers to
be near.
When either near or _near is used with a function declaration, the compiler generates function code for
a near call and a near return.

Example
char near *s;
int (near *ip)[10];
int near my_func() {}

operator new
See also Example Operators

Syntax
<::> new <placement> type-name <(initializer)>
<::> new <placement> (type-name) <(initializer)>
Description
The new operator offers dynamic storage allocation, similar but superior to the standard library function
malloc. The new operator must always be supplied with a data type in place of type-name. Items
surrounded by angle brackets are optional. The optional arguments can be as follows:

:: operator, invokes the global version of new.
placement can be used to supply additional arguments to new. You can use this syntax only if

you have have an overloaded version of new that matches the optional arguments. See the discussion of
the placement syntax.

initializer, if present is used to initialize the allocation. Arrays cannot be initialized by the allocation
operator.
A request for non-array allocation uses the appropriate operator new() function. Any request for array
allocation will call the appropriate operator new[]() function. The selection of the allocation operator is
done as follows:
Allocation of arrays of Type:
1 Attempts to use a class-specific array allocator:
 Type::operator new[]()
2 If the class-specific array allocator is not defined, the global version is used:
 ::operator new[]()
Allocation of non-arrays of Type:
1 Attempts to used the class-specific allocator:
 Type::operator new()
2 If the class-specific array allocator is not defined, the global version is used:
 ::operator new()
Allocation of single objects (that are not class-type) which are not held in arrays:
1 Memory allocation for a non-array object is by using the ::operator new(). Note that this allocation
function is always used for the predefined types. It is possible to overload this global operator function.
However, this is generally not advised.
Allocation of arrays:
1 Use the global allocation operator:
 ::operator new[] ()

Note: Arrays of classes require the default constructor.
new tries to create an object of type Type by allocating (if possible) sizeof(Type) bytes in free store (also
called the heap). new calculates the size of Type without the need for an explicit sizeof operator.
Further, the pointer returned is of the correct type, "pointer to Type," without the need for explicit casting.
The storage duration of the new object is from the point of creation until the operator delete destroys it
by deallocating its memory, or until the end of the program.
If successful, new returns a pointer to the allocated memory. By default, an allocation failure (such as
insufficient or fragmented heap memory) results in the predefined exception xalloc being thrown. Your
program should always be prepared to catch the xalloc exception before trying to access the new object
(unless you use a new-handler).

A request for allocation of 0 bytes returns a non-null pointer. Repeated requests for zero-size allocations
return distinct, non-null pointers.

Operator new placement syntax
Example
The placement syntax for operator new() can be used only if you have overloaded the allocation
operator with the appropriate arguments. You can use the placement syntax when you want to use and
reuse a memory space which you set up once at the beginning of your program.
When you use the overloaded operator new() to specify where you want an allocation to be placed,
you are responsible for deleting the allocation. Because you call your version of the allocation operator,
you cannot depend on the global ::operator delete() to do the cleanup.
To release memory, you make an explicit call on the destructor. This method for cleaning up memory
should be used only in special situations and with great care. If you make an explicit call of a destructor
before an object that has been constructed on the stack goes out of scope, the destructor will be called
again when the stackframe is cleaned up.

operator new placement syntax example

// An example of the placement syntax for operator new()
#include <iostream.h>

class Alpha {
 union {
 char ch;
 char buf[10];
 };
public:
 Alpha(char c = '\0') : ch(c) {
 cout << "character constructor" << endl;
 }
 Alpha(char *s) {
 cout << "string constructor" << endl;
 strcpy(buf,s);
 }

 ~Alpha() { cout << "Alpha::~Alpha() " << endl; }

 void * operator new(size_t, void * buf) {
 return buf;
 }
};

void main() {
 char *str = new char[sizeof(Alpha)];

 // Place 'X' at start of str.
 Alpha* ptr = new(str) Alpha('X');
 cout << "str[0] = " << str[0] << endl;

 // Explicit call of the destructor
 ptr -> Alpha::~Alpha();

 // Place a string in str buffer.
 ptr = new(str) Alpha("my string");
 cout << "\n str = " << str << endl;

 // Explicit call of the destructor
 ptr -> Alpha::~Alpha();
 delete[] str;
 }

Output:
character constructor
str[0] = X
Alpha::~Alpha()
string constructor

 str = my string
Alpha::~Alpha()

Handling Errors for the new Operator
See also
You can define a function to be called if the new operator fails. To tell the new operator about the new-
handler function, use set_new_handler and supply a pointer to the new-handler. If you want new to
return null on failure, you must use set_new_handler(0) .

The Operator new With Arrays
Example
If Type is an array, the pointer returned by operator new[]() points to the first element of the array. When
creating multidimensional arrays with new, all array sizes must be supplied (although the leftmost
dimension doesn't have to be a compile-time constant):
mat_ptr = new int[3][10][12]; // OK
mat_ptr = new int[n][10][12]; // OK
mat_ptr = new int[3][][12]; // illegal
mat_ptr = new int[][10][12]; // illegal
Although the first array dimension can be a variable, all following dimensions must be constants.

// Example of the new and delete Operators
// ALLOCATE A TWO-DIMENSIONAL SPACE, INITIALIZE, AND DELETE IT.
#include <except.h>
#include <iostream.h>

void display(long double **);
void de_allocate(long double **);

int m = 3; // THE NUMBER OF ROWS.
int n = 5; // THE NUMBER OF COLUMNS.

int main(void) {
 long double **data;

 try { // TEST FOR EXCEPTIONS.
 data = new long double*[m]; // STEP 1: SET UP THE ROWS.
 for (int j = 0; j < m; j++)
 data[j] = new long double[n]; // STEP 2: SET UP THE COLUMNS
 }
 catch (xalloc) { // ENTER THIS BLOCK ONLY IF xalloc IS THROWN.
 // YOU COULD REQUEST OTHER ACTIONS BEFORE TERMINATING
 cout << "Could not allocate. Bye ...";
 exit(-1);
 }

 for (int i = 0; i < m; i++)
 for (int j = 0; j < n; j++)
 data[i][j] = i + j; // ARBITRARY INITIALIZATION

 display(data);
 de_allocate(data);
 return 0;
 }

void display(long double **data) {
 for (int i = 0; i < m; i++) {
 for (int j = 0; j < n; j++)
 cout << data[i][j] << " ";
 cout << "\n" << endl;
 }
 }

void de_allocate(long double **data) {
 for (int i = 0; i < m; i++)
 delete[] data[i]; // STEP 1: DELETE THE COLUMNS

 delete[] data; // STEP 2: DELETE THE ROWS
 }

operator new
See also
By default, if there is no overloaded version of new, a request for dynamic memory allocation always
uses the global version of new, ::operator new(). A request for array allocation calls ::operator new[]().
With class objects of type name, a specific operator called name::operator new() or name::operator
new[]() can be defined. When new is applied to class name objects it invokes the appropriate
name::operator new if it is present; otherwise, the global ::operator new is used.
Only the operator new() function will accept an optional initializer. The array allocator version, operator
new[](), will not accept initializers. In the absence of explicit initializers, the object created by new
contains unpredictable data (garbage). The objects allocated by new, other than arrays, can be
initialized with a suitable expression between parentheses:
 int_ptr = new int(3);
Arrays of classes with constructors are initialized with the default constructor. The user-defined new
operator with customized initialization plays a key role in C++ constructors for class-type objects.

Overloading the operator new
Example
The global ::operator new() and ::operator new[]() can be overloaded. Each overloaded instance must
have a unique signature. Therefore, multiple instances of a global allocation operator can coexist in a
single program.
Class-specific memory allocation operators can also be overloaded. The operator new can be
implemented to provide alternative free storage (heap) memory-management routines, or implemented
to accept additional arguments. A user-defined operator new must return a void* and must have a
size_t as its first argument. To overload the new operators, use the following prototypes declared in the
new.h header file.

void * operator new(size_t Type_size); // For Non-array
void * operator new[](size_t Type_size); // For arrays

The Borland C++ compiler provides Type_size to the new operator. Any data type may be substitued for
Type_size except function names (although a pointer to function is permitted), class declarations,
enumeration declarations, const, volatile.

Example of Overloading the new and delete Operators
#include <stdlib.h>

class X {
 .
 .
 .
public:
 void* operator new(size_t size) { return newalloc(size);}
 void operator delete(void* p) { newfree(p); }
 X() { /* initialize here */ }
 X(char ch) { /* and here */ }

 ~X() { /* clean up here */ }
 .
 .
 .
};
The size argument gives the size of the object being created, and newalloc and newfree are user-
supplied memory allocation and deallocation functions. Constructor and destructor calls for objects of
class X (or objects of classes derived from X that do not have their own overloaded operators new and
delete) will invoke the matching user-defined X::operator new() and X::operator delete(), respectively.
(Destructors will be called only if you use the -xd compiler option and an exception is thrown.)
The X::operator new(), X::operator new[](), X::operator delete() and X::operator delete[]() operator
functions are static members of X whether explicitly declared as static or not, so they cannot be virtual
functions.
The standard, predefined (global) ::operator new(), ::operator new[](), :: operator delete(), and
::operator delete[]() operators can still be used within the scope of X, either explicitly with the global
scope or implicitly when creating and destroying non-X or non-X-derived class objects. For example,
you could use the standard new and delete when defining the overloaded versions:
void* X::operator new(size_t s)
{
 void* ptr = new char[s]; // standard new called
 .
 .
 .
 return ptr;
}

void X::operator delete(void* ptr)
{
 .
 .
 .
 delete (void*) ptr; // standard delete called
}
The reason for the size argument is that classes derived from X inherit the X::operator new() and
X::operator new[](). The size of a derived class object may well differ from that of the base class.

operator
See also Example Keywords

Syntax
operator <operator symbol>(<parameters>)
{
 <statements>;
}
Description
Use the operator keyword to define a new (overloaded) action of the given operator. When the operator
is overloaded as a member function, only one argument is allowed, as *this is implicitly the first
argument.
When you overload an operator as a friend, you can specify two arguments.

Example
new_complex operator +(complex c1, complex c2)
{
 return complex(c1.real + c2.real, c1.imag + c2.imag);
}

pascal, _pascal, _ _pascal
Example Keywords

Syntax
pascal <data-definition/function-definition> ;
_pascal <data-definition/function-definition> ;
__pascal <data-definition/function-definition> ;
Description
Use the pascal, _pascal, and __pascal keywords to declare a variable or a function using a Pascal-
style naming convention (the name is in uppercase).
In addition, pascal declares Pascal-style parameter-passing conventions when applied to a function
header (first parameter pushed first; the called function cleans up the stack).
In C++ programs, functions declared with the pascal modifer will still be mangled.

Examples
int pascal FileCount;
far pascal long ThisFunc(int x, char *s);

private
See also Keywords

Syntax
private: <declarations>
Description
A private member can be accessed only by member functions and friends of the class in which it is
declared.
Class members are private by default.
You can override the default struct access with private or protected but you cannot override the default
union access.
Friend declarations are not affected by these access specifiers.

protected
See also Keywords

Syntax
protected: <declarations>
Description
A protected member can be accessed by member functions and friends of the class in which it was
declared, and by classes derived from the declared class.
You can override the default struct access with private or protected but you cannot override the default
union access.
Friend declarations are not affected by these access specifiers.

public
See also Keywords

Syntax
public: <declarations>
Description
A public member can be accessed by any function.
Members of a struct or union are public by default.
You can override the default struct access with private or protected but you cannot override the default
union access.
Friend declarations are not affected by these access specifiers.

register
Example Keywords

Syntax
register <data definition> ;
Description
Use the register storage class specifier to store the variable being declared in a CPU register (if
possible), to optimize access and reduce code.
Items declared with the register keyword have a global lifetime.
Note: The Borland C++ compiler can ignore requests for register allocation. Register allocation is based

on the compiler’s analysis of how a variable is used.

Example
register int i;

return
Example Keywords

Syntax
return [<expression>] ;
Description
Use the return statement to exit from the current function back to the calling routine, optionally returning
a value.

Example
double sqr(double x)
{
 return (x*x);
}

_saveregs, _ _saveregs
See also Keywords

Syntax
_saveregs <function-name>;
__saveregs <function-name>;
Description
The __saveregs modifier causes the function to preserve all register values and restore them before
returning (except for explicit return values passed in registers such as AX or DX). __saveregs is not
available in flat mode.
Use this keyword with functions; it is useful for writing low-level interface routines, such as mouse
support routines.
Note: The __saveregs modifier is subject to name mangling. See the description of the -VC option.

_seg, _ _seg
Example Keywords

Syntax
<datatype> _seg *<identifier> ;
<datatype> __seg *<identifier> ;
Description
Use _seg in 16-bit segment pointer type declarators. _seg is not available in flat mode.
Any indirection through <identifier> has an assumed offset of 0. In arithmetic involving segment
pointers they are treated like pointers except for the following restictions.
1.You cannot use the ++, --, +=, or -= operators with segment pointers.
2.You cannot subtract one segment pointer from another.
3. If you add a near pointer to a segment pointer, the operation creates a far pointer result by using the

segment from the segment pointer and the offset from the near pointer.
Therefore, the two pointers must point to the same type, or one must be a pointer to void.
There is no multiplication of the offset, regardless of the type pointed to.

4.When a segment pointer is used in an indirection expression, it also implicitly converts to a far pointer.
5. If you add or subtract an integer operand to or from a segment pointer, the result is a far pointer. The

segment is taken from the segment pointer; the offset is calculated by multiplying the size of the
object pointed to by the integer operand.

6.Segment pointers can be assigned, initialized, passed into and out of functions, and compared.

Example
int _seg *name;

signed
See also Example Keywords

Syntax
signed <type> <variable> ;
Description
Use the signed type modifier when the variable value can be either positive or negative. The signed
modifier can be applied to base types int, char, long and short.
When the base type is omitted from a declaration, int is assumed.

Example
signed int i; /* signed is default */
signed i; /* same as "signed int i;" */
unsigned long int l; /* int OK, not needed */
signed char ch; /* unsigned is default */

short
See also Example Keywords

Syntax
short int <variable> ;
Description
Use the short type modifier when you want a variable smaller than an int. This modifier can be applied to
the base type int.
When the base type is omitted from a declaration, int is assumed.

Examples
short int i;
short i; /* same as "short int i;" */

The sizeof operator
See also Example Operators
The sizeof operator has two distinct uses:
sizeof unary-expression
sizeof (type-name)
The result in both cases is an integer constant that gives the size in bytes of how much memory space
is used by the operand (determined by its type, with some exceptions). The amount of space that is
reserved for each type depends on the machine.
In the first use, the type of the operand expression is determined without evaluating the expression (and
therefore without side effects). When the operand is of type char (signed or unsigned), sizeof gives
the result 1. When the operand is a non-parameter of array type, the result is the total number of bytes
in the array (in other words, an array name is not converted to a pointer type). The number of elements
in an array equals sizeof array/ sizeof array[0] .

If the operand is a parameter declared as array type or function type, sizeof gives the size of the
pointer. When applied to structures and unions, sizeof gives the total number of bytes, including any
padding.
You cannot use sizeof with expressions of function type, incomplete types, parenthesized names of
such types, or with an lvalue that designates a bit field object.
The integer type of the result of sizeof is size_t, defined in stddef.h.
You can use sizeof in preprocessor directives; this is specific to Borland C++.
In C++, sizeof(classtype), where classtype is derived from some base class, returns the size of
the object (remember, this includes the size of the base class).

Example for sizeof operator
/* USE THE sizeof OPERATOR TO GET SIZES OF DIFFERENT DATA TYPES. */
#include <stdio.h>
struct st {
 char *name; /* 2 BYTES IN SMALL-DATA MODELS; 4 BYTES IN LARGE-DATA
MODEL */

 int age; /* 2 BYTES IN SMALL-DATA MODELS; 4 BYTES IN LARGE-DATA
MODEL */

 double height; /* ALWAYS EIGHT BYTES */
 };

struct st St_Array[]= { /* AN ARRAY OF structs */
 { "Jr.", 4, 34.20 }, /* ST_Array[0] */
 { "Suzie", 23, 69.75 }, /* ST_Array[1] */
 };
int main() {
 long double LD_Array[] = { 1.3, 501.09, 0.0007, 90.1, 17.08 };

 printf("("\nNumber of elements in LD_Array = %d",
 sizeof(LD_Array) / sizeof(LD_Array[0]));

 /**** THE NUMBER OF ELEMENTS IN THE ST_Array. ****/
 printf("\nSt_Array has %d elements",
 sizeof(St_Array)/sizeof(St_Array[0]));

 /**** THE NUMBER OF BYTES IN EACH ST_Array ELEMENT. ****/
 printf("\nSt_Array[0] = %d", sizeof(St_Array[0]));

 /**** THE TOTAL NUMBER OF BYTES IN ST_Array. ****/
 printf("\nSt_Array=%d", sizeof(St_Array));
 return 0;
 }

Output
Number of elements in LD_Array = 5
St_Array has 2 elements
St_Array[0] = 12
St_Array= 24

static
Example Keywords

Syntax
static <data definition> ;
static <function name> <function definition> ;
Description
Use the static storage class specifier with a local variable to preserve the last value between
successive calls to that function. A static variable acts like a local variable but has the lifetime of an
external variable.
In a class, data and member functions can be declared static. Only one copy of the static data exists
for all objects of the class.
A static member function of a global class has external linkage. A member of a local class has no
linkage. A static member function is associated only with the class in which it is declared. Therefore,
such member functions cannot be virtual.
Static member functions can only call other static member functions and only have access to static
data. Such member functions do not have a this pointer.

Examples
static int i;
static void printnewline(void) {}

_stdcall, __stdcall
Keywords

Syntax
__stdcall <function-name>
_stdcall <function-name>
Description
The _stdcall and __stdcall keywords force the compiler to generate function calls using the Standard
calling convention.The resulting function calls are smaller and faster. Functions must pass the correct
number and type of arguments; this is unlike normal C use, which permits a variable number of function
arguments. Such functions comply with the standard WIN32 argument-passing convention.
Note: The __stdcall modifier is subject to name mangling. See the description of the -VC option.

struct
See also Example Keywords

Syntax
struct [<struct type name>] {
 [<type> <variable-name[, variable-name, ...]>] ;
 .
 .
 .
} [<structure variables>] ;
Description
Use a struct to group variables into a single record.

<struct type name> An optional tag name that refers to the structure type.

<structure variables> The data definitions, also optional.

Though both <struct type name> and <structure variables> are optional, one of the two
must appear.
You define elements in the record by naming a <type>, followed by one or more <variable-name>
(separated by commas).
Separate different variable types by a semicolon.
To access elements in a structure, use a record selector (.).
To declare additional variables of the same type, use the keyword struct followed by the <struct
type name>, followed by the variable names.

Note: Borland C++ allows the use of anonymous struct embedded within another structure.

Example
struct my_struct {
 char name[80], phone_number[80];
 int age, height;
} my_friend;

strcpy(my_friend.name,"Mr. Wizard"); /* accessing an element */

struct my_struct my_friends[100]; /* declaring additional variables */

switch
See also Example Keywords

Syntax
switch (<switch variable>) {
 case <constant expression> : <statement>; [break;]
 .
 .
 .
 default : <statement>;
}
Description
Use the switch statement to pass control to a case which matches the <switch variable>. At which
point the statements following the matching case evaluate.
If no case satisfies the condition the default case evaluates.
To avoid evaluating any other cases and reliquish control from the switch, terminate each case with
break;.

Example
/* Illustrates the use of keywords break, case, default, and switch. */
#include <conio.h>
#include <stdio.h>

int main(void) {
 int ch;

 printf("\tPRESS a, b, OR c. ANY OTHER CHOICE WILL "
 "TERMINATE THIS PROGRAM.");
 for (/* FOREVER */; ((ch = getch()) != EOF);)
 switch (ch) {
 case 'a' : /* THE CHOICE OF a HAS ITS OWN ACTION. */
 printf("\nOption a was selected.\n");
 break;
 case 'b' : /* BOTH b AND c GET THE SAME RESULTS. */
 case 'c' :
 printf("\nOption b or c was selected.\n");
 break;
 default :
 printf("\nNOT A VALID CHOICE! Bye ...");
 return(-1);
 }
 return(0);
 }

template
See also Keywords

Syntax
template-declaration:
 template < template-argument-list > declaration
template-argument-list:
 template-argument
 template-argument-list, template argument

template-argument:
 type-argument
 argument-declaration

type-argument:
 class identifier
template-class-name:
 template-name < template-arg-list >

template-arg-list:
 template-arg
 template-arg-list , template-arg

template-arg:
 expression
 type-name

< template-argument-list > declaration

Description
Use templates (also called generics or parameterized types) to construct a family of related functions or
classes.

this
See also Keywords

Syntax
class X {
int a;

public:
X (int b) {this -> a = b;}

Description
In nonstatic member functions, the keyword this is a pointer to the object for which the function is called.
All calls to nonstatic member functions pass this as a hidden argument.
this is a local variable available in the body of any nonstatic member function. Use it implicitly within the
function for member references. It does not need to be declared and it is rarely referred to explicitly in a
function definition.
For example, in the call x.func(y) , where y is a member of X, the keyword this is set to &x and y is
set to this->y, which is equivalent to x.y.

Static member functions do not have a this pointer because they are called with no particular object in
mind. Thus, a static member function cannot access nonstatic members without explicitly specifying an
object with . or ->.

throw
See also Keywords

Syntax
throw assignment-expression
Description
When an exception occurs, the throw expression initializes a temporary object of the type T (to match
the type of argument arg) used in throw(T arg). Other copies can be generated as required by the
compiler. Consequently, it can be useful to define a copy constructor for the exception object.

_ _try
See also Keywords

Syntax
_ _try compound-statement handler-list
_ _try compound-statement termination-statement
Description
The _ _try keyword is supported only in C programs. Use try in C++ programs.
A block of code in which an exception can occur must be prefixed by the keyword __try. Following the
try keyword is a block of code enclosed by braces. This indicates that the program is prepared to test for
the existence of exceptions. If an exception occurs, the normal program flow is interrupted. The program
begins a search for a handler that matches the exception. If the exception is generated in a C module, it
is possible to handle the structured exception in either a C module or a C++ module.
If a handler can be found for the generated structured exception, the following actions can be taken:

Execute the actions specified by the handler
Ignore the generated exception and resume program execution
Continue the search for some other handler (regenerate the exception)

If no handler is found, the program will call the terminate function. If no exceptions are thrown, the
program executes in the normal fashion.

// try example
// In PROG.C
void func(void) {
 // generate an exception
 RaiseException(// specify your arguments);
}

// In CALLER.CPP
// How to test for C++ or C-based exceptions.
#include <excpt.h>
#include <iostream.h>

int main(void) {
 try
 { // test for C++ exceptions
 try
 { // test for C-based structured exceptions
 func();
 }
 __except(/* filter-expression */)
 {
 cout << "A structured exception was generated.";
 /* specify actions to take for this structured exception */
 return -1;
 }
 return 0;
 }
 catch (...)
 {
 // handler for any C++ exception
 cout << "A C++ exception was thrown.";
 return 1;
 }
}

try
See also Example Keywords

Syntax
try compound-statement handler-list
Description
The try keyword is supported only in C++ programs. Use _ _try in C programs.
A block of code in which an exception can occur must be prefixed by the keyword try. Following the try
keyword is a block of code enclosed by braces. This indicates that the program is prepared to test for
the existence of exceptions. If an exception occurs, the program flow is interrupted. The sequence of
steps taken is as follows:

The program searches for a matching handler
If a handler is found, the stack is unwound to that point
Program control is tranferred to the handler

If no handler is found, the program will call the terminate function. If no exceptions are thrown, the
program executes in the normal fashion.

typedef
Example Keywords

Syntax
typedef <type definition> <identifier> ;
Description
Use the typedef keyword to assign the symbol name <identifier> to the data type definition
<type definition>.

typename

Syntax 1
typename <identifier>
Syntax 2
template < typename <identifier> > class <identifier>
Description
Use the syntax 1 to reference a type that you have not yet defined. See example 1.

Use syntax 2 in place of the class keyword in a template declaration. See example 2.

typename Example 2

/* This example shows how the typename keyword can be used to replace the
class keyword in a template declaration. */

#include <iostream.h>

template <typename T1, typename T2> T2 convert (T1 t1)
 // use typename instead of class.
{ return (T2)t1; }

template <typename X, class Y> bool isequal (X x, Y y)
 // mix typename and class.
{ if (x==y)return 1; return 0; }

typename Example 1

/* This example uses the typename keyword to declare variables as type T::A,
which has not yet been defined. */

template <class T>
void f() {
 typedef typename T::A TA; // declare TA as type T::A
 TA a5; // declare a5 as type TA
 typename T::A a6; // declare a6 as type T::A
 TA * pta6; // declare pta6 as pointer to type TA
}

Examples
typedef unsigned char byte;
typedef char str40[41];
typedef struct {
 double re, im;
 } complex;

The typeid operator
See also Example Keywords

Syntax
typeid(expression)
typeid(type-name)
Description
You can use typeid to get run-time identification of types and expressions. A call to typeid returns a
reference to an object of type const typeinfo. The returned object represents the type of the typeid
operand.
If the typeid operand is a dereferenced pointer or a reference to a polymorphic type, typeid returns the
dynamic type of the actual object pointed or referred to. If the operand is non-polymorphic, typeid
returns an object that represents the static type.
You can use the typeid operator with fundamental data types as well as user-defined types.
If the typeid operand is a dereferenced NULL pointer, the Bad_typeid exception is thrown.

// typeid example
// HOW TO USE operator typeid, Type_info::before(), AND Type_info::name()
#include <iostream.h>
#include <typeinfo.h>

class A { };
class B : A { };

void main() {
 char C;
 float X;

 // USE THE typeinfo::operator==()TO MAKE COMPARISON
 if (typeid(C) == typeid(X))
 cout << "C and X are the same type." << endl;
 else cout << "C and X are NOT the same type." << endl;

 // USE true AND false LITERALS TO MAKE COMPARISON
 cout << typeid(int).name();
 cout << " before " << typeid(double).name() << ": " <<
 (typeid(int).before(typeid(double)) ? true : false) << endl;
 cout << typeid(double).name();

 cout << " before " << typeid(int).name() << ": " <<
 (typeid(double).before(typeid(int)) ? true : false) << endl;

 cout << typeid(A).name();
 cout << " before " << typeid(B).name() << ": " <<
 (typeid(A).before(typeid(B)) ? true : false) << endl;
 }

Program Output
C and X are NOT the same type.
int before double: 0
double before int: 1
A before B: 1

union
See also Example Keywords

Syntax
union [<union type name>] {
 <type> <variable names> ;
 ...
} [<union variables>] ;
Description
Use unions to define variables that share storage space.
The compiler allocates enough storage in a_number to accommodate the largest element in the union.
Unlike a struct, the variables a_number.i and a_number.l occupy the same location in memory. Thus,
writing into one overwrites the other.
Use the record selector (.) to access elements of a union .

Example
union int_or_long {
 int i;
 long l;
} a_number;

unsigned
See also Example Keywords

Syntax
unsigned <type> <variable> ;
Description
Use the unsigned type modifier when variable values will always be positive. The unsigned modifer
can be applied to base types int, char, long, and short.
When the base type is omitted from a declaration, int is assumed.

Examples
unsigned int i;
unsigned i; /* same as "unsigned int i;" */
unsigned long int l; /* int OK, not needed */
unsigned char ch; /* unsigned is default for char */

virtual
See also Keywords

Syntax
virtual class-name
virtual function-name
Description
Use the virtual keyword to allow derived classes to provide different versions of a base class function.
Once you declare a function as virtual, you can redefine it in any derived class, even if the number and
type of arguments are the same.
The redefined function overrides the base class function.

void
Example Keywords

Syntax
void identifier
Description
void is a special type indicating the absence of any value. Use the void keyword as a function return
type if the function does not return a value.
void hello(char *name)
{
 printf("Hello, %s.",name);
}
Use void as a function heading if the function does not take any parameters.
int init(void)
{
 return 1;
}

Void Pointers
Generic pointers can also be declared as void, meaning that they can point to any type.
void pointers cannot be dereferenced without explicit casting because the compiler cannot determine
the size of the pointer object.

Example
int x;
float r;
void *p = &x; /* p points to x */
int main (void)

 *(int *) p = 2;
 p = &r; /* p points to r */
 *(float *)p = 1.1;
}

volatile
See also Keywords

Syntax
volatile <data definition> ;
Description
Use the volatile modifier to indicate that a variable can be changed by a background routine, an
interrupt routine, or an I/O port. Declaring an object to be volatile warns the compiler not to make
assumptions concerning the value of the object while evaluating expressions in which it occurs because
the value could change at any moment. It also prevents the compiler from making the variable a register
variable
volatile int ticks;
void _ _interrupt timer() {
 ticks++;
}
void wait (int interval) {
 ticks = 0;
 while (ticks < interval); // Do nothing
}
The routines in this example (assuming timer has been properly associated with a hardware clock
interrupt) implement a timed wait of ticks specified by the argument interval. A highly optimizing compiler
might not load the value of ticks inside the test of the while loop since the loop doesn’t change the value
of ticks.
Note: C++ extends volatile to include classes and member functions. If you’ve declared a volatile

object, you can use only its volatile member functions.

while
See also Example Keywords

Syntax
while (<condition>) <statement>
Description
Use the while keyword to conditionally iterate a statement.
<statement> executes repeatedly until the value of <condition> is false. If no condition is
specified, the while clause is equivalent to while(true).
The test takes place before <statement> executes. Thus, if <condition> evaluates to false on
the first pass, the loop does not execute.

Example
while (*p == ' ') p++;

Data Types (16-bit)
See also Keywords

Type Length Range

unsigned char 8 bits 0to 255
char 8 bits -128 to 127
enum 16 bits -32,768 to 32,767
unsigned int 16 bits 0 to 65,535
short int 16 bits -32,768 to 32,767
int 16 bits -32,768 to 32,767
unsigned long 32 bits 0 to 4,294,967,295
long 32 bits -2,147,483,648 to 2,147,483,647
float 32 bits 3.4 x 10-38 to 3.4 x 10+38

double 64 bits 1.7 x 10-308 to 1.7 x 10+308

long double 80 bits 3.4 x 10-4932 to 1.1 x 10+4932

near (pointer) 16 bits not applicable
far (pointer) 32 bits not applicable

Data Types (32-bit)
See also Keywords

Type Length Range

unsigned char 8 bits 0to 255
char 8 bits -128 to 127
short int 16 bits -32,768 to 32,767
unsigned int 32 bits 0 to 4,294,967,295
int 32 bits -2,147,483,648 to 2,147,483,647
unsigned long 32 bits 0 to 4,294,967,295
enum 16 bits -2,147,483,648 to 2,147,483,647
long 32 bits -2,147,483,648 to 2,147,483,647
float 32 bits 3.4 x 10-38 to 3.4 x 10+38

double 64 bits 1.7 x 10-308 to 1.7 x 10+308

long double 80 bits 3.4 x 10-4932 to 1.1 x 10+4932

near (pointer) 32 bits not applicable
far (pointer) 32 bits not applicable

_cs, __cs, _ds, __ds, _ss, __ss, _es, __es
Example Keywords

Syntax
<type> _cs <pointer definition> ;
<type> __cs <pointer definition> ;
<type> _ds <pointer definition> ;
<type> __ds <pointer definition> ;
<type> _ss <pointer definition> ;
<type> __ss <pointer definition> ;
<type> _es <pointer definition> ;
<type> __es <pointer definition> ;
Description
Use the _cs, __cs, _ds, __ds, _ss, __ss, _es, and __es keywords to define special versions of near data
pointers.
These pointers are 16-bit offsets associated with the specified segment register: CS, DS, SS or ES.

Example
char _cs *s; /* in cs code segment */
int _ss ix ; /* in ss stack segment */
long _ds l[4] ; /* in ds data segment */
char _es m[8] ; /* in es segment */

Table of Borland C++ register pseudovariables
Example
_AH _CL _EAX1 _ESP
_AL _CS _EBP1 _FLAGS
_AX _CX _EBX1 _FS1

_BH _DH _ECX1 _GS1

_BL _DI _EDI1 _SI
_BP _DL _EDX1 _SP
_BX _DS _ES _SS
_CH _DX _ESI1

1 These pseudovariables are always available to the 32-bit compiler. The 16-bit compiler can use
these only when you use the option to generate 80386 instructions.

All but the _FLAGS register pseudovariable are associated with the general purpose, segment, address,
and special purpose registers.
Use register pseudovariables anywhere that you can use an integer variable to directly access the
corresponding 80x86 register.
The 16-bit flags register contains information about the state of the 80x86 and the results of recent
instructions.

Example
_AX = 0x4c00;

_ _rtti and the -RT option
See also Example Keywords
RTTI is enabled by default in Borland C++. You can use the -RT command-line option to disable it (-RT-
) or to enable it (-RT). If RTTI is disabled, or if the argument to typeid is a pointer or a reference to a
non-polymorphic class, typeid returns a reference to a const typeinfo object that describes the declared
type of the pointer or reference, and not the actual object that the pointer or reference is bound to.
In addition, even when RTTI is disabled, you can force all instances of a particular class and all classes
derived from that class to provide polymorphic run-time type identification (where appropriate) by using
the Borland C++ keyword _ _rtti in the class definition.
When you use the -RT- compiler option, if any base class is declared _ _rtti, then all polymorphic base
classes must also be declared _ _rtti.
struct __rtti S1 { virtual s1func(); }; /* Polymorphic */
struct __rtti S2 { virtual s2func(); }; /* Polymorphic */
struct X : S1, S2 { };
If you turn off the RTTI mechanism (by using the -RT- compiler option), RTTI might not be available for
derived classes. When a class is derived from multiple classes, the order and type of base classes
determines whether or not the class inherits the RTTI capability.
When you have polymorphic and non-polymorphic classes, the order of inheritance is important. If you
compile the following declarations with -RT-, you should declare X with the _ _rtti modifier. Otherwise,
switching the order of the base classes for the class X results in the compile-time error Can't inherit non-
RTTI class from RTTI base 'S1'.
struct _ _rtti S1 { virtual func(); }; /* Polymorphic class */
struct S2 { }; /* Non-polymorphic class */
struct _ _rtti X : S1, S2 { };
Note: The class X is explicitly declared with _ _rtti. This makes it safe to mix the order and type of

classes.
In the following example, class X inherits only non-polymorphic classes. Class X does not need to be
declared _ _rtti.
struct _ _rtti S1 { }; // Non-polymorphic class
struct S2 { };
struct X : S2, S1 { }; // The order is not essential
Applying either _ _rtti or using the -RT compiler option will not make a static class into a polymorphic
class.

-RT option and destructors

When -xd is enabled, a pointer to a class with a virtual destructor can't be deleted if that class is not
compiled with -RT. The -RT and -xd options are on by default.
Example
class Alpha {
public:
 virtual ~Alpha() { }
};
void func(Alpha *Aptr) {
 delete Aptr; // Error. Alpha is not a polymorphic class type
 }

Run-time type identification (RTTI) overview
See also
Run-time type identification (RTTI) lets you write portable code that can determine the actual type of a
data object at run time even when the code has access only to a pointer or reference to that object. This
makes it possible, for example, to convert a pointer to a virtual base class into a pointer to the derived
type of the actual object. Use the dynamic_cast operator to make run-time casts.
The RTTI mechanism also lets you check whether an object is of some particular type and whether two
objects are of the same type. You can do this with typeid operator, which determines the actual type of
its argument and returns a reference to an object of type const typeinfo, which describes that type.
You can also use a type name as the argument to typeid, and typeid will return a reference to a const
typeinfo object for that type. The class typeinfo provides an operator== and an operator!= that you can
use to determine whether two objects are of the same type. Class typeinfo also provides a member
function name that returns a pointer to a character string that holds the name of the type.

_ _rtti Example
/* HOW TO GET RUN-TIME TYPE INFORMATION FOR POLYMORPHIC CLASSES.*/
#include <iostream.h>
#include <typeinfo.h>

class __rtti Alpha { /* Provide RTTI for this class and */
 /* all classes derived from it */

 virtual void func() {}; /* A virtual function makes */
 /* Alpha a polymorphic class. */
};

class B : public Alpha {};

int main(void) {
 B Binst; // Instantiate class B
 B *Bptr; // Declare a B-type pointer
 Bptr = &Binst; // Initialize the pointer

 // THESE TESTS ARE DONE AT RUN TIME
 try {
 if (typeid(*Bptr) == typeid(B))
 // Ask "WHAT IS THE TYPE FOR *Bptr?"
 cout << "Name is " << typeid(*Bptr).name();
 if (typeid(*Bptr) != typeid(Alpha))
 cout << "\nPointer is not an Alpha-type.";
 return 0;
 }
 catch (Bad_typeid) {
 cout << "typeid() has failed.";
 return 1;
 }
 }
Program Output
Name is B
Pointer is not an Alpha-type.

wchar_t (keyword)

Syntax
wchar_t <identifier>;
Description
In C++ programs, wchar_t is a fundamental data type that can represent distinct codes for any element
of the largest extended character set in any of the supported locales. A wchar_t type is the same size,
signedness, and alignment requirement as an int type.

defined
See also Keywords

Syntax
#if defined[(] <identifier> [)]
#elif defined[(] <identifier> [)]
Description
Use the defined operator to test if an identifier was previously defined using #define. The defined
operator is only valid in #if and #elif expressions.
Defined evaluates to 1 (true) if a previously defined symbol has not been undefined (using #undef);
otherwise, it evaluates to 0 (false).
Defined performs the same function as #ifdef.
#if defined(mysym)
is the same as
#ifdef mysym
The advantage is that you can use defined repeatedly in a complex expression following the #if
directive; for example,
#if defined(mysym) && !defined(yoursym)

mutable
See also Example Keywords

Syntax
mutable <variable name>;
Description
Use the mutable specifier to make a variable modifiable even though it is in a const-qualified
expression.

Using the mutable Keyword
Only class data members can be declared mutable. The mutable keyword cannot be used on static or
const names. The purpose of mutable is to specify which data members can be modified by const
member functions. Normally, a const member function cannot modify data members.

Example
#include <iostream.h>
class Alpha {
 mutable int count;
 mutable const int* iptr;
public:
 int func1(int i = 0) const { // Promises not to change const arguments.
 count = i++; // But count can be changed.
 iptr = &i;
 cout << *iptr;
 return count;
 }
};

int main(void) {
 Alpha a;

 a.func1(0);
 return 0;
 }

Namespaces overview
See Also
Most nontrivial applications consist of more than one source file. The files can be authored and
maintained by more than one developer. Eventually, the separate files are organized and linked to
produce the final application. Traditionally, the file organization requires that all names that aren't
encapsulated within a defined namespace (such as function or class body, or translation unit) must
share the same global namespace. Therefore, multiple definitions of names discovered while linking
separate modules require some way to distinguish each name. The solution to the problem of name
clashes in the global scope is provided by the C++ namespace mechanism.
The namespace mechanism allows an application to be partitioned into number of subsystems. Each
subsystem can define and operate within its own scope. Each developer is free to introduce whatever
identifiers are convenient within a subsystem without worrying about whether such identifiers are being
used by someone else. The subsystem scope is known throughout the application by a unique identifier.
It only takes two steps to use C++ namespaces. The first is to uniquely identify a namespace with the
keyword namespace. The second is to access the elements of an identified namespace by applying the
using keyword.

Defining a namespace
SeeAlso
The grammar for defining a namespace is

 original-namespace-name:
 identifier

 namespace-definition:
 original-namespace-definition
 extension-namespace-definition
 unnamed-namespace-definition

Grammatically, there are three ways to define a namespace with the namespace keyword:
 original-namespace-definition:
 namespace identifier { namespace-body }

 extension-namespace-definition:
 namespace original-namespace-name { namespace-body }

 unnamed-namespace-definition:
 namespace { namespace-body }

The body is an optional sequence of declarations. The grammar is
 namespace-body:
 declaration-seq opt

Example
// An example of the using directive
#include <iostream.h>
 namespace F {
 float x = 9;
 }
 namespace G {
 using namespace F;
 float y = 2.0;
 namespace INNER_G {
 float z = 10.01;
 }
 }

 int main() {
 using namespace G; // THIS DIRECTIVE GIVES YOU EVERYTHING DECLARED IN
"G"

 using namespace G::INNER_G; // THIS DIRECTIVE GIVES YOU ONLY
"INNER_G"

 float x = 19.1; // LOCAL DECLARATION TAKES PRECEDENCE
 cout << "x = " << x << endl;
 cout << "y = " << y << endl;
 cout << "z = " << z << endl;
 return 0;
 }

Output:
 x = 19.1
 y = 2
 z = 10.01

Declaring a namespace
SeeAlso
An original namespace declaration should use an identifier that has not been previously used as a
global identifier.
 namespace ALPHA { /* ALPHA is the identifier of this namespace. */
 /* your program declarations */
 long double LD;
 float f(float y) { return y; }
 }
A namespace identifier must be known in all translation units where you intend to access it's elements.

Namespace alias
You can use an alternate name to refer to a namespace identifier. An alias is useful when you need to
refer to a long, unwieldy namespace identifier.
 namespace BORLAND_INTERNATIONAL {
 /* namespace-body */
 namespace NESTED_BORLAND_INTERNATIONAL {
 /* namespace-body */
 }
 }

 // Alias namespace
 namespace BI = BORLAND_INTERNATIONAL;

 // Use access qualifier to alias a nested namespace
 namespace NBI = BORLAND_INTERNATIONAL::NESTED_BORLAND_INTERNATIONAL;

Extending a namespace
Example
Namespaces are discontinuous and open for additional development. If you redeclare a namespace, the
effect is that you extend the original namespace by adding new declarations. Any extensions that are
made to a namespace after a using-declaration, will not be known at the point at which the using-
declaration occurs. Therefore, all overloaded versions of some function should be included in the
namespace before you declare the function to be in use.

Example for extending namespaces
// An example for extending namespaces
#include <iostream.h>
 struct S { };
 class C { };

 namespace ALPHA { // ALPHA is an original identifier.
 void g(struct S) {
 cout << "Processing a structure argument" << endl;
 }
 }

 using ALPHA::g; // using-declaration

 /*** After the using-declaration above, subsequent attempts
 to overload the g() function are ignored. ***/
 namespace ALPHA { // Extending the ALPHA namespace
 void g(C&) { // Overloaded version of function
 cout << "Processing a class argument." << endl;
 }
 }

 int main() {
 S mystruct;
 C myclass;

 g(mystruct);

 // The following function call fails at compile-time
 // because there is no overloaded version for this case.
// g(myclass);
 return 0;
 }
Output:
Processing a structure argument

Anonymous namespaces
Example
The C++ grammar allows you to define anonymous namespaces. To do this,you use the keyword
namespace with no identifier before the enclosing brace.
 namespace { // Anonymous namespace
 // Declarations
 }
All anonymous, unnamed namespaces in global scope (that is, unnamed namespaces that are not
nested) of the same translation unit share the same namespace. This way you can make static
declarations without using the static keyword.
Each identifier that is enclosed within an unnamed namespace is unique within the translation unit in
which the unnamed namespace is defined.

Example
In file ANON1.CPP
#include <iostream.h>
extern void func(void);

namespace { // Anonymous
 float pi = 3.14; // Unique identifier known only in this file
 }

void main() {
 float pi = 0.1;
 cout << "pi = " << pi << endl;
 func();
 }
In file ANON2.CPP
#include <iostream.h>

namespace { // Anonymous namespace
 float pi = 10.0001; // Unique identifier known only in this file
 void func(void) {
 cout << "First func() called; pi = " << pi;
 }
 }
 void func(void) {
 cout << "Second func() called; pi = " << pi;
 }

Program output:
pi = 0.1
func() called; pi = 10.0001

Accessing elements of a namespace
There are three ways to access the elements of a namespace: by explicit access qualification, the
using-declaration, or the using-directive. Remember that no matter which namespace you add to your
local scope, identifiers in global scope (global scope is just another namespace) are still accessible by
using the scope resolution operator ::.
Explicit access qualification
Using directive
Using declaration

Accessing namespaces in classes
Example
You cannot use a using directive inside a class. However, the using declarative is allowed and can be
quite useful.

Using directive
Example
If you want to use several (or all of) the members of a namespace, C++ provides an easy way to get
access to the complete namespace. The using-directive specifies that all identifiers in a namespace are
in scope at the point that the using-directive statement is made. The grammar for the using-directive is
as follows.
 using-directive:
 using namespace :: opt nested-name-specifier opt namespace-name;
The using-directive is transitive. That means that when you apply the using directive to a namespace
that contains using directives within itself, you get access to those namespaces as well. For example, if
you apply the using directive in your program, you also get namespaces A, ONE, and TWO.
 namespace A {
 using namespace ONE; // This has been defined previously
 using namespace TWO; // This also has been defined previously
 }
The using-directive does not add any identifiers to your local scope. Therefore, an identifier defined in
more than one namespace won't be a problem until you actually attempt to use it. Local scope
declarations take precedence by hiding all other similar declarations.

Using declaration
Example
You can access namespace members individually with the using-declaration syntax. When you make a
using declaration, you add the declared identifier to the local namespace. The grammar is
 using-declaration:
 using :: unqualified-identifier;

Example
// An example of the using declaration.
// The function g() is defined in two different namespaces.
#include <iostream.h>

namespace ALPHA { /* ALPHA is the name of this namespace. */
 float f(float y) { return y; }
 void g() { cout << "ALPHA version" << endl; }
 }
namespace BETA { /* BETA is the name of this namespace. */
 void g() { cout << "BETA version" << endl; }
 }

void main(void) {
// The using declaration identifies the desired version of g().
 using ALPHA::f; // Qualified declaration
 using BETA::g; // Qualified declaration
 float x = 0;

 // Access qualifiers are no longer needed.
 x = f(2.1);
 g();
 }

Explicit access qualification
You can explicitly qualify each member of a namespace. To do so, you use the namespace identifier
together with the :: scope resolution operator followed by the member name. For example, to access a
specific member of namespace ALPHA, you write:
 ALPHA::LD; // Access a variable
 ALPHA::f; // Access a function
Explicit access qualification can always be used to resolve ambiguity. No matter which namespace
(except anonymous namespace) is being used in your subsystem, you can apply the scope resolution
operator :: to access identifiers in any namespace (including a namespace already being used in the
local scope) or the global namespace. Therefore, any identifier in the application can be accessed with
sufficient qualification.

Example
// An example for accessing a namespace within a class.
// This allows us to overload a function which is a base class member.

#include <iostream.h>
 class A {
 public:
 void func(char ch) { cout << "char = " << ch << endl; }
 };

 class B : public A {
 public:
// using namespace A; // ERROR. The using directive isn’t allowed
 void func(char *str) { cout << "string = " << str << endl; }

 // The using declarative
 using A::func; // Overload B::func()
 };

 int main() {
 B b;

 b.func('c'); // Calls A::func()
 b.func("c"); // Calls B::func()
 return 0;
 }

Operators Summary
See also
Operators are tokens that trigger some computation when applied to variables and other objects in an
expression.
Arithmetic
Assignment
Bitwise
C++ specific
Comma
Conditional
Equality
Logical
Postfix Expression Operators
Primary Expression Operators
Preprocessor
Reference/Indirect operators
Relational
sizeof
typeid
All operators can be overloaded except the following:
. C++ direct component selector

.* C++ dereference

:: C++ scope access/resolution

?: Conditional

Depending on context, the same operator can have more than one meaning. For example, the
ampersand (&) can be interpreted as:

a bitwise AND (A & B)
an address operator (&A)
in C++, a reference modifier

Note: No spaces are allowed in compound operators. Spaces change the meaning of the operator and
will generate an error.

Associativity and Precedence of Operators
Operators
There are 16 precedence categories, some of which contain only one operator. Operators in the same
category have equal precedence with each other.
Where duplicates of operators appear in the table, the first occurrence is unary, the second binary. Each
category has an associativity rule: left to right, or right to left. In the absence of parentheses, these rules
resolve the grouping of expressions with operators of equal precedence.
The precedence of each operator in the following table is indicated by its order in the table.
The first category (on the first line) has the highest precedence. Operators on the same line
have equal precedence.
Operators Associativity

() [] -> :: . left to right
! ~ + - ++ -- & * sizeof new delete right to left
.* ->* left to right
* / % left to right
+ - left to right
<< >> left to right
< <= > >= left to right
== != left to right
& left to right
^ left to right
| left to right
&& left to right
|| right to left
?: left to right
= *= /= %= += -= &= ^= |= <<= >>= right to left
, left to right

Arithmetic Operators
See also Operators

Syntax
+ cast-expression
- cast-expression
add-expression + multiplicative-expression
add-expression - multiplicative-expression
multiplicative-expr * cast-expr
multiplicative-expr / cast-expr
multiplicative-expr % cast-expr
postfix-expression ++ (postincrement)
++ unary-expression (preincrement)
postfix-expression -- (postdecrement)
-- unary-expression (predecrement)
Remarks
Use the arithmetic operators to perform mathematical computations.
The unary expressions of + and - assign a positive or negative value to the cast-expression.
+ (addition), - (subtraction), * (multiplication), and / (division) perform their basic algebraic arithmetic on
all data types, integer and floating point.
% (modulus operator) returns the remainder of integer division and cannot be used with floating points.
++ (increment) adds one to the value of the expression. Postincrement adds one to the value of the
expression after it evaluates; while preincrement adds one before it evaluates.
-- (decrement) subtracts one from the value of the expression. Postdecrement subtracts one from the
value of the expression after it evaluates; while predecrement subtracts one before it evaluates.

Assignment Operators
See also Operators

Syntax
unary-expr assignment-op assignment-expr
Remarks
The assignment operators are:
= *= /= %= += -=
<<= >>= &= ^= |=
The = operator is the only simple assignment operator, the others are compound assignment operators.
In the expression E1 = E2, E1 must be a modifiable lvalue. The assignment expression itself is not an
lvalue.
The expression
E1 op= E2
has the same effect as
E1 = E1 op E2
except the lvalue E1 is evaluated only once. For example, E1 += E2 is the same as E1 = E1 + E2.
The expression's value is E1 after the expression evaluates.
For both simple and compound assignment, the operands E1 and E2 must obey one of the following
rules:
1. E1 is a qualified or unqualified arithmetic type and E2 is an arithmetic type.
2. E1 has a qualified or unqualified version of a structure or union type compatible with the type of E2.
3. E1 and E2 are pointers to qualified or unqualified versions of compatible types, and the type pointed

to by the left has all the qualifiers of the type pointed to by the right.
4. Either E1 or E2 is a pointer to an object or incomplete type and the other is a pointer to a qualified or

unqualified version of void. The type pointed to by the left has all the qualifiers of the type pointed to
by the right.

5. E1 is a pointer and E2 is a null pointer constant.
Note: Spaces separating compound operators (+<space>=) will generate errors.

Bitwise operators
See also Operators

Syntax
AND-expression & equality-expression
exclusive-OR-expr ^ AND-expression
inclusive-OR-expr exclusive-OR-expression
~cast-expression
shift-expression << additive-expression
shift-expression >> additive-expression
Remarks
Use the bitwise operators to modify the individual bits rather than the number.

Operator What it does
& bitwise AND; compares two bits and generates a 1 result if both bits are 1, otherwise it

returns 0.
| bitwise inclusive OR; compares two bits and generates a 1 result if either or both bits are 1,

otherwise it returns 0.
^ bitwise exclusive OR; compares two bits and generates a 1 result if the bits are

complementary, otherwise it returns 0.
~ bitwise complement; inverts each bit. ~ is used to create destructors.
>> bitwise shift right; moves the bits to the right, discards the far right bit and assigns the left

most bit to 0.
<< bitwise shift left; moves the bits to the left, it discards the far left bit and assigns the right

most bit to 0.
Both operands in a bitwise expression must be of an integral type.

Bit value Results of
E1 E2 E1 & E2 E1 ^ E2 E1 | E2
0 0 0 0 0
1 0 0 1 1
0 1 0 1 1
1 1 1 0 1

Note: &, >>, << are context sensitive. & can also be the pointer reference operator.
>> can also be the input operator in I/O expressions.
<< can also be the output operator in I/O expressions.

C++ Specific Operators
See also Operators
The operators specific to C++ are:
:: Scope access (or resolution) operator

.* Dereference pointers to class members

->* Dereference pointers to pointers to class members

const_cast adds or removes the const or volatile modifier from a type
delete dynamically deallocates memory
dynamic_cast converts a pointer to a desired type
new dynamically allocates memory
reinterpret_cast replaces casts for conversions that are unsafe or implementation dependent.
static_cast converts a pointer to a desired type
typeid gets run-time identification of types and expressions

Use the scope access (or resolution) operator ::(two semicolons) to access a global (or file duration)
name even if it is hidden by a local redeclaration of that name.
Use the .* and ->* operators to dereference pointers to class members and pointers to pointers to class
members.

Comma Punctuator and Operator
See also Operators

Syntax
expression , assignment-expression
Remarks
The comma separates elements in a function argument list.
The comma is also used as an operator in comma expressions. Mixing the two uses of comma is legal,
but you must use parentheses to distinguish them.
The left operand E1 is evaluated as a void expression, then E2 is evaluated to give the result and type
of the comma expression. By recursion, the expression
E1, E2, ..., En
results in the left-to-right evaluation of each Ei, with the value and type of En giving the result of the
whole expression.
To avoid ambiguity with the commas in function argument and initializer lists, use parentheses. For
example,
func(i, (j = 1, j + 4), k);
calls func with three arguments (i, 5, k), not four.

Conditional Operator
Operators

Syntax
logical-OR-expr ? expr : conditional-expr
Remarks
The conditional operator ?: is a ternary operator.
In the expression E1 ? E2 : E3, E1 evaluates first. If its value is true, then E2 evaluates and E3 is
ignored. If E1 evaluates to false, then E3 evaluates and E2 is ignored.
The result of E1 ? E2 : E3 will be the value of either E2 or E3 depending upon which evaluates.
E1 must be a scalar expression. E2 and E3 must obey one of the following rules:
1. Both of arithmetic type. E2 and E3 are subject to the usual arithmetic conversions, which determines

the resulting type.
2. Both of compatible struct or union types. The resulting type is the structure or union type of E2 and

E3.
3. Both of void type. The resulting type is void.
4. Both of type pointer to qualified or unqualified versions of compatible types. The resulting type is a

pointer to a type qualified with all the type qualifiers of the types pointed to by both operands.
5. One operand is a pointer, and the other is a null pointer constant. The resulting type is a pointer to a

type qualified with all the type qualifiers of the types pointed to by both operands.
6. One operand is a pointer to an object or incomplete type, and the other is a pointer to a qualified or

unqualified version of void. The resulting type is that of the non-pointer-to-void operand.

Logical Operators
Operators

Syntax
logical-AND-expr && inclusive-OR-expression
logical-OR-expr || logical-AND-expression
! cast-expression
Remarks
Operands in a logical expression must be of scalar type.
&& logical AND; returns true only if both expressions evaluate to be nonzero, otherwise returns

false. If the first expression evaluates to false, the second expression is not evaluated.
|| logical OR; returns true if either of the expressions evaluate to be nonzero, otherwise returns

false. If the first expression evaluates to true, the second expression is not evaluated.
! logical negation; returns true if the entire expression evaluates to be nonzero, otherwise returns

false. The expression !E is equivalent to (0 == E).

Primary Expression Operators

For ANSI C, the primary expressions are literal (also sometimes referred to as constant), identifier, and (
expression). The C++ language extends this list of primary expressions to include the keyword this,
scope resolution operator ::, name, and the class destructor ~ (tilde).

The primary expressions are summarized in the following list.

primary-expression:

literal
this (C++ specific)

:: identifier (C++ specific)
:: operator-function-name (C++ specific)
:: qualified-name (C++ specific)
(expression)
name

literal:

integer-constant
character-constant

floating-constant
string-literal

name:

identifier
perator-function-name (C++ specific)

conversion-function-name (C++ specific)
~ class-name (C++ specific)
qualified-name (C++ specific)

qualified-name: (C++ specific)

qualified-class-name :: name

For a discussion of the primary expression this, see this (keyword). The keyword this cannot be used
outside a class member function body.

The scope resolution operator allows reference to a type, object, function, or enumerator even though its
identifier is hidden.

The parenthesis surrounding an expression do not change the unadorned expression itself.

The primary expression name is restricted to the category of primary expressions that sometimes
appear after the member access operators . (dot) and –> . Therefore, name must be either an lvalue or
a function. See also the discussion of member access operators.

An identifier is a primary expression, provided it has been suitably declared. The description and formal
definition of identifiers is shown in Lexical Elements: Identifiers.

See the discussion on how to use the destructor operator ~ (tilde).

Postfix expression operators
See also Operators

Syntax
postfix-expression(<arg-expression-list>)
array declaration [constant-expression]
compound statement { statement list }
postfix-expression . identifier
postfix-expression -> identifier
Remarks
() use to group expressions, isolate conditional expressions, indicate function calls and

function parameters
{ } use as the start and end of compound statements
[] use to indicate single and multidimensional array subscripts
. use to access structure and union members
-> use to access structure and union members
The following postfix expressions let you make safe, explicit typecasts in a C++ program.
const_cast< T > (expression)
dynamic_cast< T > (expression)
reinterpret_cast< T > (expression)
static_cast< T > (expression)

To obtain run-time type identification (RTTI), use the typeid() operator. The syntax is as follows:
typeid(expression)
typeid(type-name)

Preprocessor Operators
Operators

Remarks
The # (pound sign) is a preprocessor directive when it occurs as the first non-whitespace character on a
line.
It signifies a compiler action, not necessarily associated with code generation.
and ## (double pound signs) also perform operator replacement and merging during the preprocessor
scanning phase.

Reference/Dereference Operators
See also Operators

Syntax
& cast-expression
* cast-expression
Remarks
The & and * operators work together to reference and dereference pointers that are passed to functions.

Referencing operator (&)
Use the reference operator to pass the address of a pointer to a function outside of main().
The cast-expression operand must be one of the following:

a function designator
an lvalue designating an object that is not a bit field and is not declared with a register storage

class specifier
If the operand is of type <type>, the result is of type pointer to <type>.
Some non-lvalue identifiers, such as function names and array names, are automatically converted into
“pointer-to-X” types when they appear in certain contexts. The & operator can be used with such
objects, but its use is redundant and therefore discouraged.
Consider the following example:
 T t1 = 1, t2 = 2;
 T *ptr = &t1; // Initialized pointer
 *ptr = t2; // Same effect as t1 = t2
T *ptr = &t1 is treated as
 T *ptr;
 ptr = &t1;
So it is ptr, or *ptr, that gets assigned. Once ptr has been initialized with the address &t1, it can be safely
dereferenced to give the lvalue *ptr.

Indirection operator (*)
Use the asterisk (*) in a variable expression to create pointers. And use the indirect operator in external
functions to get a pointer's value that was passed by reference.
If the operand is of type pointer to function, the result is a function designator.
If the operand is a pointer to an object, the result is an lvalue designating that object.
The result of indirection is undefined if either of the following occur:
1. The cast-expression is a null pointer.
2. The cast-expression is the address of an automatic variable and execution of its block has

terminated.
Note: & can also be the bitwise AND operator.

* can also be the multiplication operator.

Relational Operators
See also Operators

Syntax
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression
Remarks
Use relational operators to test equality or inequality of expressions. If the statement evaluates to be
true it returns a nonzero character; otherwise it returns false (0).
> greater than
< less than
>= greater than or equal
<= less than or equal

In the expression
E1 <operator> E2
the operands must follow one of these conditions:
1. Both E1 and E2 are of arithmetic type.
2. Both E1 and E2 are pointers to qualified or unqualified versions of compatible types.
3. One of E1 and E2 is a pointer to an object or incomplete type, and the other is a pointer to a qualified

or unqualified version of void.
4. One of E1 or E2 is a pointer and the other is a null pointer constant.

Array subscript operator
See also Operators
Brackets ([]) indicate single and multidimensional array subscripts. The expression
<exp1>[exp2]
is defined as
*((exp1) + (exp2))
where either:

exp1 is a pointer and exp2 is an integer or
exp1 is an integer and exp2 is a pointer

Function call operator
See also Operators

Syntax
postfix-expression(<arg-expression-list>)
Remarks
Parentheses ()

group expressions
isolate conditional expressions
indicate function calls and function parameters

The value of the function call expression, if it has a value, is determined by the return statement in the
function definition.
This is a call to the function given by the postfix expression.
arg-expression-list is a comma-delimited list of expressions of any type representing the actual (or real)
function arguments.

Direct member selector
See also Example Operators

Syntax
postfix-expression . identifier
postfix-expression must be of type union or structure.
identifier must be the name of a member of that structure or union type.

Remarks
Use the selection operator (.) to access structure and union members.
Suppose that the object s is of struct type S and sptr is a pointer to S. Then, if m is a member identifier
of type M declared in S, this expression:
s.m
are of type M, and represent the member object m in s.

Example
struct mystruct {
 int i
 char str[21]
 double d
} s, *sptr=&s
 ...
s.i = 3 // assign to the i member of mystruct s
The expression s.m is an lvalue, provided that s is not an lvalue and m is not an array type.
If structure B contains a field whose type is structure A, the members of A can be accessed by two
applications of the member selectors.

Indirect member selector
See also Example Operators

Syntax
postfix-expression -> identifier
postfix-expression must be of type pointer to structure or pointer to union.
identifier must be the name of a member of that structure or union type.
The expression designates a member of a structure or union object. The value of the expression is the
value of the selected member it will be an lvalue if and only if the postfix expression is an lvalue.

Remarks
You use the selection operator -> to access structure and union members.
Suppose that the object s is of struct type S and sptr is a pointer to S. Then, if m is a member identifier
of type M declared in S, this expression:
sptr->m
is of type M, and represents the member object m in s.
The expression
s->sptr
is a convenient synonym for (*sptr).m.

-> Example
struct mystruct {
 int i
 char str[21]
 double d
} s, *sptr=&s
 .
 .
 .
sptr->d = 1.23 // assign to the d member of mystruct s
The expression sptr->m is an lvalue unless m is an array type.
If structure B contains a field whose type is structure A, the members of A can be accessed by two
applications of the member selectors.

Increment/Decrement operators
Operators

Increment operator (++)
Syntax
postfix-expression ++ (postincrement)
++ unary-expression (preincrement)
The expression is called the operand it must be of scalar type (arithmetic or pointer types) and must be
a modifiable lvalue..

Postincrement operator
The value of the whole expression is the value of the postfix expression before the increment is applied.
After the postfix expression is evaluated,the operand is incremented by 1.

Preincrement operator
The operand is incremented by 1 before the expression is evaluated the value of the whole expression
is the incremented value of the operand.
The increment value is appropriate to the type of the operand.
Pointer types follow the rules for pointer arithmetic.

Decrement operator (--)
Syntax
postfix-expression -- (postdecrement)
-- unary-expression (predecrement)
The decrement operator follows the same rules as the increment operator, except that the operand is
decremented by 1 after or before the whole expression is evaluated.

Plus and Minus Operators
See also Operators

Unary
In these unary + - expressions
+ cast-expression
- cast-expression
the cast-expression operand must be of arithmetic type.

Results
+ cast-expression Value of the operand after any required integral promotions.
- cast-expression Negative of the value of the operand after any required integral promotions.

Binary
Syntax
add-expression + multiplicative-expression
add-expression - multiplicative-expression
Legal operand types for op1 + op2:
1. Both op1 and op2 are of arithmetic type.
2. op1 is of integral type, and op2 is of pointer to object type.
3. op2 is of integral type, and op1 is of pointer to object type.
In case 1, the operands are subjected to the standard arithmetical conversions, and the result is the
arithmetical sum of the operands.
In cases 2 and 3, the rules of pointer arithmetic apply.

Legal operand types for op1 - op2:
1. Both op1 and op2 are of arithmetic type.
2. Both op1 and op2 are pointers to compatible object types.
3. op1 is of pointer to object type, and op2 is integral type.
In case 1, the operands are subjected to the standard arithmetic conversions, and the result is the
arithmetic difference of the operands.
In cases 2 and 3, the rules of pointer arithmetic apply.
Note: The unqualified type <type> is considered to be compatible with the qualified types const type,

volatile type,and const volatile type.

Multiplicative Operators
See also Operators

Syntax
multiplicative-expr * cast-expr
multiplicative-expr / cast-expr
multiplicative-expr % cast-expr
Remarks
There are three multiplicative operators:

* (multiplication)
/ (division)
% (modulus or remainder)

The usual arithmetic conversions are made on the operands.
(op1 * op2) Product of the two operands
(op1 / op2) Quotient of (op1 divided by op2)
(op1 % op2) Remainder of (op1 divided by op2)
For / and %, op2 must be nonzero op2 = 0 results in an error. (You can't divide by zero.)
When op1 and op2 are integers and the quotient is not an integer:
1. If op1 and op2 have the same sign, op1 / op2 is the largest integer less than the true quotient, and

op1 % op2 has the sign of op1.
2. If op1 and op2 have opposite signs, op1 / op2 is the smallest integer greater than the true quotient,

and op1 % op2 has the sign of op1.
Note: Rounding is always toward zero.
* is context sensitive and can be used as the pointer reference operator.

Punctuators
See also Operators
The Borland C++ punctuators (also known as separators) are:
() Parentheses
{ } Braces
, Comma
; Semicolon
: Colon
... Ellipsis
* Asterisk
= Equal Sign
Pound Sign
Most of these punctuators also function as operators.

Braces
Operators
The braces ({ }) indicate the start and end of a compound statement.

Semicolon
Operators
The semicolon (;) is a statement terminator.
Any legal C expression (including the empty expression) followed by is interpreted as a statement,
known as an expression statement.
The expression is evaluated and its value is discarded. If the expression statement has no side effects,
Borland C++ can ignore it.
Semicolons are often used to create an empty statement.

Colon
Example Operators
Use the colon (:) to indicate a labeled statement:

Example
start: x=0
...
goto start
...
switch (a) {
 case 1: puts("One")
 break
 case 2: puts("Two")
 break
 ...
 default: puts("None of the above!")
 break
}

Ellipsis
Operators
An ellipsis (...) is three successive periods with no intervening whitespace.
Use an ellipsis in formal argument lists of function prototypes to indicate a variable number of
arguments, or arguments with varying types. For example,
void func(int n, char ch,...)
This declaration indicates that calls to func must have at least two arguments, an int and a char, but
can also have any number of additional arguments.
The comma preceding the ellipsis is not necessary.

Equal sign
Operators
The equal sign (=) separates variable declarations from initialization lists.
char array[5] = { 1, 2, 3, 4, 5 } ;
int x = 5;
In a C function, no code can precede any variable declarations.
In C++, declarations of any type can appear (with some restrictions) at any point within the code. In a C+
+ function argument list, the equal sign indicates the default value for a parameter:
int f(int i = 0) { ... } // parameter i has default value of zero
The equal sign is also used as the assignment operator.

Binary operators
See also Operators
These are the binary operators in Borland C++:
Arithmetic + Binary plus (add)

- Binary minus (subtract)
* Multiply
/ Divide
% Remainder (modulus)

Bitwise << Shift left
>> Shift right
&Bitwise AND
^ Bitwise XOR (exclusive OR)
| Bitwise inclusive OR

Logical && Logical AND
|| Logical OR

Assignment = Assignment
*= Assign product
/= Assign quotient
%= Assign remainder (modulus)
+= Assign sum
-= Assign difference
<<= Assign left shift
 >>= Assign right shift
&= Assign bitwise AND
 ^= Assign bitwise XOR
|= Assign bitwise OR

Relational < Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
== Equal to
!= Not equal to

Component selection . Direct component selector
-> Indirect component selector

Class-member :: Scope access/resolution
.* Dereference pointer to class member
->* Dereference pointer to class member

Conditional ? : Actually a ternary operator for example,
a ? x : y "if a then x else y"

Comma , Evaluate

Unary operators
See also Operators

Syntax
<unary-operator> <unary expression>
OR
<unary-operator> <type><unary expression>
Remarks
Unary operators group right-to-left.
Borland C++ provides the following unary operators:
! Logical negation
* Indirection
++ Increment
~ Bitwise complement
-- Decrement
- Unary minus
+ Unary plus

Overloading Operators
See also Operators
C++ lets you redefine the actions of most operators, so that they perform specified functions when used
with objects of a particular class. As with overloaded C++ functions in general, the compiler
distinguishes the different functions by noting the context of the call: the number and types of the
arguments or operands.
All the operators can be overloaded except for:
. .* :: ?:
The followoing preprocessing symbols cannot be overloaded.
 # ##
The =, [], (), and -> operators can be overloaded only as nonstatic member functions. These operators
cannot be overloaded for enum types. Any attempt to overload a global version of these operators
results in a compile-time error.
The keyword operator followed by the operator symbol is called the operator function name; it is used
like a normal function name when defining the new (overloaded) action for the operator.
A function operator called with arguments behaves like an operator working on its operands in an
expression. The operator function cannot alter the number of arguments or the precedence and
associativity rules applying to normal operator use.

Example for Overloading Operators

The following example extends the class complex to create complex-type vectors. Several of the most
useful operators are overloaded to provide some customary mathematical operations in the usual
mathematical syntax.
Some of the issues illustrated by the example are:

The default constructor is defined. This is provided by the compiler only if you have not defined it
or any other constructor.

The copy constructor is defined explicitly. Normally, if you have not defined any constructors, the
compiler will provide one. You should define the copy constructor if you are overloading the assignment
operator.

The assignment operator is overloaded. If you do not overload the assignment operator, the
compiler calls a default assignment operator when required. By overloading assignment of cvector types,
you specify exactly the actions to be taken. Note that the assignment operator function cannot be
inherited by derived classes

The subscript operator is defined as a member function (a requirement when overloading) with a
single argument. The const version assures the caller that it will not modify its argument—this is useful
when copying or assigning. This operator should check that the index value is within range—a good place
to implement exception handling.

The addition operator is defined as a member function. It allows addition only for cvector types.
Addition should always check that the operands’ sizes are compatible.

The multiplication operator is declared a friend. This lets you define the order of the operands. An
attempt to reverse the order of the operands is a compile-time error.

The stream insertion operator is overloaded to naturally display a cvector. Large objects that don’t
display well on a limited size screen might require a different display strategy.

Source
/* HOW TO EXTEND THE complex CLASS AND OVERLOAD THE REQUIRED OPERATORS. */
#pragma warn -inl // IGNORE not expanded inline WARNINGS.
#include <complex.h> // THIS ALREADY INCLUDES iostream.h
// COMPLEX VECTORS
class cvector {
 int size;
 complex *data;
public:
 cvector() { size = 0; data = NULL; };
 cvector(int i = 5) : size(i) { // DEFAULT VECTOR SIZE.
 data = new complex[size];
 for (int j = 0; j < size; j++)
 data[j] = j + (0.1 * j); // ARBITRARY INITIALIZATION.
 };
 /* THIS VERSION IS CALLED IN main() */
 complex& operator [](int i) { return data[i]; };
 /* THIS VERSION IS CALLED IN ASSIGNMENT OPERATOR AND COPY THE CONSTRUCTOR
*/

 const complex& operator [](int i) const { return data[i]; };
 cvector operator +(cvector& A) { // ADDITION OPERATOR
 cvector result(A.size); // DO NOT MODIFY THE ORIGINAL
 for (int i = 0; i < size; i++)
 result[i] = data[i] + A.data[i];
 return result;
 };
 /* BECAUSE scalar * vector MULTIPLICATION IS NOT COMMUTATIVE, THE ORDER O
F

 THE ELEMENTS MUST BE SPECIFIED. THIS FRIEND OPERATOR FUNCTION WILL ENS

URE
 PROPER MULTIPLICATION. */
 friend cvector operator *(int scalar, cvector& A) {
 cvector result(A.size); // DO NOT MODIFY THE ORIGINAL
 for (int i = 0; i < A.size; i++)
 result.data[i] = scalar * A.data[i];
 return result;
 }
 /* THE STREAM INSERTION OPERATOR. */
 friend ostream& operator <<(ostream& out_data, cvector& C) {
 for (int i = 0; i < C.size; i++)
 out_data << "[" << i << "]=" << C.data[i] << " ";
 cout << endl;
 return out_data;
 };
 cvector(const cvector &C) { // COPY CONSTRUCTOR
 size = C.size;
 data = new complex[size];
 for (int i = 0; i < size; i++)
 data[i] = C[i];
 }
 cvector& operator =(const cvector &C) { // ASSIGNMENT OPERATOR.
 if (this == &C) return *this;
 delete[] data;
 size = C.size;
 data = new complex[size];
 for (int i = 0; i < size; i++)
 data[i] = C[i];
 return *this;
 };
 virtual ~cvector() { delete[] data; }; // DESTRUCTOR
 };
int main(void) { /* A FEW OPERATIONS WITH complex VECTORS. */
 cvector cvector1(4), cvector2(4), result(4);
 // CREATE complex NUMBERS AND ASSIGN THEM TO complex VECTORS
 cvector1[3] = complex(3.3, 102.8);
 cout << "Here is cvector1:" << endl;
 cout << cvector1;
 cvector2[3] = complex(33.3, 81);
 cout << "Here is cvector2:" << endl;
 cout << cvector2;
 result = cvector1 + cvector2;
 cout << "The result of vector addition:" << endl;
 cout << result;
 result = 10 * cvector2;
 cout << "The result of 10 * cvector2:" << endl;
 cout << result;
 return 0;
 }

Output
Here is cvector1:
[0]=(0, 0) [1]=(1.1, 0) [2]=(2.2, 0) [3]=(3.3, 102.8)
Here is cvector2:
[0]=(0, 0) [1]=(1.1, 0) [2]=(2.2, 0) [3]=(33.3, 81)
The result of vector addition:

[0]=(0, 0) [1]=(2.2, 0) [2]=(4.4, 0) [3]=(36.6, 183.8)
The result of 10 * cvector2:
[0]=(0, 0) [1]=(11, 0) [2]=(22, 0) [3]=(333, 810)

Overloading Operator Functions
See also Operators
Operator functions can be called directly, although they are usually invoked indirectly by the use of the
overload operator:
c3 = c1.operator + (c2); // same as c3 = c1 + c2
Apart from new and delete, which have their own rules, an operator function must either be a nonstatic
member function or have at least one argument of class type. The operator functions =, (), [] and ->
must be nonstatic member functions.
Enumerations can have overloaded operators. However, the operator functions =, (), [], and -> cannot
be overloaded for enumerations.

Overloaded Operators and Inheritance
See also Operators
With the exception of the assignment function operator =(), all overloaded operator functions for class X
are inherited by classes derived from X, with the standard resolution rules for overloaded functions. If X
is a base class for Y, an overloaded operator function for X could possibly be further overloaded for Y.

Overloading the new and delete Operators
See also Operators
The operators new and delete can be overloaded to provide alternative free storage (heap) memory-
management routines:

A user-defined operator new must return a void* and must have a size_t as its first argument.
A user-defined operator delete must have a void return type and void* as its first argument; a

second argument of type size_t is optional.

Overloading Unary Operators
See also Operators
You can overload a prefix or postfix unary operator by declaring a nonstatic member function taking no
arguments, or by declaring a nonmember function taking one argument. If @ represents a unary
operator, @x and x@ can both be interpreted as either x.operator@() or operator@(x), depending on
the declarations made. If both forms have been declared, standard argument matching is applied to
resolve any ambiguity.

Under C++ 2.0, an overloaded operator ++ or -- is used for both prefix and postfix uses of the
operator.

With C++ 2.1, when an operator++ or operator- - is declared as a member function with no
parameters, or as a nonmember function with one parameter, it only overloads the prefix operator++ or
operator- -. You can only overload a postfix operator++ or operator- - by defining it as a member function
taking an int parameter or as a nonmember function taking one class and one int parameter.
When only the prefix version of an operator++ or operator- - is overloaded and the operator is applied to
a class object as a postfix operator, the compiler issues a warning. Then it calls the prefix operator,
allowing 2.0 code to compile. The preceding example results in the following warnings:
Warning: Overloaded prefix 'operator ++' used as a postfix operator in
function func()

Warning: Overloaded prefix 'operator --' used as a postfix operator in
function func()

Overloading Binary Operators
See also Operators
You can overload a binary operator by declaring a nonstatic member function taking one argument, or
by declaring a non-member function (usually friend) taking two arguments. If @ represents a binary
operator, x@y can be interpreted as either x.operator@(y) or operator@(x,y) depending on the
declarations made. If both forms have been declared, standard argument matching is applied to resolve
any ambiguity.

Overloading the Assignment Operator =
See also Operators
The assignment operator=() can be overloaded by declaring a nonstatic member function. For example,
class String {
 .
 .
 .
 String& operator = (String& str);
 .
 .
 .
 String (String&);
 ~String();
}
This code, with suitable definitions of String::operator =(), allows string assignments str1 = str2 in the
usual sense. Unlike the other operator functions, the assignment operator function cannot be inherited
by derived classes. If, for any class X, there is no user-defined operator =, the operator = is defined by
default as a member-by-member assignment of the members of class X:
X& X::operator = (const X& source)
{
 // memberwise assignment
}

Overloading the Function Call Operator ()
See also Operators

Syntax
postfix-expression (<expression-list>)
Description
In its ordinary use as a function call, the postfix-expression must be a function name, or a pointer or
reference to a function. When the postfix-expression is used to make a member function call, postfix-
expression must be a class member function name or a pointer-to-member expression used to select a
class member function. In either case, the postfix-expression is followed by the optional expression-list
(possibly empty).
A call X(arg1, arg2), where X is an object class X, is interpreted as X.operator()(arg1, arg2).
The function call operator, operator()(), can only be overloaded as a nonstatic member function.

Overloading the Subscript Operator []

Syntax
postfix-expression [expression]
Description
The corresponding operator function is operator[]() this can be user-defined for a class X (and any
derived classes). The expression X[y], where X is an object of class X, is interpreted as x.operator[]
(y).

The operator[]() can only be overloaded as a nonstatic member function.

Overloading the Class Member Access Operator ->
See also Operators

Syntax
postfix-expression -> primary-expression
Description
The expression x->m, where x is a class X object, is interpreted as (x.operator->())->m, so that
the function operator->() must either return a pointer to a class object or return an object of a class for
which operator-> is defined.
The operator->() can only be overloaded as a nonstatic member function.

const_cast
See also

Syntax
const_cast< T > (arg)

Description
Use the const_cast operator to add or remove the const or volatile modifier from a type.
In the statement, const_cast< T > (arg), T and arg must be of the same type except for const
and volatile modifiers. The cast is resolved at compile time. The result is of type T. Any number of const
or volatile modifiers can be added or removed with a single const_cast expression.
A pointer to const can be converted to a pointer to non-const that is in all other respects an identical
type. If successful, the resulting pointer refers to the original object.
A const object or a reference to const cast results in a non-const object or reference that is otherwise
an identical type.
The const_cast operator performs similar typecasts on the volatile modifier. A pointer to volatile object
can be cast to a pointer to non-volatile object without otherwise changing the type of the object. The
result is a pointer to the original object. A volatile-type object or a reference to volatile-type can be
converted into an identical non-volatile type.

dynamic_cast
See also Example
In the expression, dynamic_cast< T > (ptr), T must be a pointer or a reference to a defined class
type or void*. The argument ptr must be an expression that resolves to a pointer or reference.

If T is void* then ptr must also be a pointer. In this case, the resulting pointer can access any element
of the class that is the most derived element in the hierarchy. Such a class cannot be a base for any
other class.
Conversions from a derived class to a base class, or from one derived class to another, are as follows: if
T is a pointer and ptr is a pointer to a non-base class that is an element of a class hierarchy, the result
is a pointer to the unique subclass. References are treated similarly. If T is a reference and ptr is a
reference to a non-base class, the result is a reference to the unique subclass.
A conversion from a base class to a derived class can be performed only if the base is a polymorphic
type.
The conversion to a base class is resolved at compile time. A conversion from a base class to a derived
class, or a conversion across a hierarchy is resolved at runtime.
If successful, dynamic_cast< T > (ptr) converts ptr to the desired type. If a pointer cast fails, the returned
pointer is valued 0. If a cast to a reference type fails, the Bad_cast exception is thrown.
Note: Runtime type identification (RTTI) is required for dynamic_cast.

// dynamic_cast Example
// HOW TO MAKE DYNAMIC CASTS
// This program must be compiled with the -RT (Generate RTTI) option.
#include <iostream.h>
#include <typeinfo.h>

class Base1
{
 // In order for the RTTI mechanism to function correctly,
 // a base class must be polymorphic.
 virtual void f(void) { /* A virtual function makes the class polymorphic
*/ }

};

class Base2 { };
class Derived : public Base1, public Base2 { };

int main(void) {
 try {
 Derived d, *pd;
 Base1 *b1 = &d;

 // Perform a downcast from a Base1 to a Derived.
 if ((pd = dynamic_cast<Derived *>(b1)) != 0) {
 cout << "The resulting pointer is of type "
 << typeid(pd).name() << endl;
 }
 else throw Bad_cast();

 // Attempt cast across the hierarchy. That is, cast from
 // the first base to the most derived class and then back
 // to another accessible base.
 Base2 *b2;
 if ((b2 = dynamic_cast<Base2 *>(b1)) != 0) {
 cout << "The resulting pointer is of type "
 << typeid(b2).name() << endl;
 }
 else throw Bad_cast();
 }
 catch (Bad_cast) {
 cout << "dynamic_cast failed" << endl;
 return 1;
 }
 catch (...) {
 cout << "Exception handling error." << endl;
 return 1;
 }

 return 0;
}

reinterpret_cast
See also Example

Syntax
reinterpret_cast< T > (arg)
Description
In the statement, reinterpret_cast< T > (arg), T must be a pointer, reference, arithmetic type,
pointer to function, or pointer to member.
A pointer can be explicitly converted to an integral type.
An integral arg can be converted to a pointer. Converting a pointer to an integral type and back to the
same pointer type results in the original value.
A yet undefined class can be used in a pointer or reference conversion.
A pointer to a function can be explicitly converted to a pointer to an object type provided the object
pointer type has enough bits to hold the function pointer. A pointer to an object type can be explicitly
converted to a pointer to a function only if the function pointer type is large enough to hold the object
pointer.

// reinterpret_cast Example
// Use reinterpret_cast<Type>(expr) to replace (Type)expr casts
// for conversions that are unsafe or implementation dependent.

void func(void *v) {
 // Cast from pointer type to integral type.
 int i = reinterpret_cast<int>(v);

 .
 .
 .
}

void main() {
 // Cast from an integral type to pointer type.
 func(reinterpret_cast<void *>(5));

 // Cast from a pointer to function of one type to
 // pointer to function of another type.
 typedef void (* PFV)();

 PFV pfunc = reinterpret_cast<PFV>(func);

 pfunc();
 }

Scope resolution operator ::
The scope access (or resolution) operator :: (two colons) lets you access a global (or file duration)
member name even if it is hidden by a local redeclaration of that name. You can use a global identifiers
by prefixing it with the resolution operator. To access a nested member name by specifying the class
name and using the resolution operator. Therefore, Alpha::func() and Beta::func() are two
different functions.

static_cast
See also

Syntax
static_cast< T > (arg)
Description
In the statement, static_cast< T > (arg), T must be a pointer, reference, arithmetic type, or
enum type. The arg-type must match the T-type. Both T and arg must be fully known at compile time.

If a complete type can be converted to another type by some conversion method already provided by
the language, then making such a conversion by using static_cast achieves exactly the same thing.
Integral types can be converted to enum types. A request to convert arg to a value that is not an
element of enum is undefined.
The null pointer is converted to itself.
A pointer to one object type can be converted to a pointer to another object type. Note that merely
pointing to similar types can cause access problems if the similar types are not similarly aligned.
You can explicitly convert a pointer to a class X to a pointer to some class Y if X is a base class for Y. A
static conversion can be made only under the following conditions:

if an unambiguous conversion exists from Y to X
if X is not a virtual base class

An object can be explicitly converted to a reference type X& if a pointer to that object can be explicitly
converted to an X*. The result of the conversion is an lvalue. No constructors or conversion functions are
called as the result of a cast to a reference.
An object or a value can be converted to a class object only if an appropriate constructor or conversion
operator has been declared.
A pointer to a member can be explicitly converted into a different pointer-to-member type only if both
types are pointers to members of the same class or pointers to members of two classes, one of which is
unambiguously derived from the other.
When T is a reference the result of static_cast< T > (arg) is an lvalue. The result of a pointer or
reference cast refers to the original expression.

Predefined Macros
See also
Borland C++ predefines certain global identifiers known as manifest constants. Most global indentifers
begin and end with two underscores (__).
Note: For readability, underscores are often separated by a single blank space. In your source code,

you should never insert whitespace between underscores.
See also the description of memory-model macros.

Macro Value What Macro Is/Does
_ _BCOPT_ _ 1 Defined in any compiler that has an optimizer
_ _BCPLUSPLUS_ _ 0x340 Defined if you've selected C++ compilation; will increase in

later releases
_ _BORLANDC_ _ 0x500 Version number
_ _CDECL_ _ 1 Defined if Calling Convention is set to C; otherwise

undefined
_CHAR_UNSIGNED 1 Defined by default indicating that the default char is

unsigned char. Use the -K option to undefine this macro.
_ _CONSOLE_ _ Available only for the 32-bit compiler. When defined, the

macro indicates that the program is a console application.
_CPPUNWIND 1 Enable stack unwinding.This is true by default; use -xd- to

disable.
_ _cplusplus 1 Defined if in C++ mode; otherwise, undefined
_ _DATE_ _ String literal Date when processing began on the current file
_ _DLL_ _ 1 Defined if Prolog/Epilog Code Generation is set to

Windows DLL; otherwise undefined
_ _FILE_ _ String literal Name of the current file being processed
_ _LINE_ _ Decimal constant Number of the current source file line being processed
_ _DLL_ _ 1 True whenever -WD option is used.
_M_IX86 1 Always defined. The default value is 300. You can

change the value to 400 or 500 by using the /4 or /5
options.

 _ _MSDOS_ _ 1 Integer constant
_ _MT_ _ 1 Defined only for the 32-bit compiler if the -WM option is

used. It specifies that the multithread library is to be linked.
Multithread is on by default.

_ _OVERLAY_ _ 1 Specific to the Borland C and C++ family of compilers. It is
predefined as 1 if you compile a module with the -Y option
(enable overlay support). If you do not enable overlay
support, this macro is undefined.

_ _PASCAL_ _ 1 Defined if Calling Convention is set to Pascal; otherwise
undefined

_ _STDC_ _ 1 Defined if you compile with the Keywords option set to
ANSI; otherwise, undefined

_ _TCPLUSPLUS_ _ 0x340 Version number
_ _TEMPLATES_ _ 1 Specific to the Borland C++ compilers. It is defined as 1

for C++ files (meaning that Borland C++ supports
templates); otherwise, it is undefined.

_ _TIME_ _ String literal Time when processing began on the current file
_ _TLS_ _ 1 Always true when the 32-bit compiler is used.
_ _TURBOC_ _ 0x460 Will increase in later releases
_WCHAR_T 1 Defined only for C++ programs to indicate that wchar_t is

an intrinsically defined data type.
_WCHAR_T_DEFINED 1 Defined only for C++ programs to indicate that wchar_t

is an intrinsically defined data type.
_Windows Defined for Windows 16- and 32-bit compilations
_ _WIN32_ _ 1 Always defined for the 32-bit compiler. It is defined for

console and GUI applications.
Note: _ _DATE_ _, _ _FILE_ _, _ _LINE_ _, _ _STDC_ _, and _ _TIME_ _cannot appear immediately

following a #define or #undef directive.

€Header Files Summary
See also
Header files, also called include files, provide function prototype declarations for library functions. Data
types and symbolic constants used with the library functions are also defined in them, along with global
variables defined by Borland C++ and by the library functions. The Borland C++ library follows the ANSI
C standard on names of header files and their contents.
Note: The middle column indicates C++ header files and header files defined by ANSI C.
alloc.h Declares memory-management functions (allocation,

deallocation, and so on).
assert.h ANSI C Defines the assert debugging macro.
bcd.h C++ Declares the C++ class bcd and the overloaded operators

for bcd and bcd math functions.
bios.h Declares various functions used in calling IBM-PC ROM

BIOS routines.
bwcc.h Defines the Borland Windows Custom Control interface.
checks.h C++ Defines the class diagnostic macros.
complex.h C++ Declares the C++ complex math functions.
conio.h Declares various functions used in calling the operating

system console I/O routines.
constrea.h C++ Defines the conbuf and constream classes.
cstring.h C++ Defines the string classes.
ctype.h ANSI C Contains information used by the character classification

and character conversion macros (such as isalpha and
toascii).

date.h C++ Defines the date class.
_defs.h Defines the calling conventions for different application

types and memory models.
dir.h Contains structures, macros, and functions for working

with directories and path names.
direct.h Defines structures, macros, and functions for dealing with

directories and path names.
dirent.h Declares functions and structures for POSIX directory

operations.
dos.h Defines various constants and gives declarations needed

for DOS and 8086-specific calls.
errno.h ANSI C Defines constant mnemonics for the error codes.
except.h C++ Declares the exception-handling classes and functions.
excpt.h Declares C structured exception support.
fcntl.h Defines symbolic constants used in connection with the

library routine open.
file.h C++ Defines the file class.
float.h ANSI C Contains parameters for floating-point routines.
fstream.h C++ Declares the C++ stream classes that support file input

and output.
generic.h C++ Contains macros for generic class declarations.

io.h Contains structures and declarations for low-level
input/output routines.

iomanip.h C++ Declares the C++ streams I/O manipulators and contains
templates for creating parameterized manipulators.

iostream.h C++ Declares the basic C++ streams (I/O) routines.
limits.h ANSI C Contains environmental parameters, information about

compile-time limitations, and ranges of integral quantities.
locale.h ANSI C Declares functions that provide country- and language-

specific information.
malloc.h Declares memory-management functions and variables.
math.h ANSI C Declares prototypes for the math functions and math error

handlers.
mem.h Declares the memory-manipulation functions. (Many of

these are also defined in string.h.)
memory.h Contains memory-manipulation functions.
new.h C++ Access to _new_handler, and set_new_handler.
_nfile.h Defines the maximum number of open files.
_null.h Defines the value of NULL.
process.h Contains structures and declarations for the spawn... and

exec... functions.
search.h Declares functions for searching and sorting.
setjmp.h ANSI C Declares the functions longjmp and setjmp and defines a

type jmp_buf that these functions use.
share.h Defines parameters used in functions that make use of

file-sharing.
signal.h ANSI C Defines constants and declarations for use by the signal

and raise functions.
stdarg.h ANSI C Defines macros used for reading the argument list in

functions declared to accept a variable number of
arguments (such as vprintf, vscanf, and so on).

stddef.h ANSI C Defines several common data types and macros.
stdio.h ANSI C Defines types and macros needed for the standard I/O

package defined in Kernighan and Ritchie and extended
under UNIX System V. Defines the standard I/O
predefined streams stdin, stdout, stdprn, and stderr and
declares stream-level I/O routines.

stdiostr.h C++ Declares the C++ (version 2.0) stream classes for use with
stdio FILE structures. You should use iostream.h for new
code.

stdlib.h ANSI C Declares several commonly used routines such as
conversion routines and search/sort routines.

string.h ANSI C Declares several string-manipulation and memory-
manipulation routines.

strstrea.h C++ Declares the C++ stream classes for use with byte arrays
in memory.

sys\locking.h Contains definitions for mode parameter of locking

function.
sys\stat.h Defines symbolic constants used for opening and creating

files.
sys\timeb.h Declares the function ftime and the structure timeb that

ftime returns.
sys\types.h Declares the type time_t used with time functions.
thread.h C++ Defines the thread classes.
time.h ANSI C Defines a structure filled in by the time-conversion routines

asctime, localtime, and gmtime, and a type used by the
routines ctime, difftime, gmtime, localtime, and stime. It
also provides prototypes for these routines.

typeinfo.h C++ Declares the run-time type information classes.
utime.h Declares the utime function and the utimbuf struct that it

returns.
values.h Defines important constants, including machine

dependencies; provided for UNIX System V compatibility.
varargs.h Definitions for accessing parameters in functions that

accept a variable number of arguments. Provided for UNIX
compatibility; you should use stdarg.h for new code.

Using precompiled headers
See also Header Files
Borland C++ can generate (and subsequently use) precompiled headers to speed up your project
compile times.
Precompiled headers are header files that are compiled once, then used over and over again in their
compiled state.
You can use a precompiled header if a compilation uses one or more of the same header files, the same
compiler options, the same macro defines, and so on, as is contained in the precompiled header file.
To control the use of precompiled headers, do one of the following:

From within the IDE, turn on the Precompiled Headers option in the Compiler settings page of the
Project Options dialog box. The IDE bases the name of the precompiled header file on the project name,
creating<PROJECT_NAME>.CSM.

From the command line, use the following command-line options:
-H=<filename>, -Hc, -H<filename>, and -Hu. See Precompiled Headers (Project Options) for more
information.

From within your code, use the hdrfile and hdrstop pragmas.

Setting File Names
The compilers store all precompiled headers in one file, using the following naming conventions:

The 16-bit command-line compiler names the precompiled header file BCDEF.CSM
The 32-bit command-line compiler names the precompiled header file BC32DEF.CSM
The IDE names the precompiled header file <PROJECT_NAME>.CSM

Note: To explicitly set the precompiled file name from the command line, use the
-H=<filename> option or the #pragma hdrfile directive.

Precompiled header file overview
See also
When compiling C and C++ programs, the compiler can spend up to half its time parsing header files.
When the compiler parses a header file, it enters declarations and definitions into its symbol table.
Precompiled headers cut this process short by creating and storing a binary image of the symbol table
on disk. By directly loading a binary image of the symbol table, the compiler can increase the speed of
this step by over ten times. The disadvantage is that precompiled header files can become quite large
because they can contain the symbol table images for all the #include files encountered in your
sources.
If, while compiling a source file, Borland C++ discovers that the first #include files are identical to those
of a previous compilation (of either the same or different source), it loads the binary image for those
#include files and parses the remaining #include files.
For a given module, either all or none of the precompiled headers are used--if compilation of any
included header file fails, the precompiled header file isn’t updated for that module.

Precompiled header limits
See also
When using precompiled headers, BCDEF.CSM can become very large because it contains symbol
table images for all sets of includes encountered in your sources. If you don't have sufficient disk space,
you'll get a warning saying the write failed because of the precompiled headers. To fix this, you must
provide more disk space and retry the compile. For information on reducing the size of the BCDEF.CSM
file, see Optimizing precompiled headers.
If you're using large macros in a makefile in addition to using precompiled headers, there is a limit on the
macro size: 4K for 16-bit applications and 16K for 32-bit applications.
If a header file contains any code, it can't be precompiled. For example, although C++ class definitions
can appear in header files, you should ensure that only inline member functions are defined in the
header and heed warnings such as "Functions containing reserved word are not
expanded inline."

Precompiled header rules
See also
The following rules apply when you create and use precompiled headers:
1) A header that contains code can't be precompiled. For example, although C++ class definitions can

appear in header files, make sure that only inline member functions are defined in the header. Heed
warnings such as "Functions containing 'for' are not expanded inline".

2) In order to use a previously generated precompiled header, the source file must:
Have the same set of include files, in the same order, as the precompiled header
Have the same macros defined with identical values as the precompiled header
Use the same language (C or C++) as the precompiled header
Use header files with identical time stamps as the precompiled header

3) In addition, the following option settings must be identical to those used when you generated the
precompiled header:

Memory model, including SS != DS (-mx)
Underscores on externs (-u)

 Maximum identifier length (-iL)
Target DOS or Windows (-W or -Wx)
Generate word alignment (-a)
Pascal calls (-p)
Treat enums as integers (-b)
Default char is unsigned (-K)
Virtual table control (-Vx and -Vmx)
Expand intrinsic functions inline (-Oi)
Templates (-Jx)
String literals in code segment (-dc, 16-bit only)
Debugging information (-v, -vi, and -R)
Far variables (-Fx)
Language compilance (-A)
C++ compile (-P)
DOS overlay-compatible code (-Y)

4) If you’re using large macros in addition to using precompiled headers, the compiler limits the size of
the macros as following:

4K macros for 16-bit applications
16K macros for 32-bit applications

Optimizing precompiled headers
See also
For the most efficiently compiled precompiled headers, follow these rules:

Arrange your header files in the same sequence in all source files.
Put the largest header files first.
Prime the precompiled header file with often-used initial sequences of header files.
Use #pragma hdrstop to terminate the list of header files at well-chosen places. This lets you

make the list of header files in different sources look similar to the compiler.
For example, suppose you have the following two source files (A_SOURCE.CPP and
B_SOURCE.CPP),which both include windows.h and myhdr.h:
/* A_SOURCE.CPP */
#include <windows.h>
#include “myhdr.h”
#include “xxx.h”
// ...

/* B_SOURCE.CPP */
#include “yyy.h
#include <string.h>
#include “myhdr.h”
#include <windows.h>
// ...
To optimize the precompiled headers for these source files, you would rearrange the beginning of
B_SOURCE.CPP as follows:
/* Revised B_SOURCE.CPP */
#include <windows.h>
#include “myhdr.h”
#include “yyy.h”
#include <string.h>
// ...
Now, windows.h and myhdr.h are in the same order in both A_SOURCE.CPP and B_SOURCE.CPP,
and they are both located at the beginning of the #include list.

In addition, you could also create a new source file called PREFIX.CPP which contains only the
matching header files, like this:
/* PREFIX.CPP */
#include <windows.h>
#include “myhdr.h”
If you compile PREFIX.CPP first (or insert a #pragma hdrstop in both A_SOURCE.CPP and
B_SOURCE.CPP), the net effect is that after the initial compilation of PREFIX.CPP, both
A_SOURCE.CPP and B_SOURCE.CPP will be able to load the symbol table produced by PREFIX.CPP.
The copmiler will then need to parse only xxx.h for A_SOURCE.CPP, and yyy.h and strings.h for
B_SOURCE.CPP.

alloc.h
See also Header Files
Declares memory-management functions (allocation, deallocation, and so on).

Functions
calloc
farcalloc
farfree
farmalloc
farrealloc
free
heapcheck
heapcheckfree
heapchecknode
heapfillfree
heapwalk
malloc
realloc

Constants, Data Types and Global Variables
NULL
ptrdiff_t
size_t

assert.h
See also Header Files
Defines the assert debugging macro.

Functions
assert

bios.h
See also Header Files
Declares various functions used in calling IBM-PC ROM BIOS routines.

Functions
_bios_equip
_bios_disk
_bios_equiplist
_bios_keybrd
_bios_memsize
_bios_serialcom
_bios_timeofday
bioscom
biosequip
bioskey
biosmemory
biosprint
biostime

conio.h
See also Header Files
Declares various functions used in calling the operating system console I/O routines.

Functions
cgets
clreol
clrscr
cprintf
cputs
cscanf
delline
getch
getche
getpass
gettext
gettextinfo
gotoxy
highvideo
inp
inport
inportb
inpw
insline
kbhit
lowvideo
movetext
normvideo
outp
outport
outportb
outpw
putch
puttext
_setcursortype
textattr
textbackground
textcolor
textmode
ungetch
wherex
wherey
window

ctype.h
See also Header Files
Contains information used by the character classification and character conversion macros.

Functions and Macros
isalnum
isalpha
isascii
iscntrl
isdigit
isgraph
islower
isprint
ispunct
isspace
isupper
isxdigit
toascii
_tolower
tolower
_toupper
toupper

Constants, Data Types and Global Variables
_IS_CTL
_IS_DIG
_IS_HEX
_IS_LOW
_IS_PUN
_IS_SP
_IS_UPP

dir.h
See also Header Files
Contains structures, macros, and functions for working with directories and path names.

Functions
chdir
findfirst
findnext
fnmerge
fnsplit
getcurdir
getcwd
getdisk
mkdir
mktemp
rmdir
searchpath
setdisk

Constants, Data Types and Global Variables
DIRECTORY
DRIVE
EXTENSION
ffblk
FILENAME
MAXDIR
MAXDRIVE
MAXEXT
MAXFILE
MAXPATH

direct.h
See also Header Files
Defines structures, macros, and functions for dealing with directories and path names.

Includes
DIR.H

Functions
_chdrive
_getdcwd

dirent.h
See also Header Files
Declares functions and structures for POSIX directory operations.

Functions
closedir
opendir
readdir
rewinddir

dos.h
See also Header Files
Defines various constants and gives declarations needed for DOS and 8086-specific calls.

Functions
allocmem (in Borland C++ DOS Support Help)
bdos
bdosptr
_chain_intr
_chmod
country
ctrlbrk
delay (in Borland C++ DOS Support Help)
disable
_dos_allocmem (in Borland C++ DOS Support Help)
_dos_close
_dos_commit
_dos_creat
_dos_creatnew
dosexterr
_dos_findfirst
_dos_findnext
_dos_freemem (in Borland C++ DOS Support Help)
_dos_getdate
_dos_getdiskfree
_dos_getdrive
_dos_getfileattr
_dos_getftime
_dos_gettime
_dos_getvect
_dos_keep (in Borland C++ DOS Support Help)
_dos_open
_dos_read
_dos_setblock (in Borland C++ DOS Support Help)
_dos_setdate
_dos_setdrive
_dos_setfileattr
_dos_settime
_dos_setvect
dostounix
_dos_write
emit
enable
FP_OFF
FP_SEG
geninterrupt

getcbrk
getdate
getdfree
getdta
getfat
getfatd
getftime
getpsp
gettime
getvect
getverify
_harderr (in Borland C++ DOS Support Help)
_hardresume (in Borland C++ DOS Support Help)
_hardretn (in Borland C++ DOS Support Help)
inport
inportb
int86
int86x
intdos
intdosx
intr
keep (in Borland C++ DOS Support Help)
MK_FP
nosound (in Borland C++ DOS Support Help)
outport
outportb
parsfnm
peek
peekb
poke
pokeb
randbrd (in Borland C++ DOS Support Help)
randbwr (in Borland C++ DOS Support Help)
segread
setcbrk
setdate
setdta
settime
setvect
setverify
sleep
sound (in Borland C++ DOS Support Help)
unixtodos
unlink

Constants, Data Types and Global Variables

_8087
_argc
_argv
COUNTRY
date
devhdr
dfree
diskfree_t
dosdate_t
DOSERROR
dostime_t
_doserrno
dosSearchInfo
errno
_environ
fatinfo
fcb
FA_*
ffblk
_heaplen (in Borland C++ DOS Support Help)
NFDS
_osmajor
_osminor
_osversion
_ovrbuffer (in Borland C++ DOS Support Help)
_psp
REGPACK
REGS
SEEK_CUR
SEEK_END
SEEK_SET
SREGS
_stklen (in Borland C++ DOS Support Help)
time
_version
xfcb

errno.h
See also Header Files
Defines constant mnemonics for the error codes.

Constants, Data Types and Global Variables
_doserrno
errno
_sys_errlist
_sys_nerr
error number definitions

fcntl.h
See also Header Files
Defines open flags for open and similar library functions.

Functions
_fmode
_pipe

Constants
O_APPEND
O_BINARY
O_CHANGED
O_CREAT
O_DENYALL
O_DENYNONE
O_DENYREAD
O_DENYWRITE
O_DEVICE
O_EXCL
O_NOINHERIT
O_RDONLY
O_RDWR
O_TEXT
O_TRUNC
O_WRONLY

float.h
See also Header Files
Contains parameters for floating-point routines.

Functions
_clear87
_fpreset
_status87

Constants, Data Types and Global Variables
CW_DEFAULT
FPE_EXPLICITGEN
FPE_INEXACT
FPE_INTDIV0
FPE_INTOVFLOW
FPE_INVALID
FPE_OVERFLOW
FPE_UNDERFLOW
FPE_ZERODIVIDE
ILL_EXECUTION
ILL_EXPLICITGEN
SEGV_BOUND
SEGV_EXPLICITGEN

generic.h
See also Header Files
Contains macros for generic class declarations.

io.h
See also Header Files
Contains structures and declarations for low-level input/output routines

Functions
access
chmod
chsize
close
creat
creatnew
creattemp
dup
dup2
eof
filelength
_get_osfhandle
getftime
_InitEasyWin
ioctl
isatty
lock
locking
lseek
mktemp
open
_open_osfhandle
_pipe
read
remove
rename
_rtl_chmod
_rtl_close
_rtl_creat
_rtl_open
_rtl_read
_rtl_write
setftime
setmode
sopen
tell
umask
unlink
unlock
write

Constants, Data Types and Global Variables
ftime structure
HANDLE_MAX
fseek/lseek modes

iomanip.h
See also Header Files
Declares the C++ streams I/O manipulators and contains macros for creating parameterized
manipulators.

Includes
iostream.h

Classes
iapply
imanip
ioapp
iomanip
oapp
omanip
sapp
smanip

Overloaded Operators
<< >>

limits.h
See also Header Files
Contains environmental parameters, information about compile-time limitations, and ranges of integral
quantities.

Constants, Data Types and Global Variables
CHAR_BIT
CHAR_MAX
CHAR_MIN
INT_MAX
INT_MIN
LONG_MAX
LONG_MIN
SCHAR_MAX
SCHAR_MIN
SHRT_MAX
SHRT_MIN
UCHAR_MAX
UINT_MAX
ULONG_MAX
USHRT_MAX

locale.h
See also Header Files
Declares functions that provide information specific to languages and countries.

Functions
localeconv
setlocale

Constants, Data Types and Global Variables
LC_ALL
LC_COLLATE
LC_CTYPE
LC_MONETARY
LC_NUMERIC
LC_TIME
lconv (struct)
NULL

malloc.h
See also Header Files
Declares memory-management functions and variables.

Includes
ALLOC.H

Functions
_heapchk
_heapmin
_heapset
_msize
_rtl_heapwalk
stackavail

math.h
See also Header Files
Declares prototypes for the math functions and math error handlers.

Functions
abs
acos, acosl
asin, asinl
atan, atanl
atan2, atan2l
atof, _atold
cabs, cabsl
ceil, ceill
cos, cosl
cosh, coshl
exp, expl
fabs, fabs
floor, floorl
fmod, fmodl
frexp, frexpl
hypot, hypotl
labs
ldexp, ldexpl
log, logl
log10, log101
_matherr,_matherrl
modf, modfl
poly, polyl
pow, powl
pow10, pow10l
sin, sinl
sinh, sinhl
sqrt, sqrtl
tan, tanl
tanh, tanhl

Constants, Data Types and Global Variables
complex (struct)
_complexl (struct)
EDOM
ERANGE
exception (struct)
_exceptionl (struct)
HUGE_VAL
M_E
M_LOG2E
M_LOG10E

M_LN2
M_LN10
M_PI
M_PI_2
M_PI_4
M_1_PI
M_2_PI
M_1_SQRTPI
M_2_SQRTPI
M_SQRT2
M_SQRT_2
_mexcep

mem.h
See also Header Files
Declares the memory-manipulation functions. (Many of these are also defined in string.h.)

Functions
_fmemccpy
_fmemchr
_fmemcmp
_fmemcpy
_fmemicmp
_fmemmove
_fmemset
_fmovmem
memccpy
memchr
memcmp
memcpy
memicmp
memmove
memset
movedata
movmem
setmem

Constants, Data Types and Global Variables
NULL
ptrdiff_t
size_t

memory.h
See also Header Files
Contains memory-manipulation functions.

Includes
MEM.H

new.h
See also Header Files
Provides access to the the following functions:
set_new_handler
_new_handler (global variable)

process.h
See also Header Files
Contains structures and declarations for the spawn... and exec... functions.

Functions
abort
_beginthread
_beginthreadNT
_c_exit
_cexit
cwait
_endthread
execl
execle
execlp
execlpe
execv
execve
execvp
execvpe
exit
_exit
getpid
spawnl
spawnle
spawnlp
spawnlpe
spawnv
spawnve
spawnvp
spawnvpe
wait

Constants, Data Types and Global Variables
P_DETACH
P_NOWAIT
P_NOWAITO
P_OVERLAY
P_WAIT

search.h
See also Header Files
Declares functions for searching and sorting.

Functions
bsearch
lfind
lsearch
qsort

setjmp.h
Declares the functions longjmp and setjmp and defines a type jmp_bufj that these functions use.

Functions
longjmp
setjmp

Constants, Data Types and Global Variables
jmp_buf

share.h
See also Header Files
Defines parameters used in functions that make use of file-sharing.

Constants, Data Types and Global Variables
SH_COMPAT
SH_DENYNO
SH_DENYNONE
SH_DENYRD
SH_DENYRW
SH_DENYWR

signal.h
See also Header Files
Defines constants and declarations for use by the signal and raise functions.

Functions
raise
signal

Constants, Data Types and Global Variables
predefined signal handlers
sig_atomic_t type
SIG_DFL
SIG_ERR
SIG_IGN
SIGABRT
SIGFPE
SIGILL
SIGINT
SIGSEGV
SIGTERM

stdarg.h
See also Header Files
Defines macros used for reading the argument list in functions declared to accept a variable number of
arguments (such as vprintf, vscanf, and so on).

Macros
va_arg
va_end
va_start

Constants, Data Types and Global Variables
va_list

stddef.h
See also Header Files
Defines several common data types and macros.

Functions
offsetof

Constants, Data Types and Global Variables
NULL
ptrdiff_t
size_t
_threadid
wchar_t

stdio.h
See also Header Files
Defines types and macros needed for the standard I/O package defined in Kernighan and Ritchie and
extended under UNIX System V. It defines the standard I/O predefined streams stdin, stdout, stdprn,
and stderr, and declares stream-level I/O routines.

Functions
clearerr _fstrncpy spawnlp
fclose ftell spawnlpe
fcloseall fwrite spawnv
fdopen getc spawnve
feof getchar spawnvp
ferror gets spawnvpe
fflush getw sprintf
fgetc _pclose sscanf
fgetchar perror strerror
fgetpos _popen _strerror
fgets printf strncpy
fileno putc tempnam
flushall putchar tmpfile
fopen puts tmpnam
fprintf putw ungetc
fputc remove unlink
fputchar rename vfprintf
fputs rewindvfscanf
fread rmtmp vprintf
freopen scanf vscanf
fscanf setbuf vsprintf
fseek setvbuf vsscanf
fsetpos spawnl
_fsopen spawnle

Constants, Data Types and Global Variables
buffering modes _F_TERM SEEK_CUR
BUFSIZ _F_WRIT SEEK_END
EOF FILE SEEK_SET
_F_BIN fpos_t size_t
_F_BUF fseek/lseek modes stdaux
_F_EOF _IOFBF stderr
_F_ERR _IOLBF stdin
_F_IN _IONBF stdout
_F_LBUF L_ctermid stdprn
_F_OUT L_tmpnam SYS_OPEN

_F_RDWR NULL TMP_MAX
_F_READ FOPEN_MAX

stdiostr.h
See also Header Files
Declares the C++ (version 2.0) stream classes for use with stdio FILE structures. You should use
iostream.h for new code.

Includes
IOSTREAM.H
STDIO.H

stdlib.h
See also Header Files
Declares several commonly used routines such as conversion routines and search/sort routines.

Functions
abort labs realloc
abs ldiv _rotl
atexit lfind _rotr
atof _lrotl _searchenv
atoi _lrotr _searchstr
atol lsearch _splitpath
bsearch ltoa srand
calloc _makepath strtod
_crotr malloc strtol
div max _strtold
ecvt mblen strtoul
exit mbstowcs swab
_exit mbtowc system
fcvt min time
free putenv ultoa
_fullpath qsort wcstombs
gcvt rand wctomb
getenv random
itoa randomize

Constants, Data Types and Global Variables
div_t
_doserrno
environ
errno
EXIT_FAILURE
EXIT_SUCCESS
_fmode
ldiv_t
NULL
_osmajor
_osminor
RAND_MAX
size_t
sys_errlist
sys_nerr
_version
wchar_t

string.h
See also Header Files
Declares several string-manipulation and memory-manipulation routines.

Includes
LOCALE.H

Functions
_fmemccpy _fstrset strdup
_fmemchr _fstrspn strdup
_fmemcmp _fstrstr strerror
_fmemcpy _fstrtok _strerror
_fmemicmp _fstrupr stricmp
_fmemset memccpy strlen
_fstr* memchr strlwr
_fstrcat memcmp strncat
_fstrchr memcpy strncmp
_fstrcmp memicmp strncmpi
_fstrcpy memmove strncpy
_fstrcspn memset strnicmp
_fstrdup movedata strnset
_fstricmp movmem strpbrk
_fstrlen setmem strrchr
_fstrlwr stpcpy strrev
_fstrncat strcat strset
_fstrncmp strchr strspn
_fstrncpy strcmp strstr
_fstrnicmp strcmp strtok
_fstrnset strcmpi strupr
_fstrpbrk strcoll strxfrm
_fstrrchr strcpy
_fstrrev strcspn

Constants, Data Types and Global Variables
size_t

sys\locking.h
See also Header Files
Contains definitions for mode parameter of locking function.

Constants
LK_LOCK
LK_NBLCK
LK_NBRLCK
LK_RLCK
LK_UNLCK

sys\stat.h
See also Header Files
Defines symbolic constants used for opening and creating files.

Includes
SYS\TYPES.H

Functions
chmod
fstat
stat

Constants, Data Types and Global Variables
file status bits
stat structure

sys\timeb.h
See also Header Files

Functions
ftime

Constants, Data Types and Global Variables
timeb structure
_timezone

sys\types.h
See also Header Files

Constants, Data Types and Global Variables
time_t

time.h
See also Header Files
Defines a structure filled in by time-conversion routines asctime, localtime, and gmtime, and a type used
by the routines ctime, difftime, gmtime, localtime and stime. It also provides prototypes for these
routines.

Functions
asctime
clock
ctime
difftime
gmtime
localtime
mktime
randomize
stime
_strdate
strftime
_strtime
time
tzset

Constants, Data Types and Global Variables
CLK_TCK
clock_t
daylight
size_t
time_t
timezone
tm
tzname

Classes
Time classes

utime.h
See also Header Files
Declares the utime function and the utimbuf struct that it returns.

Function
utime

Constants, Data Types and Global Variables
time_t
utimbuf

values.h
See also Header Files
Defines UNIX compatible constants for limits to float and double values.
BITSPERBYTE
DMAXEXP
DMAXPOWTWO
DMINEXP
DSIGNIF
FMAXEXP
FMAXPOWTWO
FMINEXP
FSIGNIF
_FEXPLEN
HIBITI
HIBITL
HIBITS
_LENBASE
MAXDOUBLE
MAXFLOAT
MAXINT
MAXLONG
MAXSHORT
MINDOUBLE
MINFLOAT

varargs.h
See also Header Files
Definitions for accessing parameters in functions that accept a variable number of arguments.
These macros are compatible with UNIX System V.
Use STDARG.H for ANSI C compatibility.
Note: You can't include both STDARG.H and VARARGS.H

Macros
va_start
va_arg
va_end

Type
va_list

excpt.h
See also Header Files
The excpt.h header file contains the declarations and prototypes for structured exception-handling
values, types, and routines. Consult the Windows API documentation for more details.

bwcc.h
See also Header Files
The bwcc.h header file defines the interface for Borland Windows Custom Control library (BWCC).
For details on using the Borland Windows Custom Control library, see the Borland Windows Custom
Controls Reference.

_defs.h
See also Header Files
The _defs.h header file contains common definitions for pointer size and calling conventions.

Calling Conventions
_RTLENTRY Specifies the calling convention used by the Standard Run-time Library.
_USERENTRY Specifies the calling convention the Standard Run-time Library expects user-

compiled functions to use for callbacks.

Export (and Size for DOS) Information
_EXPCLASS Exports the class if you are building a DLL version of a library.
_EXPDATA Exports the data if you are building a DLL version of a library.
_EXPFUNC Exports the function if you are building a DLL version of a library.

Note: These export macros are provided as examples only and should not be used to create user-
defined functions.

_nfile.h
See also Header Files
The _nfile.h header file defines _NFILE_, which specifies the maximum number of open files you can
have.
NFILE is defined as 50 for all applications.

_null.h
See also Header Files
The _null.h defines the value of NULL for different memory models and applications types:

Model Value
Flat ((void *)0) if not C++ or Windows application
Flat 0
Tiny 0
Small 0
Medium 0
Large 0L

Using Templates
See also
Templates, also called generics or parameterized types, let you construct a family of related functions or
classes. These topics introduce the basic concept of templates:
Exporting and importing templates
Template Syntax
Template Body Parsing
Function Templates
Class Templates
Implicit and Explicit Template Functions
Template Compiler Switches
Note: For some complete examples of templates and template-driven classes, see the source files for

the ObjectWindows classes in the SOURCE\OWL directories.

Template body parsing
See also
Earlier versions of the compiler didn't check the syntax of a template body unless the template was
instantiated. A template body is now parsed immediately when seen like every other declaration.
template <class T> class X : T
{
 Int j; // Error: Type name expected in template X<T>
};
Let's assume that Int hasn't been defined so far. This means that Int must be a member of the template
argument T. But it also might just be a typing error and should be int instead of Int. Because the
compiler can't guess the right meaning it issues an error message.
If you want to access types defined by a template argument you should use a typedef to make your
intention clear to the compiler:
template <class T> class X : T
{
 typedef T::Int Int;
 Int j;
};
You cannot just write
 typedef T::Int;
as in earlier versions of the compiler. Not giving the typedef name was acceptable, but this now causes
an error message.
All other templates mentioned inside the template body are declared or defined at that point. Therefore,
the following example is ill-formed and will not compile:
template <class T> class X
{
 void f(NotYetDefindedTemplate<T> x);
};
All template definitions must end with a semicolon. Earlier versions of the compiler did not complain if
the semicolon was missing.

Function Templates
See also Using Templates
Consider a function max(x, y) that returns the larger of its two arguments. x and y can be of any type
that has the ability to be ordered. But, since C++ is a strongly typed language, it expects the types of the
parameters x and y to be declared at compile time. Without using templates, many overloaded versions
of max are required, one for each data type to be supported even though the code for each version is
essentially identical. Each version compares the arguments and returns the larger.
One way around this problem is to use a macro:
#define max(x,y) ((x > y) ? x : y)
However, using the #define circumvents the type-checking mechanism that makes C++ such an
improvement over C. In fact, this use of macros is almost obsolete in C++. Clearly, the intent of max(x,
y) is to compare compatible types. Unfortunately, using the macro allows a comparison between an int
and a struct, which are incompatible.
Another problem with the macro approach is that substitution will be performed where you don't want it
to be. By using a template instead, you can define a pattern for a family of related overloaded functions
by letting the data type itself be a parameter:
template <class T> T max(T x, T y){
 return (x > y) ? x : y;
 };
The data type is represented by the template argument <class T>. When used in an application, the
compiler generates the appropriate code for the max function according to the data type actually used in
the call:
int i;
Myclass a, b;

int j = max(i,0); // arguments are integers
Myclass m = max(a,b); // arguments are type Myclass
Any data type (not just a class) can be used for <class T>. The compiler takes care of calling the
appropriate operator>(), so you can use max with arguments of any type for which operator>() is
defined.

Overriding a Template Function
Using Templates
The previous example is called a function template (or generic function, if you like). A specific
instantiation of a function template is called a template function. Template function instantiation occurs
when you take the function address, or when you call the function with defined (non-generic) data types.
You can override the generation of a template function for a specific type with a non-template function:
#include <string.h>

char *max(char *x, char *y){
 return(strcmp(x,y) > 0) ? x : y;
}
If you call the function with string arguments, it's executed in place of the automatic template function. In
this case, calling the function avoided a meaningless comparison between two pointers.
Only trivial argument conversions are performed with compiler-generated template functions.
The argument type(s) of a template function must use all of the template formal arguments. If it doesn't,
there is no way of deducing the actual values for the unused template arguments when the function is
called.

Implicit and Explicit Template Functions
Using Templates
When doing overload resolution (following the steps of looking for an exact match), the compiler ignores
template functions that have been generated implicitly by the compiler.
template<class T> T max(T a, T b){
 return (a > b) ? a : b;
};

void f(int i, char c){
 max(i, i); // calls max(int ,int)
 max(c, c); // calls max(char,char)
 max(i, c); // no match for max(int,char)
 max(c, i); // no match for max(char,int)
}
This code results in the following error messages:
Could not find a match for 'max(int,char)' in function f(int,char)
Could not find a match for 'max(char,int)' in function f(int,char)
If the user explicitly declares a template function, this function, on the other hand, will participate fully in
overload resolution. See the example of explicit template function.
When searching for an exact match for template function parameters, trivial conversions are considered
to be exact matches. See the example on trivial conversions.
Template functions with derived class pointer or reference arguments are permitted to match their public
base classes. See the example of base class referencing.

Example of base class referencing

template <class T> class B
{
 // class declarations
};
template <class T> class D : public B<T>
{
 // class declarations
};

template <class T> void func(B <T> *b)
{
 // function body
}
// This is illegal under ANSI C++: unresolved func(int)
// However, Borland C++ calls func(B<int> *).
func(new D<int>);

Example of trivial conversions

template <class T> void func(const T)
{
 .
 .
 .
};
func(0); // This is illegal under ANSI C++: unresolved func(int).
// However, Borland C++ allows func(const int) to be called.

Example of explicit template function

template<class T> T max(T a, T b) {
 return (a > b) ? a : b;
};

// Declare explicit template function
int max(int,int);

void f(int i, char c)
{
 max(i, i); // calls max(int ,int)
 max(c, c); // calls max(char,char)
 max(i, c); // calls max(int,int)
 max(c, i); // calls max(int,int)
}

Class Templates
See also Using Templates Example
A class template (also called a generic class or class generator) lets you define a pattern for class
definitions. Consider the following example of a vector class (a one-dimensional array). Whether you
have a vector of integers or any other type, the basic operations performed on the type are the same
(insert, delete, index, and so on). With the element type treated as a type parameter to the class, the
system will generate type-safe class definitions on the fly.
As with function templates, an explicit template class definition can be provided to override the
automatic definition for a given type:
class Vector<char *> { ... };
The symbol Vector must always be accompanied by a data type in angle brackets. It cannot appear
alone, except in some cases in the original template definition.

Class template definition

// An example for defining a template class.
template <class T> class Vector
{
 T *data;
 int size;
public:
 Vector(int);
 ~Vector() { delete[] data; }
 T& operator[] (int i) { return data[i]; }
};
// Note the syntax for out-of-line definitions.
template <class T> Vector<T>::Vector(int n)
{
 data = new T[n];
 size = n;
};

int main()
{
 Vector<int> x(5); // Generate a vector to store five integers
 for (int i = 0; i < 5; ++i)
 x[i] = i; // Initialize the vector.
 return o;
}

Template Arguments
Using Templates
Multiple arguments are allowed as part of the class template declaration. Template arguments can also
represent values in addition to data types:
template<class T, int size = 64> class Buffer { ... };
Non-type template arguments such as size can have default values. The value supplied for a non-type
template argument must be a constant expression:
const int N = 128;
int i = 256;

Buffer<int, 2*N> b1;// OK
Buffer<float, i> b2;// Error: i is not constant
Since each instantiation of a template class is indeed a class, it receives its own copy of static members.
Similarly, template functions get their own copy of static local variables.

Using Angle Brackets in Templates
Using Templates
Be careful when using the right angle bracket character upon instantiation:
Buffer<char, (x > 100 ? 1024 : 64)> buf;
In the preceding example, without the parentheses around the second argument, the > between x and
100 would prematurely close the template argument list.

Using Type-safe Generic Lists in Templates
Using Templates
In general, when you need to write lots of nearly identical things, consider using templates. The
problems with the following class definition, a generic list class,
class GList
{
 public:
 void insert(void *);
 void *peek();
 .
 .
 .
};
are that it isn't type-safe and common solutions need repeated class definitions. Since there's no type
checking on what gets inserted, you have no way of knowing what results you'll get. You can solve the
type-safe problem by writing a wrapper class:
class FooList : public Glist {
 public:
 void insert(Foo *f) { GList::insert(f); }
 Foo *peek() { return (Foo *)GList::peek(); }
 .
 .
 .
};
This is type-safe. insert will only take arguments of type pointer-to-Foo or object-derived-from-Foo, so
the underlying container will only hold pointers that in fact point to something of type Foo. This means
that the cast in FooList::peek() is always safe, and you've created a true FooList. Now, to do the same
thing for a BarList, a BazList, and so on, you need repeated separate class definitions. To solve the
problem of repeated class definitions and be type-safe, you can once again use templates. See the
example for type-safe generic list class.
By using templates, you can create whatever type-safe lists you want, as needed, with a simple
declaration. And there's no code generated by the type conversions from each wrapper class so there's
no run-time overhead imposed by this type safety.

Type-safe generic list class definition

template <class T> class List : public GList
{
public:
 void insert(T *t) { GList::insert(t); }
 T *peek() { return (T *)GList::peek(); }
 .
 .
 .
};

 // Create a List object of Foo types and name it fList.
 List<Foo> fList;

// Create a List object of Bar types and name it bList.
 List<Bar> bList;

// Create a List object of Baz types and name it zList.
 List<Baz> zList;

Eliminating Pointers in Templates
Using Templates
Another design technique is to include actual objects, making pointers unnecessary. This can also
reduce the number of virtual function calls required, since the compiler knows the actual types of the
objects. This is beneficial if the virtual functions are small enough to be effectively inlined. It's difficult to
inline virtual functions when called through pointers, because the compiler doesn't know the actual
types of the objects being pointed to.
template <class T> aBase {
 .
 .
 .
 private:
 T buffer;
};

class anObject : public aSubject, public aBase<aFilebuf> {
 .
 .
 .
};
All the functions in aBase can call functions defined in aFilebuf directly, without having to go through a
pointer. And if any of the functions in aFilebuf can be inlined, you'll get a speed improvement, because
templates allow them to be inlined.

Template Compiler Switches
Using Templates
The -Jg family of switches control how instances of templates are generated by the compiler. Every
template instance encountered by the compiler will be affected by the value of the switch at the point
where the first occurrence of that particular instance is seen by the compiler.
For template functions the switch applies to the function instances; for template classes, it applies to all
member functions and static data members of the template class. In all cases, this switch applies only to
compiler-generated template instances and never to user-defined instances. It can be used, however, to
tell the compiler which instances will be user-defined so that they aren't generated from the template.
When using the -Jg family of switches, there are two basic approaches for generating template
instances:

Include the function body (for a function template) or member function and static data member
definitions (for a template class) in the header file that defines the particular template, and use the default
setting of the template switch (-Jg). If some instances of the template are user-defined, the declarations
(prototypes, for example) for them should be included in the same header but preceded by #pragma
option -Jgx. See the example for template header files.

Compile all of the source files comprising the program with the -Jgx switch (causing external
references to templates to be generated). In order to provide the definitions for all of the template
instances, add a file (or files) to the program that includes the template bodies (including any user-defined
instance definitions), and list all the template instances needed in the rest of the program to provide the
necessary public symbol definitions. Compile the file (or files) with the -Jgd switch. See the example for
separate file template compilation.

Separate file template compilation

// In vector.h
template <class elem, int size> class vector
{
 elem * value;
public:
 vector();
 elem & operator [] (int index) {
 return value[index];
 }
};
// In main.cpp source file.
#include "vector.h"
/** Let the compiler know that the following template instances will be
defined elsewhere. **/

#pragma option -Jgx
// Use two instances of the vector template class.
vector<int, 100> int_100;
vector<char, 10> char_10;
int main()
{
 return int_100[0] + char_10[0];
}

// In template.cpp source file.
#include <string.h>
#include "vector.h"
// Define any template bodies.
template <class elem, int size> vector <elem, size> :: vector()
{
 value = new elem[size];
 memset(value, 0, size * sizeof(elem));
}
// Generate the necessary instances.
#pragma option -Jgd
typedef vector<int, 100> fake_int_100;
typedef vector<char, 10> fake_char_10;

Template header file

// Declare a template function and define it's body.
/* When this header file is included in a C++ source file, the sort template
can be used without worrying about how the various instances are generated
(with the exception of sort for integer arrays which is a user-defined
instance. Its definition must be provided by the user. */

template<class T> void sort (T* array, int size)
{
 // Body of template goes here.
}
// Sorting of integer elements done by user-define instance.
#pragma option -Jgx
extern void sort(int *array, int size);
// Restore the template switch to its original state.
#pragma option -Jg

The main() Function
See also
Every C and C++ program must have a program-startup function.

Console-based programs call the main function at startup.
Windows GUI programs call the WinMain function at startup.

Where you place the startup function is a matter of preference. Some programmers place main at the
beginning of the file, others at the end. Regardless of its location, the following points about main always
apply.

Arguments to main
Wildcard Arguments
Using -p (Pascal Calling Conventions)
Value main() Returns

Arguments to main ()
The main() Function Example
Three parameters (arguments) are passed to main by the Borland C++ startup routine: argc, argv, and
env.

argc, an integer, is the number of command-line arguments passed to main, including the name
of the executable itself.

argv is an array of pointers to strings (char *[]).
- argv[0] is the full path name of the program being run.
- argv[1] points to the first string typed on the operating system command line after the program

name.
- argv[2] points to the second string typed after the program name.
- argv[argc-1] points to the last argument passed to main.
- argv[argc] contains NULL.

env is also an array of pointers to strings. Each element of env[] holds a string of the form
ENVVAR=value.

- ENVVAR is the name of an environment variable, such as PATH or COMSPEC.
- value is the value to which ENVVAR is set, such as C:\APPS;C:\TOOLS; (for PATH) or C:\DOS\

COMMAND.COM (for COMSPEC).
If you declare any of these parameters, you must declare them exactly in the order given: argc, argv,
env. For example, the following are all valid declarations of arguments to main:
int main()
int main(int argc) /* legal but very unlikely */
int main(int argc, char * argv[])
int main(int argc, char * argv[], char * env[])]
The declaration int main(int argc) is legal, but it is very unlikely that you would use argc in your program
without also using the elements of argv.
The argument env is also available through the global variable _environ..
For all platforms, argc and argv are also available via the global variables _argc and _argv.

Example of how Arguments are Passed to main()
Here is an example that demonstrates a simple way of using these arguments passed to main:
/* Program ARGS.C */
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[], char *env[]) {
 int i;

 printf("The value of argc is %d \n\n", argc);
 printf("These are the %d command-line arguments passed to"
 " main:\n\n", argc);

 for (i = 0; i < argc; i++)
 printf(" argv[%d]: %s\n", i, argv[i]);

 printf("\nThe environment string(s) on this system are:\n\n");

 for (i = 0; env[i] != NULL; i++)
 printf(" env[%d]: %s\n", i, env[i]);
 return 0;
 }
Suppose you run ARGS.EXE at the command prompt with the following command line:
 C:> args first_arg "arg with blanks" 3 4 "last but one" stop!
Notice that you can pass arguments with embedded blanks by surrounding them with quotes, as shown
by "argument with blanks" and "last but one" in this example command line.
The output of ARGS.EXE (assuming that the environment variables are set as shown here) would then
be like this:
The value of argc is 7

These are the 7 command-line arguments passed to main:

 argv[0]: C:\BC5\ARGS.EXE
 argv[1]: first_arg
 argv[2]: arg with blanks
 argv[3]: 3
 argv[4]: 4
 argv[5]: last but one
 argv[6]: stop!

The environment string(s) on this system are

 env[0]: COMSPEC=C:\COMMAND.COM
 env[1]: PROMPT=$p $g
 env[2]: PATH=C:\SPRINT;C:\DOS;C:\BC5
The maximum combined length of the command-line arguments passed to main (including the space
between adjacent arguments and the program name itself) is

128 for DOS
260 for Win16
255 for Win32

Wildcard Arguments
The main() Function Example
Command-line arguments containing wildcard characters can be expanded to all the matching file
names, much the same way DOS expands wildcards when used with commands like COPY. All you
have to do to get wildcard expansion is to link your program with the WILDARGS.OBJ object file, which
is included with Borland C++.
Note: Wildcard arguments are used only in console-mode applications.
Once WILDARGS.OBJ is linked into your program code, you can send wildcard arguments (such as *.*)
to your main function. The argument will be expanded (in the argv array) to all files matching the
wildcard mask. The maximum size of the argv array varies, depending on the amount of memory
available in your heap.
If no matching files are found, the argument is passed unchanged. (That is, a string consisting of the
wildcard mask is passed to main.)
Arguments enclosed in quotes ("...") are not expanded.

Example of using Wildcard Arguments with main()
The following commands compile the file ARGS.C and link it with the wildcard expansion module
WILDARGS.OBJ, then run the resulting executable file ARGS.EXE:
BCC ARGS.C WILDARGS.OBJ
ARGS C:\BC5\INCLUDE*.H "*.C"
When you run ARGS.EXE, the first argument is expanded to the names of all the *.H files in your
Borland C++ INCLUDE directory. Note that the expanded argument strings include the entire path. The
argument *.C is not expanded because it is enclosed in quotes.
In the IDE, simply specify a project file from the Project menu) that contains the following lines:
ARGS
WILDARGS.OBJ
If you prefer the wildcard expansion to be the default, modify your standard CW32?.LIB library files to
have WILDARGS.OBJ linked automatically. To do so, remove SETARGV and INITARGS from the
libraries and add WILDARGS. The following commands invoke the Turbo librarian (TLIB) to modify all
the standard library files (assuming the current directory contains the standard C and C++ libraries and
WILDARGS.OBJ):

Window Users
tlib CW32 -setargv +wildargs
tlib CW32MT -setargv +wildargs
tlib -setargv +wildargs
DOS Users
tlib cs -setargv +wildargs
tlib cc -setargv +wildargs
tlib cm -setargv +wildargs
tlib cl -setargv +wildargs
tlib ch -setargv +wildargs

Using --p (Pascal Calling Conventions)
The main() Function
If you compile your program using Pascal calling conventions, you must remember to explicitly declare
main as a C type. Do this with the _ _cdeclkeyword, like this:
 int _ _cdecl main(int argc, char* argv[], char* envp[])

The Value main() Returns
The main() Function
The value returned by main is the status code of the program: an int. If, however, your program uses the
routine exit (or _exit) to terminate, the value returned by main is the argument passed to the call to exit
(or to _exit).
For example, if your program contains the call
exit(1)
the status is 1.

Passing File Information to Child Processes
The main() Function
If your program uses the exec or spawn functions to create a new process, the new process will
normally inherit all of the open file handles created by the original process. Some information, however,
about these handles will be lost, including the access mode used to open the file. For example, if your
program opens a file for read-only access in binary mode, and then spawns a child process, the child
process might corrupt the file by writing to it, or by reading from it in text mode.
To allow child processes to inherit such information about open files, you must link your program with
the object file FILEINFO.OBJ.
For example:
 BCC32 TEST.C \BC5\LIB\FILEINFO.OBJ
The file information is passed in the environment variable _C_FILE_INFO. This variable contains
encoded binary information. Your program should not attempt to read or modify its value. The child
program must have been built with the C++ run-time library to inherit this information correctly.
Other programs can ignore _C_FILE_INFO, and will not inherit file information.

Multithread Programs
See also
32-bit programs can create more than one thread of execution. If your program creates multiple threads,
and these threads also use the C++ run-time library, you must use the CW32MT.LIB or CW32MTI
library instead.
The multithread libraries provide the following functions which you use to create threads:
_beginthread
_beginthreadNT
The multithread libraries also provide
_endthread a function that terminates threads
_threadid a global variable that contains the current identification number of the thread also known
as the thread ID).
The header file stddef.h contains the declaration of _threadid.
When you compile or link a program that uses multiple threads, you must use the -tWM compiler switch.
For example:
 BCC32 -tWM THREAD.C
Note: Take special care when using the signal function in a multithread program. The SIGINT,

SIGTERM, and SIGBREAK signals can be used only by the main thread (thread one) in a non-
Win32 application. When one of these signals occurs, the currently executing thread is
suspended, and control transfers to the signal handler (if any) set up by thread one. Other signals
can be handled by any thread.
A signal handler should not use C++ run-time library functions, because a semaphore deadlock
might occur. Instead, the handler should simply set a flag or post a semaphore, and return
immediately.

WinMain
See also

Syntax
int PASCAL WinMain(HINSTANCE hCurInstance, HINSTANCE hPrevInstance, LPSTR
lpCmdLine, int nCmdShow)

Description
This function is the main entry point for a Windows application. It must be supplied by the user.

Type Parameter Description
HINSTANCE hCurInstance The instance handle of the application. Each instance of

an application has a unique instance handle. It is used as
an argument to several Windows functions and can be
used to distinguish between multiple instances of a given
application.

HINSTANCE hPrevInstance The handle of the previous instance of this application.
This value is NULL if this is the first instance.

LPSTR lpCmdLine A far pointer to a null-terminated command-line. Specify
this value when invoking the application from the program
manager or from a call to WinExec.

int nCmdShow An integer that specifies the application's window display.
Pass this value to ShowWindow.

Under Win32, there are two differences in the values passed through these parameters:
hPrevInstance always returns NULL.
lpCmdLine points to a string containing the entire command line, not just the parameters.

Return Value
The return value from WinMain is not currently used by Windows. It is useful during debugging because
you can display this value upon termination of your program.

Programming for portability
See also
If you are new to programming, or need to know about moving 16-bit applications to Windows NT or
Windows 95, this topic is for you. This topic describes a variety of 16-bit and 32-bit programming topics,
including

Resource script files
Module definition files
Import libraries
The Borland heap manager
32-bit Windows programming

In addition to compiling source code and linking .OBJ files, a Windows programmer must compile
resource script files, and bind resources to an executable. A Windows programmer must also know
about dynamic linking, dynamic link libraries (DLLs), and import libraries. Also, if you are using the
Borland C++ IDE, it is helpful to know how to use the Borland project manager which uses project files
to automate and manage application building. See the discussion of compiling and linking a Windows
program for an illustration of the process of building a Windows application.
Note: The intricacies of designing and developing Windows applications go beyond the scope of this

document.

Prologs and epilogs
See also
When you compile a module for Windows, the compiler needs to know what kind of prolog and epilog
needs to be created for each of a module's functions. IDE settings and command-line compiler options
control the creation of the prolog and epilog. The prolog and epilog perform several duties, including
ensuring that the correct data segment is active during callback functions, and marking stack frames for
the Windows stack-crawling mechanism.
The prolog/epilog code is automatically generated by the compiler, though various compiler options or
IDE settings dictate which sets of instructions are contained in the generated code.
See the following topics for further discussion:
The _export keyword
The _import keyword
Prologs, epilogs, and exports: A Summary
Entry/Exit Code Options
Exporting and importing templates

Compiling and linking a Windows program
See also
These are the steps for compiling and linking a Windows program:
1. Source code is compiled or assembled producing .OBJ files.
2. Module definition files (.DEF) tell the linker what kind of executable you want to produce.
3. Resource Workshop (or some other resource editor) creates resources, like icons or bitmaps. A

resource file (.RC) is produced. See the Resource Workshop overview.
4. The .RC file is compiled by a resource compiler or Resource Workshop, and a binary .RES file is

output.
5. Linking produces an .EXE file with bound resources.

Resource script files
See also
Windows applications typically use resources. Resources are icons, menus, dialog boxes, fonts,
cursors, bitmaps, or other user-defined resources. Resources are defined in a file called a resource
script file, also known as a resource file. These files have the file name extension .RC.
To make use of resources, you must use the Borland Resource Compiler (BRCC32) to compile your .RC
file into a binary format. Resource compilation creates a .RES file. TLINK32 then binds the .RES file to
the .EXE file output by the linker. This process also marks the .EXE file as a Windows executable.
Note: See the discussion of BRCC32.EXE.

Module definition files
See also
A module definition (.DEF) file provides information to the linker about the contents and system
requirements of a Windows application. This information includes heap and stack size, and code and
data characteristics. .DEF files also list functions that are to be made available for other modules (export
functions), and functions that are needed from other modules (import functions). Because Borland
linkers have other ways of finding out the information contained in a module definition file, module
definition files are not always required for Borland’s linker to create a Windows application.
Here’s the module definition file for the WHELLO example:
NAME WHELLO
DESCRIPTION 'C++ Windows Hello World'
EXETYPE WINDOWS
CODE PRELOAD MOVEABLE
DATA PRELOAD MOVEABLE MULTIPLE
HEAPSIZE 1024
STACKSIZE 5120
Let’s take this file apart, statement by statement:
NAME specifies a name for a program. If you want to build a DLL instead of a program, you would use
the LIBRARY statement. Every module definition file should have either a NAME statement or a
LIBRARY statement, but never both. The name specified must be the same name as the executable file.
WINDOWAPI identifies this program as a Windows executable.
DESCRIPTION lets you specify a string that describes your application or library.
EXETYPE marks the executable as a Windows executable. This is necessary for all Windows
executables.
CODE describes attributes of the executable’s code segment. The PRELOAD option instructs the loader
to load this portion of the image when the application is loaded into memory. The MOVEABLE option
means Windows can move the code around in memory.
DATA defines the default attributes of data segments. The MULTIPLE option ensures that each instance
of the application has its own data segment.
HEAPSIZE specifies the size of the application’s local heap.
STACKSIZE specifies the size of the application’s local stack. You can’t use the STACKSIZE statement
to create a stack for a DLL.
Two important statements not used in this .DEF file are the EXPORTS and IMPORTS statements.
The EXPORTS statement lists functions in a program or DLL that will be called by other applications or
by Windows. These functions are known as export functions, callbacks, or callback functions. Exported
functions are identified by the linker and entered into an export table.
To help you avoid the necessity of creating and maintaining long EXPORTS sections in your module
definition files, provides the _ _export keyword. Functions flagged with _ _export will be identified by
the linker and entered into the export table for the module. This is why the WHELLO example has no
EXPORT statement in its module definition file.
Note: Prior to Borland C++ 5.0, _ _export keyword was required to immediately precede the function

name. To help port applications that use a different syntax for function modifiers, Borland C++
now provides the _ _declspec keyword.

The WHELLO application doesn’t have an IMPORTS statement either because the only functions it calls
from other modules are those from the Windows Application Program Interface (API); those functions
are imported via the automatic inclusion of the IMPORT.LIB or IMPORT32.LIB import libraries. When an
application needs to call other external functions, these functions must be listed in the IMPORTS
statement, or included via an import library.

Import libraries
See also
When you use DLLs, you must give the linker definitions of the functions you want to import from DLLs.
This information temporarily satisfies the external references to the functions called by the compiled
code, and tells the Windows loader where to find the functions at run time.
There are two ways to tell the linker about import functions:
You can add an IMPORTS section to the module definition file and list every DLL function that the
module will use.
You can include an import library for the DLLs when you link the module.
An import library contains import definitions for some or all of the exported functions for one or more
DLLs. A utility called IMPLIB creates import libraries for DLLs. IMPLIB creates import libraries directly
from DLLs or from a DLL’s module definition files, or from a combination of the two.
Import libraries can be substituted for all or part of the IMPORTS section of a module definition file.

The Borland heap manager
See also
Windows supports dynamic memory allocations on two different heaps: the global heap and the local
heap.
The global heap is a pool of memory available to all applications. Although global memory blocks of any
size can be allocated, the global heap is intended only for large memory blocks (256 bytes or more).
Each global memory block carries an overhead of at least 20 bytes, and under the Windows standard
and 386 enhanced modes, there is a system-wide limit of 8192 global memory blocks, only some of
which are available to any given application.
The local heap is a pool of memory available only to your application. It exists in the upper part of an
application’s data segment. The total size of local memory blocks that can be allocated on the local heap
is 64K minus the size of the application’s stack and static data. For this reason, the local heap is best
suited for small memory blocks (256 bytes or less). The default size of the local heap is 4K, but you can
change this in your applications .DEF file.
Borland C++ includes a heap manager which implements the new, delete, malloc, and free functions.
The heap manager uses the global heap for all allocations. Because the global heap has a system-wide
limit of 8192 memory blocks (which certainly is less than what some applications might require), the
Borland C++ heap manager includes a sub-allocator algorithm to enhance performance and allow a
substantially larger number of blocks to be allocated.
This is how the segment sub-allocator works: When allocating a large block, the heap manager simply
allocates a global memory block using the Windows GlobalAlloc routine. When allocating a small block,
the heap manager allocates a larger global memory block and then divides (sub-allocates) that block
into smaller blocks as required. Allocations of small blocks reuse all available sub-allocation space
before the heap manager allocates a new global memory block, which, in turn, is further sub-allocated.
The HeapLimit variable defines the threshold between small and large heap blocks. HeapLimit is set at
64K bytes. The HeapBlock variable defines the size the heap manager uses when allocating blocks to
be assigned to the sub-allocator. HeapBlock is set at 4096 bytes.

32-bit Windows programming
See also
The following topics briefly describe the Win32 and Windows programming environment, and explain
how to port your code to this environment. This port makes your code compilable to run on both 16- and
32-bit versions of Windows, and compilable for future processors hosting Windows.
Win32
The Win32 API
Borland C++ 32-bit tools support the production of 32-bit .OBJ and .EXE files in the portable executable
(PE) file format, which is the executable file format for Win32 and Windows NT programs. Win32
conforming executables will run unchanged on Windows NT.
Note: See the topic on building Win32 executables for a discussion of 32-bit tool names, options, and

libraries.

The Win32 API
See also
The Win32 API widens most of the existing 16-bit Windows API to 32 bits and adds new API calls
compatible with Windows NT. The Win32s API is a subset of the Win32 API for Windows NT. Those 16-
bit API calls that have been converted to and are callable in the 32-bit environment, and those 32-bit API
calls implementable in the 16-bit Windows environment make up the Win32 API.
If a Win32 executable calls any of the Win32 API functions not supported under Win32, appropriate error
codes are returned at runtime. Writing applications that conform to the Win32 API, and using the porting
tips described under Writing portable Windows code means your application will be portable across 16-
and 32-bit Windows environments.
For complete descriptions of Win32 API functions, see the Microsoft Windows documentation.

Win32
See also
Win32 is an operating system extension to Windows 3.1 that provides support for developing and
running Windows 32-bit executables. Win32 is a set of DLLs that handle mapping 32-bit application
program interface (API) calls to their 16-bit counterparts, a virtual device driver (VxD) to handle memory
management, and a revised API called the Win32 API. The DLL and VxD are transparent.
To make sure your code will compile and run under Win32 you should

Make sure your code adheres to the Win32 API.
Write portable code using types and macros provided in the windows.h, and windowsx.h files.

See the topic on Writing portable Windows code for some help in writing portable Windows code.

Writing portable Windows code
See also
This topic provides information about portability constructs introduced in Windows 3.1 that will assist you
in producing portable Windows code. Explanations of several compiler error and warning messages you
might likely see when developing portable code is also included.

STRICT
Making your code STRICT compliant
STRICT conversion hints
STRICT compliant types, constants, helper macros, and handles
The UINT and WORD types
The WINAPI and CALLBACK calling conventions

Existing Windows 16-bit code can be ported to Win32 and Windows NT with minimal changes. Most
changes revolve around substituting new macros and types for old, and replacing any 16-bit specific API
calls with analogous Win32 API calls. Once these changes have been made, your code can compile and
run under 16- or 32-bit Windows.
A compile-time environment variable, STRICT, has been provided to assist you in making your code
portable.

STRICT
See also
Windows 3.1 introduced support in windows.h for defining STRICT. Defining STRICT enables strict
compiler error checking. For example, if STRICT is not defined, passing an HWND to a function that
requires an HDC will not cause a compiler warning. Define STRICT, and you will get a compiler error.
Using STRICT enables

Strict handle type checking
Correct and consistent parameter and return value type declarations
Fully prototyped type definitions for callback function types (window, dialog, and hook

procedures)
ANSI compliant declaration of COMM, DCB, and COMSTAT structures

STRICT is Windows 3.0 backward compatible. It can be used with the 3.1 WINDOWS.H for creating
applications that will run under Windows 3.0.
Defining STRICT will assist you in locating and correcting type incompatibilities that arise when
migrating your code to 32 bits, and will aid portability between 16- and 32-bit Windows.
New types, constants, and macros have been provided so you can change your source code to be
STRICT compliant. The Table of STRICT compliant types provides a list of the types, macros and
handle types that you can use to make your application STRICT compliant.

STRICT compliant types constants, helper macros, and handles
See also

Types and
constants Description
CALLBACK Use instead of FAR PASCAL in your callback routines (for example, window and

dialog procedures).
LPARAM Declares all 32-bit polymorphic parameters.
LPCSTR Same as LPSTR, except that is used for read-only string pointers.
LRESULT Declares all 32-bit polymorphic return values.
UINT Portable unsigned integer type whose size is determined by the targeted

environment. Represents a 16-bit value on Windows 3.1, and a 32 bit value on
Win32.

WINAPI Use instead of FAR PASCAL for API declarations. If you are writing a DLL with
exported API entry points, you can use this for the API declarations.

WPARAM Declares all 16-bit polymorphic parameters.

Macros Description
FIELDOFFSET(type, field) Calculates the field offsets in a structure. type is the structure type, and

field is the field name.
MAKELP(sel,off) Takes a selector and offset and produces a FAR VOID*.
MAKELPARAM(low,high) Makes an LPARAM out of two 16-bit values.
MAKERESULT(low,high) Makes an LRESULT out of two 16-bit values.
OFFSETOF(lp) Extracts the offset of a far pointer and returns a UINT.
SELECTOROF(lp) Extracts the selector for a far pointer and returns a UINT.

Handles Description
HACCEL Accelerator table handle
HDRVR Driver handle (Windows 3.1 only)
HDWP DeferWindowPost() handle
HFILE File handle
HGDIOBJ Generic GDI object handle
HGLOBAL Global handle
HINSTANCE Instance handle
HLOCAL Local handle
HMETAFILE Metafile handle
HMODULE Module handle
HRSRC Resource handle
HTASK Task handle

Making your code STRICT compliant
See also
This steps will help to make your application STRICT compliant.
1. Decide what code you want to be STRICT compliant. Converting your code to STRICT can be done

in stages.
2. Turn on the compiler’s highest error/warning level. In the IDE, use the Make|Break Make On options.

On the command line, use the –w switch to display warnings. You might want to compile at this stage,
before taking the next step.

3. #define STRICT before including windows.h and compile, or use –DSTRICT on the command line.

Note: Because of C++ type-safe linking, linking STRICT and non-STRICT modules may cause linker
errors in C++ applications.

STRICT conversion hints
See also
This topic describes some common coding practices you should use when converting your code to
STRICT compliance.

Change HANDLE to the appropriate specific handle type, for example, HMODULE, HINSTANCE,
and so on.

Change WORD to UINT except were you specifically want a 16-bit value on a 32-bit platform.
Change WORD to WPARAM.
Change LONG to LPARAM or LRESULT as appropriate.
Change FARPROC to WNDPROC, DLGPROC, HOOKPROC as appropriate.
For 16-bit Windows always declare function pointers with the proper function type, rather than

FARPROC. You’ll need to cast function pointers to and from the proper function type when using
MakeProcInstance, FreeProcInstance, and other functions that take or return a FARPROC, for example:
BOOL CALLBACK DlgProc(HWND hwnd, UINT msg,
 WPARAM wParam,
 LPARAM lParam);
 DLGPROC lpfnDlg;
lpfnDlg=(DLGPROC)MakeProcInstance(DlgProc, hinst);
...
FreeProcInstance((FARPROC)lpfnDlg);

Take special care with HMODULEs and HINSTANCEs. For the most part, the Kernel module
management functions use HINSTANCEs, but there are a few APIs that return or accept only
HMODULEs.

If you’ve copied any API function declarations from WINDOWS.H, they may have changed, and
your local declaration may be out of date. Remove your local declarations.

Cast the results of LocalLock and GlobalLock to the proper kind of data pointer. Parameters to
these and other memory management functions should be cast to LOCALHANDLE or GLOBALHANDLE,
as appropriate.

Cast the result of GetWindowWord and GetWindowLong and the parameters to SetWindowWord
and SetWindowLong.

When casting SendMessage, DefWindowProc, and SendDlgItemMsg or any other function that
returns an LRESULT or LONG to a handle of some kind, you must first cast the result to a UINT:
 HBRUSH hbr;
 hbr = (HBRUSH)(UINT)SendMessage(hwnd, WM_CTLCOLOR, ..., ...);

The CreateWindow and CreateWindowEx hmenu parameter is sometimes used to pass an
integer control ID. In this case you must cast this to an HMENU:
HWND hwnd;
int id;
hwnd = CreateWindow("Button", "Ok", BS_PUSHBUTTON,
 x, y, cx, cy, hwndParent,
 (HMENU)id, //Cast required here
 hinst, NULL);

Polymorphic data types (WPARAM, LPARAM, LRESULT, void FAR*) should be assigned to
variables as soon as possible. You should avoid using them in your own code when the type of the value
is known. This will minimize the number of potentially unsafe and non-32-bit-portable casting you will
have to do in your code. The macro APIs and message cracker mechanisms provided in windowsx.h will
take care of almost all packing and unpacking of these data types in a 32-bit portable way.

Become familiar with the common compiler warnings and errors that you’re likely to encounter as
you convert to STRICT.
Some of the most common compiler errors and warnings you might encounter are described under The
UINT and WORD types.
See also the description of message crackers.

The UINT and WORD types
See also
The type UINT has been created and used extensively in the API to create a data type portable from
Windows 3.x. UINT is defined as
 typedef unsigned int UINT;
UINT is needed because of the difference in int sizes between 16-bit Windows, and Win32. For 16-bit
Windows, int is a 16-bit unsigned integer; for Win32 int is a 32-bit unsigned integer. Use UINT to declare
integer objects expected to widen from 16 to 32 bits when compiling 32-bit applications.
The type WORD is defined as
 typedef unsigned short WORD;
WORD declares a 16-bit value on both 16-bit Windows, and Win32. Use WORD to create objects that
will remain 16-bits wide across both platforms. Note that because Win32 handles are widened to 32 bits,
WORD can no longer be used for handles.

The WINAPI and CALLBACK calling conventions
See also
The windows.h macro WINAPI defines the calling convention. WINAPI resolves to the appropriate
calling convention for the targeted platform. WINAPI should be used in place of FAR PASCAL.
For example, here is an important change necessary for window procedure definitions. The following is
code as it would appear in 16-bit Windows:
LONG FAR PASCAL WindowProc(HANDLE hWnd, unsigned message
 WORD wParam, LONG lParam)
Here is the Win32 version:
LONG WINAPI WindowProc(HWND hWnd, UINT message
 UINT wParam, LONG lParam)
Using WINAPI allows specifying alternative calling conventions. Currently, Win32 uses _stdcall. The
fundamental type unsigned is changed to the more portable UINT. WORD is also changed to UINT, in
this case illustrating the expansion of wParam to 32 bits. Not making this change to wParam will result in
application failure during initial window creation.
Use the CALLBACK calling convention in your callback function declarations. This replaces FAR
PASCAL.

Extracting message data
See also
In 32-bit Windows code you need to change the way you unpack message data from lParam and
wParam. In Win32 wParam grows from 16 to 32 bits in size, while lParam remains 32-bits wide. But
since lParam frequently contains a handle and another value in 16-bit Windows, and a handle grows to
32 bits under Win32, another packing scheme was necessary for wParam and lParam.
For example, WM_COMMAND is one of the messages affected by the changes to extra parameter size.
Under Windows 3.x wParam contains a 16-bit identifier, and lParam contains both a 16-bit window
handle and a 16-bit command.
Under Win32 lParam contains the window handle, but nothing else since window handles are now 32
bits. So the 16-bit command is moved from lParam to the low-order 16 bits of wParam (now 32 bits),
with the high order 16 bits of wParam containing the identifier. This repacking means changing the way
you extract information from these parameters. An easy, portable way of extracting message data is by
using message crackers.

Message crackers
See also
Message crackers are a portable way of extracting messages from wParam and lParam. Depending on
your environment (16-bit Windows or Win32) message crackers use an appropriate technique for
extracting the message data. Each Windows message has a set of message crackers.
For example, here is the 32-bit version of the WM_COMMAND message crackers:
#define GET_WM_COMMAND_ID(wp, lp) LOWORD(wp)
#define GET_WM_COMMAND_HWND(wp, lp) (HWND)(lp)
#define GET_WM_COMMAND_CMD(wp, lp) HIWORD(wp)
#define GET_WM_COMMAND_MPS(id, hwnd, cmd) \
 (WPARAM) MAKELONG(id, cmd),
 (LONG) (hwnd)
And here is the 16-bit version of the WM_COMMAND message crackers:
#define GET_WM_COMMAND_ID(wp, lp) (wp)
#define GET_WM_COMMAND_HWND(wp, lp) (HWND)LOWORD(lp)
#define GET_WM_COMMAND_CMD(wp, lp) HIWORD(lp)
#define GET_WM_COMMAND_MPS(id, hwnd, cmd) \
 (WPARAM)(id), MAKELONG(hwnd, cmd)
Using these message-cracker macros will ensure that your message extraction code is portable to either
platform.

Porting DOS system calls
See also
Windows 3.0 provided the DOS3Call API function for calling DOS file I/O functions. This function, and
other INT 21H DOS functions, are replaced in Win32 by named 32-bit calls. See the list of DOS INT 21H
calls and their equivalent Win32 API functions.

INT 21 and Win32 equivalent functions
See also

INT 21H function DOS operation Win32 API equivalent
0EH Select disk SetCurrentDirectory
19H Get current disk GetCurrentDirectory
2AH Get date GetDateAndTime
2BH Set date SetDateAndTime
2CH Get time GetDateAndTime
2DH Set time SetDateAndTime
36H Get disk free space GetDiskFreeSpace
39H Create directory CreateDirectory
3AH Remove directory RemoveDirectory
3BH Set current directory SetCurrentDirectory
3CH Create handle CreateFile
3DH Open handle CreateFile
3EH Close handle CloseHandle
3FH Read handle ReadFile
40H Write handle WriteFile
41H Delete file DeleteFile
42H Move file pointer SetFilePointer
43H Get file attributes GetAttributesFile
43H Set file attributes SetAttributesFile
47H Get current directory GetCurrentDirectory
4EH Find first file FindFirstFile
4FH Find next file FindNextFile
56H Change directory entry MoveFile
57H Get file date/time GetDateAndTimeFile
57H Set file date/time SetDateAndTimeFile
59H Get extended error GetLastError
5AH Create unique file GetTempFileName
5BH Create new file CreateFile
5CH Lock file LockFile
5CH Unlock file UnlockFile
67H Set handle count SetHandleCount

Common compiler errors and warnings
See also
This topic describes some of the common compiler errors and warnings you might get when trying to
make your application compile cleanly with all messages enabled, and with or with out STRICT defined.
Warning: Call to function funcname with no prototype.
This means that a function was used before it was prototyped, or declared. It can also arise when a
function that takes no arguments is not prototyped with void:
void bar(); /* Should be: bar(void) */
void main(void)
{
 bar();
}
Warning: Conversion may lose significant digits
This warning results when a value is converted by the compiler, such as from LONG to int. You’re being
warned because you might lose information from this cast. If you’re sure there are no information-loss
problems, you can suppress this warning with the appropriate explicit cast to the smaller type.
Warning: Function should return a value
This warning means that a function declared to return a value does not return a value. In older, non-
ANSI C code, it was common to declare functions that did not return a value with no return type:
foo(i)
int i;
{
...
}
Functions declared in this manner are treated by the compiler as being declared to return an int. If the
function does not return anything, it should be declared void:
void foo(int i)
{
...
}

Error: Lvalue required
Error: Type mismatch in parameter
These errors indicate that you are trying to assign or pass a non-pointer type when a pointer type is
required. With STRICT defined, all handle types as well as LRESULT, WPARAM, and LPARAM are
internally declared as pointer types, so trying to pass an int, WORD, or LONG as a handle will result in
these errors.
These errors should be fixed by properly declaring the non-pointer values you’re assigning or passing.
In the case of special constants such as (HWND)1 to indicate “insert at bottom” to the window
positioning functions, you should use the new macro (such as HWND_BOTTOM). Only in rare cases
should you suppress a type mismatch error with a cast. This can often generate incorrect code.
Error: Type mismatch in redeclaration of paramname
This error will result if you have inconsistent declarations of a variable, parameter, or function in your
source code.
Warning: Conversion may lose significant digits
This warning results when a value is converted by the compiler, such as from LONG to int. You’re being
warned because you may lose information from this cast. If you’re sure there are no information-loss
problems, you can suppress this warning with the appropriate explicit cast to the smaller type.
Warning: Non-portable pointer conversion

This error results when you cast a near pointer or a handle to a 32-bit value such as LRESULT,
LPARAM, LONG or DWORD. This warning almost always represents a bug, because the high order 16
bits of the value will contain a non-zero value. The compiler first converts the 16-bit near pointer to a 32-
bit far pointer by placing the current data segment value in the high 16 bits, then converts this far pointer
to the 32-bit value.
To avoid this warning and ensure that a 0 is placed in the high 16 bits, you must first cast the handle to a
UINT:
HWND hwnd;
LRESULT result = (LRESULT)(UINT)hwnd;
In cases where you do want the 32-bit value to contain a far pointer, you can avoid the warning with an
explicit cast to a far pointer:
char near* pch;
LPARAM lParam = (LPARAM)(LPSTR)pch;
Error: Size of the type is unknown or zero
This error results from trying to change the value of a void pointer with + or +=. These typically result
from the fact that certain Windows functions that return pointers to arbitrary types (such as GlobalLock
and LocalLock) are defined to return void FAR* rather than LPSTR.
To solve these problems, you should assign the void* value to a properly declared variable (with the
appropriate cast):
BYTE FAR* lpb = (BYTE FAR*)GlobalLock(h);
lpb += sizeof(DWORD);
Error: Not an allowed type
This error typically results from trying to dereference a void pointer. This usually results from directly
using the return value of GlobalLock or LocalLock as a pointer. To solve this problem, assign the return
value to a variable of the appropriate type (with the appropriate cast) before using the pointer:
BYTE FAR* lpb = (BYTE FAR*)GlobalLock(h);
*lpb = 0;
Warning: Parameter paramname is never used
This message can result in callback functions when your code does not use certain parameters. You can
either turn off this warning, use #pragma argsused to suppress it, or you can omit the name of the
parameter in the function definition.
By adhering to the Win32 API, and using STRICT to make code changes you will make your Windows
code portable.

Building Win32 executables
See also
You must use the proper tools, switches, libraries, and start-up code to build a Win32 application. The
following table lists the compiler (BCC32) and linker (TLINK32) switches, libraries and start-up code
commonly needed when linking, and the resulting executable type (.DLL or .EXE).

BCC32 options TLINK32 option Libraries Startup code
Creates this
executable type

–tW, –tWE /Tpe cw32.lib import32.lib c0w32.obj .EXE
–tWD, –tWDE /Tpd cw32.lib import32.lib c0d32.obj .DLL
–tWC /Tpe /ap cw32.lib import32.lib c0x32.obj Console .EXE
–tWCD, –tWCDE /Tpd /ap cw32.lib import32.lib c0d32.obj .DLL

Using Dynamic-Link Libraries
See also
Using DLLs in your applications reduces .EXE file size, conserves system memory, and provides more
flexibility in changing, extending, or upgrading your applications. Windows supports both dynamic linking
and static linking.

Creating a DLL
You create a DLL in much the same way you create an EXE:

Source files containing your code are compiled into .OBJ files
.OBJ files are linked together

The DLL, however, has no main function, and is therefore linked differently.
The following topics describe how to write a DLL:
Borland DLLs
DLLs and 16-bit Memory Models
Exporting and Importing Classes
Exporting and Importing Functions
LibMain and DllEntryPoint
WEP (Windows Exit Procedure)

Static Linking
When an application uses a function from a static-link library (for example, the C run-time library), a
copy of that function is bound to your application by TLINK at link time. Two applications running
simultaneously that use the same function would each have their own copy of that function. It is more
efficient, however, if both applications shared a single copy of the function. Dynamic linking provides this
capability by resolving your application's references to external functions at run time.

Dynamic linking
When a program uses a function from a DLL, the function code is not linked into the .EXE. Instead,
dynamic linking uses a two-step method:
1. At link time, TLINK binds import records (which contain DLL and procedure-location information) to

your .EXE. This temporarily satisfies any external references to DLL functions in your code. These
import records are supplied by module-definition files or import libraries.

2. At run time, the import-record information is used to locate and bind the DLL functions to your
program.

With dynamic linking, your applications are smaller because
Only one copy of the function code is linked into your application.
System memory is conserved because DLL code and resources are shared among applications.

DLL
A DLL is an executable library module containing functions or resources for use by applications or other
DLLs. A DLL has no main function, which is the usual entry point for an application. Instead, a DLLs has
multiple entry points, one for each exported function.
When a DLL is loaded by the operating system, the DLL can be shared among multiple applications;
one loaded copy of the DLL is all that's necessary.

LibMain and DllEntryPoint
Using Dynamic-link Libraries (DLLs)

Syntax
int FAR PASCAL LibMain (HINSTANCE hInstance, WORD wDataSeg, WORD cbHeapSize,
LPSTR lpCmdLine)

Description
You must supply the LibMain function for 16-bit programs, or the DllEntryPoint (32 bit Windows API)
function for 32-bit programs as the main entry point for a DLL.

For 16-bit programs, Windows calls LibMain once, when the library is first loaded. LibMain
performs initialization for the DLL.

For 32-bit programs, Windows calls DllEntryPoint each time the DLL is loaded and unloaded (it
replaces WEP for 32-bit applications), each time a process attaches to or detaches from the DLL, or each
time a thread within the process is created or destroyed.
DLL initialization depends almost entirely on the function of the particular DLL, but might include the
following typical tasks:

Unlocking the data segment with UnlockData, if it has been declared as MOVEABLE.
Setting up global variables for the DLL, if it uses any.

The initialization code is executed only for the first application using the DLL.
The DLL startup code initializes the local heap automatically; you don't need to include code in LibMain
to do this.
The following parameters (defined in windows.h) are passed to LibMain:

Parameter Type Description
HANDLE hInstance Instance handle of the DLL
WORD wDataSeg Value of the data segment (DS) register
WORD cbHeapSize Size of the local heap specified in the module definition file for

the DLL.
LPSTR lpCmdLine A far pointer to the command line specified when the DLL was

loaded.
 This value is almost always null because DLLs are typically loaded automatically

with no parameters. It is possible, however, to supply a
command line to a DLL when it is loaded explicitly.

Return Value
On success, LibMain returns 1 (successful initialization).
On error, it returns 0 (failure in initialization).
Note: If LibMain returns 0, Windows unloads the DLL from memory.

WEP (Windows Exit Procedure)
Using Dynamic-link Libraries (DLLs)

Syntax
 int FAR PASCAL WEP (int nParameter)
where nParameter is either
WEP_SYSTEM_EXIT(indicates that all of Windows is shutting down)
WEP_FREE_DLL (indicates that only this DLL is being unloaded)

Description
The exit point for a 16-bit DLL is the function WEP (Windows Exit Procedure). This function is not
required in a DLL (because the Borland C++ run-time libraries provide a default), but you can supply
your own WEP to perform any DLL cleanup before the DLL is unloaded from memory. Windows calls
WEP just prior to unloading the DLL.
Under Borland C++, WEP does not need to be exported. Borland C++ defines its own WEP that calls
your WEP (if you have defined one), and then performs system cleanup.

Return Value
WEP returns 1 to indicate success. Windows currently does not do anything with this return value.

Exporting and Importing Functions
Using Dynamic-link Libraries (DLLs)
To make your DLL functions accessible to other applications (.EXEs or other DLLs) the function names
must be exported. To use exported functions, the function names must be imported.

Exporting Functions
There are two ways to export functions:

Create a module-definition file with an EXPORTS section listing all functions that will be used by
other applications. The IMPDEF tool can help you do this.

Precede every function name to be exported in the DLL with the keyword _export in the function
definition.
A function must be exported from a DLL before it can be imported to another DLL or application.

Importing Functions
If a Windows application module or another DLL uses functions from a DLL, you must tell the linker that
you want to import the functions. There are three ways to do this:

Add an IMPORTS section to the module-definition file and list every DLL function that the module
will use.

Include the import library for the DLLs when you link the module. The IMPLIB tool creates an
import library for one or more DLLs.

Define your function using the _import keyword (32-bit applications only).

DLLs and 16-bit memory models
Using Dynamic-link Libraries (DLLs)
Functions in a DLL are not linked directly into a Windows application. They are called at run time
instead. Calls to DLL functions, therefore, will be far calls because the DLL will have a different code
segment than the application. The data used by called DLL functions also need to be far.
Suppose you have a Windows application called APP1, a DLL defined by LSOURCE1.C, and a header
file for that DLL called lsource1.h. Function f1, which operates on a string, is called by the application.
If you want the function to work correctly regardless of the memory model used to compile the DLL, you
need to explicitly make the function and its data far. In the header file lsource1.h, the function prototype
would take this form:
 extern int _export FAR f(char FAR *dstring);
In the DLL source LSOURCE1.C, the implementation of the function would take this form:
int FAR f1(char far *dstring)
{...
}
For the application to use the function, the function must be compiled as exportable and then exported.
To accomplish this, you can either compile the DLL with all functions exportable (-WD) and list f1 in the
EXPORTS section of the module-definition file, or you can flag the function with the _export keyword, as
follows:
int FAR _export f1(char far *dstring)
{...
}
If you compile the DLL under the large model (far data, far code), then you don't need to explicitly define
the function or its data as far in the DLL. In the header file, the prototype would still take the form shown
here because the prototype would need to be correct for a module compiled with a smaller memory
model:
 extern int FAR f1(char FAR *dstring);
In the DLL, however, the function could be defined like this:
int _export f1(char *dstring)
{
...
}

Remember that before an application can use f1, it has to be imported into the application, either by
listing f1 in the IMPORTS section of a module-definition file or by linking with an import library for the
DLL.

Exporting and Importing Classes
Using Dynamic-link Libraries (DLLs)
To use classes in a DLL, the class must be exported from the .DLL file and imported by the .EXE file.
Conditionalized macro expansion can be used to support both of these circumstances. For example,
include something similar to the following code in a header file:
#if defined (BUILDING_YOUR_DLL)
 #define _YOURCLASS _export
#elif defined(USING_YOUR_DLL)
 #define _YOURCLASS _import
#else
 #define _YOURCLASS
#endif
In your definitions, define your classes like this:
class _YOURCLASS class1 {

// ...

};

Define BUILD_YOUR_DLL (with the -D option, for example) when you are building your DLL. The
_YOURCLASS macro will expand to _import. Define USE_YOUR_DLL when you are building the .EXE
which will use the DLL. The _YOURCLASS macro will expand to _import.
See also the discussion on using _export with C++ classes .
See also the discussion on exporting and importing templates.

Static Data in 16-bit DLLs
See also Using Dynamic-link Libraries (DLLs)
Through the functions in a DLL, all applications using the DLL have access to the global data in the DLL.
In 16-bit DLLs, a particular function will use the same data, regardless of the application that called it
(unlike 32-bit DLLs where all data is private to the process). If you want a 16-bit DLL's global data to be
protected for use by a single application, you need to write that protection yourself. The DLL itself does
not have a mechanism for making global data available to a single application. If you need data to be
private for a given caller of a DLL, you need to dynamically allocate the data and manage the access to
that data manually. Static data in a 16-bit DLL is global to all callers of a DLL.

Borland DLLs
General forms of compiler and linker command lines that use the DLL versions of the Borland run-time
libraries and class libraries are described below.
Here is a 16-bit compile and link using the DLL version of the run-time library:
 bcc -c -D_RTLDLL -ml source.cpp
 tlink -C -Twe c0wl source, , , import crtldll
Note that the macro _RTLDLL and the -ml switch are use.
Here is the 32-bit version:
 bcc32 -c -D_RTLDLL source.cpp
 tlink32 -Tpe -ap c0x32 source, , , import32 cw32i
Here is a 16-bit compile and link using the DLL version of the class library:
 bcc -c -D_BIDSDLL -ml source.cpp
 tlink -C -Twe c0wl source, , , import bidsi crtldll
Here is a 32-bit compile and link using the DLL version of the class library:
 bcc32 -c -D_BIDSDLL source.cpp
 tlink32 -Tpe -ap c0x32 source, , , import32 bidsfi cw32i

C++ Exception Handling
See also
These topics describe the C++ error-handling mechanism generally referred to as exception handling.
The Borland C++ implementation is consistent with the proposed ANSI specification.

Throwing an Exception
Handling an Exception
Exception Specifications
Constructors and Destructors in Exception Handling
Unhandled Exceptions
Setting Exception Handling Options

The C++ language defines a standard for exception handling. The standard insures that the power of
object-oriented design is supported throughout your program. An especially strong feature of the
standard is the availability of virtual functions and the use of objects to define exceptions. Virtual
functions guarantee a minimum of runtime overhead--zero additional program overhead if no exceptions
are thrown.
In accordance with the ANSI/ISO working paper specification, Borland C++ supports the termination
exception-handling model. When an abnormal situation arises at runtime, the program should terminate.
However, throwing an exception allows you to gather information at the throw point that could be useful
in diagnosing the causes which led to failure. You can also specify in the exception handler the actions
to be taken before the program terminates. Only synchronous exceptions are handled, meaning that the
cause of failure is generated from within the program. An event such as Control-C (which is generated
from outside the program) is not considered to be an exception.
When the program encounters an abnormal situation for which it is not designed, you may transfer
control to some other part of the program that is designed to deal with the problem. This is done by
throwing an exception.
The exception-handling mechanism requires the use of three keywords: try, catch, and throw. The try-
block specified by try must be followed immediately by the handler specified by catch. If an exception is
thrown in the try-block, program control is transferred to the appropriate exception handler. The program
should attempt to catch any exception that is thrown by any function. Failure to do so could result in
abnormal termination of program.
Although C++ allows an exception to be of any type, it is useful to make exceptions objects. The
exception object is treated exactly the way any object would. An exception carries information from the
point where the exception is thrown to the point where the exception is caught. This is information that
the program user will want to know when the program encounters some anomaly at runtime.

Throwing an Exception
See also Example C++ Exception Handling
A block of code in which an exception can occur must be prefixed by the keyword try. Following the try
keyword is a block of code enclosed by braces. This indicates that the program is prepared to test for
the existence of exceptions. If an exception occurs, the program flow is interrupted. The sequence of
steps taken is as follows:

The program searches for a matching handler
If a handler is found, the stack is unwound to that point
Program control is tranferred to the handler

If no handler is found, the program will call the terminate function. If no exceptions are thrown, the
program executes in the normal fashion.
A throw expression is also referred to as a throw-point. You can specify whether an exception may be
thrown by using one of the following syntax specifications:
When an exception occurs, the throw expression initializes a temporary object of the type T (to match
the type of argument arg) used in throw(T arg). Other copies can be generated as required by the
compiler. Consequently, it can be useful to define a copy constructor for the exception object.

Example 1
throw throw_object;
This example specifies that throw_object is to be passed to a handler.

Example 2
throw;
This example simply specifies that the last exception thrown is to be thrown again. An exception must
currently exist. Otherwise, terminate is called.

Example 3
void my_func1() throw (A, B)
{
 // Body of function.
}
This example specifies a list of exceptions that my_func1 can throw. No other exceptions will propagate
out of my_func1. If an exception other than A or B is generated within my_func1, it is considered to be
an unexpected exception and program control will be transferred to the unexpected function.

Example 4
void my_func2() throw ()
{
 // Body of this function.
}
The final case specifies that my_func2 will throw no exceptions. If any function in the body of my_func2
throws an exception, such an exception will not exist beyond the body of my_func2.

Handling an Exception
See also Examples C++ Exception Handling
The exception handler is indicated by the catch keyword. The handler must be used immediately after
the try-block. The keyword catch can also occur immediately after another catch. Each handler will only
evaluate an exception that matches, or can be converted to, the type specified in its argument list.
Every exception thrown by the program must be caught and processed by the exception handler. If the
program fails to provide an exception handler for a thrown exception, the program will call terminate.
Exception handlers are evaluated in the order that they are encountered. An exception is caught when
its type matches the type in the catch statement. Once a type match is made, program control is
transferred to the handler. The stack will have been unwound upon entering the handler. The handler
specifies what actions should be taken to deal with the program anomaly.
A goto statement can be used to transfer program control out of a handler but such a statement can
never be used to enter a handler.
After the handler has executed, the program can continue at the point after the last handler for the
current try-block. No other handlers are evaluated for the current exception.

Examples
Example 1
Example 2

Example 1
try {
 // Include any code that might throw an exception
}
catch (T X) // Provide a handler for each exception that might be thrown
above

{
 // Take some actions
}
This example is specifically defined to handle an object of type T. If the argument is T, T&, const T, or
const T&, the handler will accept an object of type X if any of the following are true:

T and X are of the same type
T is an accessible base class for X in the throw expression
T is a pointer type and X is a pointer type that can be converted to T by a standard pointer

conversion in the throw expression

Example 2
try {
 // Include any code that might throw an exception
}
catch (...)
{
 // Take some actions
}
The statement catch (...) will handle any exception, regardless of type. This statement, if used, must
be the last handler for its try-block.

Exception Specifications
See also Examples C++ Exception Handling
The C++ language makes it possible for you to specify any exceptions that a function can throw. This
exception specification can be used as a suffix to the function declaration. The syntax for exception
specification is as follows:
exception-specification:
 throw (type-id-listopt)
 type-id-list:
 type-id
 type-id-list, type-id
The function suffix is not considered to be part of the function's type. Consequently, a pointer to a
function is not affected by the function's exception specification. Such a pointer checks only the
function's return and argument types. Therefore, the following is legal:
void f2(void) throw(); // Should not throw exceptions
void f3(void) throw (BETA); // Should only throw BETA objects
void (* fptr)(); // Pointer to a function returning void
fptr = f2;
fptr = f3;
Extreme care should be taken when overriding virtual functions. Again, because the exception
specification is not considered part of the function type, it is possible to violate the program design.
If an exception is thrown which is not listed in the exception specification, the unexpected function will
be called.

Examples
Example 1
Example 2
Example 3

Example 1
In the following example, the derived class BETA::vfunc is defined so that it should not throw any
exceptions--a departure from the original function declaration.
class ALPHA {
public:
 struct ALPHA_ERR {};
 virtual void vfunc(void) throw (ALPHA_ERR) {}; // Exception specification
};

class BETA : public ALPHA {
 void vfunc(void) throw() {}; // Exception specification is changed
};
The following are examples of functions with exception specifications.
void f1(); // The function can throw any exception

void f2() throw(); // Should not throw any exceptions

void f3() throw(A, B*); // Can throw exceptions publicly derived from A,
 // or a pointer to publicly derived B
The definition and all declarations of such a function must have an exception specification containing the
same set of type-id's. If a function throws an exception not listed in its specification, the program will call
unexpected. This is a runtime issue--it will not be flagged at compile time. Therefore, care must be taken
to handle any exceptions which can be thrown by elements called within a function.

Example 2
// HOW TO MAKE EXCEPTION-SPECIFICATIONS AND HANDLE ALL EXCEPTIONS
#include <iostream.h>

// EXCEPTION DECLARATIONS
class Alpha {
 // Include something that shows why you chose to throw this exception.
};
Alpha alpha_inst;

class Beta {
 // Include something that shows why you chose to throw this exception.
};
Beta beta_inst;

// THROW ONLY Alpha OR Beta TYPE OBJECTS
void f3(char c) throw (Alpha, Beta) {
 cout << "f3() was called" << endl;
 if (c == 'a')
 throw(alpha_inst);
 if (c == 'b')
 throw(beta_inst);
 else ; // DO NOTHING WITH OTHER CHARACTERS
 }

// SHOULD NOT THROW EXCEPTIONS
void f2(char ch) throw() {
 try { // WRAP ALL CODE IN A TRY-BLOCK
 cout << "f2() was called" << endl;
 f3(ch);
 }
 // HERE ARE HANDLERS FOR THE EXCEPTIONS WE KNOW COULD BE THROWN
 catch (Alpha& alpha_inst) { cout << "Caught Alpha exception.";}
 catch (Beta& beta_inst) { cout << "Caught Beta exception.";}

 // IF THE CODE IS MODIFIED LATER SO THAT SOME
 // OTHER EXCEPTION IS THROWN, IT IS HANDLED HERE
 // AND WE AVOID VIOLATING THE f2() THROW SPECIFICATION
 catch (...) {
 // BUT, WE POST OURSELVES A WARNING MESSAGE.
 cout << "Warning: f2() has elements with exceptions!" << endl;
 }
 }

int main(void) {
 char trigger;

 try {
 cout << "Input a character:";
 cin >> trigger;
 f2(trigger);
 cout << "\nSuccess.";
 return 0; // WE GET HERE ONLY IF EVERYTHING EXECUTES WELL.
 }
 catch (...) {
 cout << "Need more handlers!";

 return 1;
 }
 }

Sample output when ‘a’ is the input:
Input a character: a
f2() was called
f3() was called
Caught Alpha exception.
Success.

Example 3
The following examples illustrate the sequence of events which can occur when unexpected is called.

Program behavior when a function is registered with set_unexpected():
unexpected() // CALLED AUTOMATICALLY
 |
 |
 | // DEFINE YOUR UNEXPECTED HANDLER
 | unexpected_function my_unexpected(void)
 | {
 | // DEFINE ACTIONS TO TAKE
 | // POSSIBLY MAKE ADJUSTMENTS
 | }
 |
 | // REGISTER YOUR HANDLER
 | set_unexpected(my_unexpected);
 |
my_unexpected();
Program behavior when no function is registered with set_unexpected() but there is a function
registered with set_terminate():
unexpected() // CALLED AUTOMATICALLY
 |
 |
 | // DEFINE YOUR TERMINATION SCHEME
 | terminate_function my_terminate(void)
 | {
 | // TAKE ACTIONS BEFORE TERMINATING
 | // SHOULD NOT THROW EXCEPTIONS
 | exit(1); // MUST END SOMEHOW.
 | }
 |
 | // REGISTER YOUR TERMINATION FUNCTION
 | set_terminate(my_terminate)
 |
terminate()
 |
my_terminate()
// PROGRAM ENDS.

Constructors and Destructors in Exception Handling
See also C++ Exception Handling
When an exception is thrown, the copy constructor is called for the exception. The copy constructor is
used to initialize a temporary object at the throw point. Other copies may be generated by the program.
When program flow is interrupted by an exception, destructors are called for all automatic objects which
were constructed since the beginning of the the try-block was entered. If the exception was thrown
during construction of some object, destructors will be called only for those objects which were fully
constructed. For example, if an array of objects was under contruction when an exception was thrown,
destructors will be called only for the array elements which were already fully constructed.
The effect of calling destructors for automatic objects is referred to as stack unwinding. Stack unwinding
always occurs. Destructors are called by default but the default can be switched off.

Unhandled Exceptions
See also C++ Exception Handling
If an exception is thrown and no handler is found it, the program will call the terminate function. This
example illustrates the series of events that can occur when the program encounters an exception for
which no handler can be found.
terminate();
 .
 .
 .
abort(); // PROGRAM ENDS.

Setting Exception Handling Options
See also C++ Exception Handling

Command-Line
IDE Setting Switch
Enable exception handling -x
Enable destructor cleanup -xd
Enable throwing exceptions from a DLL -xds
Enable exception location information -xp

C-Based Structured Exceptions
See also
Borland C++ provides support for program development that makes use of structured exceptions. You
can compile and link a C source file that contains an implementation of structured exceptions. In a C
program, the ANSI-compatible keywords used to implement structured exceptions are _ _except,
_ _finally , and _ _try .
Note: The _ _finally and _ _try keywords can appear only in C programs.

try-except Exception-Handling Syntax
For try-except exception-handling implementations the syntax is as follows:
try-block:
 _ _try compound-statement (in a C module)
 try compound-statement (in a C++ module)
handler:
 _ _except (expression) compound-statement
try-finally Termination Syntax
For try-finally termination implementations the syntax is as follows:
try-block:
 _ _try compound-statement
termination:
 _ _finally compound-statement

See your Win32 documentation for additional details on the implementation of structured exceptions for
16- and 32-bit platforms.

Using C-Based Exceptions in C++ Programs
See also Example
Borland C++ allows substantial interaction between C and C++ error handling mechanisms. The

following interactions are supported:
C structured exceptions can be used in C++ programs.
C++ exceptions cannot be used in a C program because C++ exceptions require that their

handler be specified by the catch keyword and catch is not allowed in a C program.
An exception generated by a call to the RaiseException function is handled by a try/_ _except or

_ _try/_ _except block. All handlers of try/catch blocks are ignored when RaiseException is called.
The following C exception helper functions can be used in a C and C++ programs:

GetExceptionCode
GetExceptionInformation
SetUnhandledExceptionFilter
UnhandledExceptionFilter

Borland C++ does not enforce the use of UnhandledExceptionFilter function only in the except filter of
_ _try/_ _except or try/_ _except blocks. However, program behavior is undefined when this function is
called outside of the _ _try/_except or try/_ _except block.
The full functionality of an _ _except block is allowed in C++. If an exception is generated in a C
module, it is possible to provide a handler-block in a separate calling C++ module. If no handler is found
in the calling module, the default action is to terminate the program.
If a handler can be found for the generated structured exception, the following actions can be taken:

execute the actions specified by the handler
ignore the generated exception and resume program execution
continue the search for some other handler (regenerate the exception)

These actions are consistent with the design of structured exceptions.
The _ _try/_ _finally ensures that the code in the _ _finally block is executed no matter how the flow
within the _ _try exits. The _ _finally keyword is not allowed in a C++ program and the _ _try/_ _finally
block is not supported in a C++ program.
Even though the _ _try/_ _finally block is not supported in a C++ program, a C-based exception
generated by the operating system or the program can still result in proper stack unwinding by using
local objects within destructors. Any module compiled with the -xd compiler option will have destructors
invoked for all objects with auto storage. Stack unwinding occurs from the point where the exception is
thrown to the point where the exception is caught.

C-Based Exceptions in C++ Programs Example
/* In PROG.C */
void func(void) {

 .
 .
 .
 /* generate an exception */
 RaiseException(/* specifiy your arguments */);

 .
 .
 .
}

// In CALLER.CPP
// How to test for C++ or C-based exceptions.
#include <excpt.h>
#include <iostream.h>

int main(void) {
 try
 { // test for C++ exceptions
 try
 { // test for structured exceptions
 func();
 }
 __except(/* filter-expression */)
 {
 cout << "A structured exception was generated.";

 .
 .
 .
 /* specify actions to take for this structured exception */
 return -1;
 }
 return 0;
 }
 catch (...)
 {
 // handler for any C++ exception
 cout << "A C++ exception was thrown.";
 return 1;
 }
}

International API (16-bit)
See Also
Borland C++ provides support for international program development. For 16-bit applications, support is
provided only for the Great Britain and United States English, French, and German locales.
Note: For 32-bit applications, full support is provided for multibyte and Unicode character processing as

well as locale support via code page selection. See International API Routines. for a description of
the 32-bit implementation.

To illustrate the effects of selecting different locales, Borland C++ provides a sample ObjectWindows
application named INTLDEMO.EXE.
The LOCALE.BLL file is installed in BC5\BIN directory.
Support for these locales is contained in the LOCALE.BLL library. By default, the C locale is in effect. A
call to setlocale will

dynamically link the LOCALE.BLL library to your program.
enable a locale-specific module.
specify which character set (also called code page or code set) to use with the locale

You can query the locale settings by using localeconv and setlocale functions.
If the call to setlocale can be resolved, several character-handling functions change their behavior.
Note: Because the 16-bit version of the Borland C++ international API supports only 8-bit characters

(thereby enabling recognition of as many as 256 characters), only single-byte character-handling
functions are affected. For a list of affected functions, see International API Routines.

In your code, you must #define _ _USELOCALES_ _ to have the locale-sensitive functions available.
Otherwise, only the C type locale macros will be used.

See Also
International API Routines.InternationalAPIRoutines16bit
International API Routines.InternationalAPIRoutines
International API Sample Program

International API Sample Program (ANSI character set)
See Also
To illustrate the effects of selecting different locales, Borland C++ provides a sample ObjectWindows
application named INTLDEMO.EXE
INTLDEMO is located in BC5\EXAMPLES\OWLAPPS\INTLDEMO which includes all source code and a
project file.
Note: You must install ObjectWindows before you can build INTLDEMO.EXE.
It demonstrates how the setlocale function can produce an internationally aware Windows application.
The program lets you choose to display the user interface in English, French, or German.

ANSI Character Set
INTLDEMO displays the Windows ANSI character set (also referred to as the WIN 1252 character set)
in a 16-by-16 character grid.
Characters are highlighted according to the selections under the Locale and Classification menus. When
you run INTLDEMO, the screen shows the default C locale, and the default classification is isalpha. The
highlighted characters are A to Z and a to z. If you select another locale such as French, the accented
versions of the characters are also highlighted. Various combinations of locale and classification can be
illustrated by selecting the appropriate menu items.

File Menu
Choose File|List to open a dialog box that demonstrates the effects of the locale on

collation sequences
date and time functions

The files in the current directory are sorted according to the current locale. File dates and times display
according to the conventions in the language of the selected locale.
File names can be switched between upper and lower case to demonstrate the effects of the toupper
and tolower functions in the current locale. The dialog also illustrates the effects of the BWCCIntlInit
function on the OK, Cancel, and Help buttons of the dialog.
You can select any file in the directory to view and sort its contents according to the locale collation
sequence currently selected.

Conventions Menu
Choose Conventions|Show to display the results of calling the localeconv function for the current locale.
For example, if you select the French locale, the international currency symbol becomes FRF and the
currency symbol becomes F.
Note: If you keep the Conversions window open as you select a new language or locale, its values are

updated immediately.

Language Menu
Use the Language menu to change the language of the user interface. This feature uses
ObjectWindows to associate windows interface elements to a module, in this case a .DLL that contains
the resources in a particular language.
When you change the language, the program loads a new language DLL and then reloads the interface
elements from the new DLL.
Note: Date and times in the File List dialog are not affected by the change in language, but by the

choice of locale.

Classification Menu
Use the Classification menu to see a list of the locale-sensitive is....() functions. Selecting one of these
items will highlight characters in the main window that return true for the selected function in the current
locale.

See Also
Classification Routines
International API Routines.

The Inline Assembler (BASM)
With the Borland C++ inline assembler, you can write 8086/8087 and 80286/80287 assembler code
directly inside your C and C++ programs.

Index to Inline Assembler Help
asm
assembler directive
expression classes
expression operators
expression symbols
expression types
expressions
instruction opcodes
labels
numeric constants
operands
predefined type symbols
prefix opcodes
register symbols
relocatable expressions
reserved words
string constants

Using the Inline Assembler
You access the inline assembler through assembler statements (with the asm directive).

Expressions
The Borland C++ inline assembler operands are expressions. The basic elements of an expression are
constants, registers, symbols, and operators.
The inline assembler divides expressions into three classes:
registers
memory references
immediate values

Symbols
The inline assembler provides access to almost all C++ symbols in assembler expressions, including
labels, constants, types, variables, procedures, and functions.
In addition to any currently declared C++ types, the inline assembler provides several predefined type
symbols.

Constants
The Borland C++ inline assembler supports two types of constants:
numeric constants
string constants

Opcodes, Operators, and Directives
The Borland C++ inline assembler supports:

All 8086/8087 and 80286/80287 instructions
Opcodes

Most Turbo Assembler expression operators
Turbo Assembler's define byte, define word, and define double word directives (DB, DW, and DD)

The inline assembler also implements a large subset of the syntax supported by Turbo Assembler and
Microsoft's Macro Assembler.
Note: If you plan to do a lot of assembly language programming, you can use TASM (the stand-alone

assembler) to create entire modules coded in assembly language. These .OBJ file modules can
then be linked into your C++ applications. TASM, sold separately from Borland C++, supports all
80x86 processors and contains complete documentation on the assembler and assembly
language.

Inline Assembler Operands
Inline assembler operands are expressions made up of a combination of constants, registers, symbols,
and operators.
Although inline assembler expressions are built using the same basic principles as C++ expressions,
there are some important differences.
The inline assembler:

Recognizes its own set of reserved words.
Evaluates all expressions as 32-bit integer values.
Interprets variable references as the address of the variable. (C++ interprets them as the

variable's contents.)
Also, all inline assembler expressions must resolve to a constant value.

Inline Assembler Expressions
The Borland C++ inline assembler operands are expressions.
Inline assembler expressions are built from expression elements (constants, registers, and symbols)
and operators. Each expression has an associated expression class and expression type.

Evaluation
The inline assembler evaluates all expressions as 32-bit integer values. It does not support floating-point
and string values, except string constants.
Note: The most important difference between C++ expressions and inline assembler expressions is that

all inline assembler expressions must resolve to a constant value (a value that can be computed
at compile time).

Inline Assembler Expression Classes
The inline assembler divides expressions into three classes:
registers
memory references
immediate values

Inline Assembler Expression Operators
This table lists the inline assembler's expression operators in decreasing order of precedence.
The operators within each category have equal precedence.

Category Operator What it is (or does)
Highest (...) Subexpression

[...] Memory reference
 . Structure member selector

Unary HIGH Returns high-order 8 bits
LOW Returns low-order 8 bits
+ Unary plus
- Unary minus
: Segment override
OFFSET Returns offset part
SEG Returns segment part
TYPE Returns type (byte size)
PTR Typecast
* Multiplication
/ Integer division
MOD Integer modulus (remainder)
SHL Logical shift left
SHR Logical shift right

Additive + Binary addition
- Binary subtraction

Bitwise NOT Bitwise negation
AND Bitwise AND
OR Bitwise OR
XOR Bitwise Exclusive OR

Inline Assembler Expression Types
Every inline assembler expression has an associated type.
This type is a size, because the inline assembler regards the type of an expression as the size of its
memory location.
The inline assembler performs type checking whenever possible; an error results if the type check fails.
You can use a typecast to change the type of a memory reference. For example, all of these refer to the
first (least significant) byte of the OutBufPtr variable:
asm {
 MOV DL,BYTE PTR OutBufPtr
 MOV DL,Byte(OutBufPtr)
 MOV DL,OutBufPtr.Byte
}
In some cases, a memory reference is untyped (it has no associated type); for example, an immediate
value enclosed in square brackets:
asm {
 MOV AL,[100H]
 MOV BX,[100H]
}
The inline assembler permits both of these instructions because

the expression [100H] has no associated type (it just means "the contents of address 100H in
the data segment") and

the type can be determined from the first operand (byte for AL, word for BX).
In cases where the type can't be determined from another operand, the inline assembler requires an
explicit typecast, like this:
asm {
 INC BYTE PTR [100H]
 IMUL WORD PTR [100H]
}

Inline Assembler Predefined Type Symbols
In addition to any currently declared C++ types, the inline assembler provides these predefined type
symbols.

Symbol Type
BYTE 1
WORD 2
DWORD 4
NEAR 0FFFEH
FAR 0FFFFH

Inline Assembler NEAR and FAR Pseudo-Types
The NEAR and FAR pseudo-types are used by procedure and function symbols to indicate their call
model.
You can use NEAR and FAR in typecasts just like other symbols. For example, if FarFunction is a FAR
function:
void far farFunction (void);
and you're writing inline assembler code in the same module as FarFunction, you can use the more
efficient NEAR call instruction to call FarFunction:
asm {
 PUSH CS
 CALL NEAR PTR FarFunction
}

Inline Assembler Register Expressions
An inline assembler expression that consists solely of a register name is a register expression.
Examples of register expressions are AX, CL, DI, and ES.
Used as operands, register expressions direct the assembler to generate instructions that operate on
the CPU registers.

Inline Assembler Memory Reference Expressions
Inline assembler expressions that denote memory locations are memory references.
C++'s labels, variables, typed constants, procedures, and functions belong to this category.
Memory references are further classified as either relocatable or absolute expressions.

Inline Assembler Immediate Value Expressions
Inline assembler expressions that aren't registers and aren't associated with memory locations are
immediate values.
This group includes C++'s untyped constants.
Immediate values are further classified as either relocatable or absolute expressions.

Inline Assembler Relocatable vs. Absolute Expressions
Typically, an expression that refers to a label, variable, procedure, or function is relocatable, and an
expression that operates solely on constants is absolute.

A relocatable expression denotes a value that requires relocation at link time.
An absolute expression denotes a value that requires no such relocation.

(Relocation is the process by which the linker assigns absolute addresses to symbols.)
At compile time, the compiler does not know the final address of a label, variable, procedure, or function.
The final address does not become known until link time, when the linker assigns a specific absolute
address to the symbol.
The inline assembler allows you to carry out any operation on an absolute value, but it restricts
operations on relocatable values to addition and subtraction of constants.

Inline Assembler Register Symbols
In the Borland C++ inline assembler, the following reserved symbols denote CPU registers:

Symbols Registers
AX BX CX DX 16-bit general purpose
AL BL CL DL 8-bit low registers
AH BH CH DH 8-bit high registers
SP BP SI DI 16-bit pointer or index
CS DS SS ES 16-bit segment registers
ST 8087 register stack
When an operand consists solely of a register name, it is called a register operand. All registers can be
used as register operands.

Register Indexing
The base registers (BX and BP) and the index registers (SI and DI) can be written within square
brackets to indicate indexing.
These are valid index register combinations:
[BP]
[BP+DI]
[BP+SI]
[BX]
[BX+DI]
[BX+SI]
[DI]
[SI]
Segment Overriding
The segment registers (ES, CS, SS, and DS) can be used in conjunction with the colon (:) segment
override operator to indicate a different segment than the one the processor selects by default.
For example:
asm mov AX, 0xb000
asm mov ES, AX
asm mov SI, WORDPTR es:[0]

Inline Assembler Expression Symbols
The inline assembler provides access to almost all C++ symbols in assembler expressions, including
labels, constants, types, variables, procedures, and functions.
The inline assembler also provides several predefined type symbols.

Symbol Value Class Type
Label Address of label Memory Short
Constant Value of constant Immediate 0
Type 0 Memory Size of type
Field Offset of field Memory Size of type
Variable Address of variable Memory Size of type
Function Address of function Memory Near or Far

Symbols that can NOT be used
The following symbols can NOT be used in inline assembler expressions:

String, floating-point, and set constants
Functions declared with the inline modifier
Labels that aren't declared in the current block

Local Variables
Local variables (variables declared in procedures and functions) are always allocated on the stack and
accessed relative to SS:BP.
The value of a local variable symbol is its signed offset from SS:BP.
The inline assembler automatically adds [BP] in references to local variables.

Scope
A scope is provided by type, field, and variable symbols of a structure or object type.

Operator
Some symbols, such as structure types and variables, have a scope that can be accessed using the
structure member selector (.) operator.

Type Identifier
You can use a type identifier to construct variables "on the fly".

ST(x) Register Symbol
The symbol ST denotes the topmost register on the 8087 floating-point register stack.
Each of the eight floating-point registers can be referred to using ST(x), where X is a constant between
0 and 7, indicating the distance from the top of the register stack.

Inline Assembler String Constants
In inline assembler statements, string constants must be enclosed in single or double quotes.
Two consecutive quotes of the same type as the enclosing quotes count as only one character.
String constants of any length are allowed in DB directives, and cause allocation of a sequence of bytes
containing the ASCII values of the characters in the string.
When not in a DB directive, a string constant can be no longer than four characters, and denotes a
numeric value which can participate in an expression.
If the string is shorter than four characters, the leftmost (first) character(s) are assumed to be 0 (zero).
Here are some examples of string constants and their corresponding numeric values:
String Numeric
Constant Value
'a' 00000061H

'ba' 00006261H

'cba' 00636261H

'dcba' 64636261H

'a ' 00006120H

' a' 20202061H

'a'*2 000000E2H

'a'-'A' 00000020H

NOT 'a' FFFFFF9EH

Inline Assembler Numeric Constants
Inline assembler numeric constants must be integers between -2,147,483,648 and 4,294,967,295, and
they must start with one of the digits 0 through 9 or a $ character.
By default, numeric constants use decimal (base 10) notation, but the inline assembler supports binary
(base 2), octal (base 8), and hexadecimal (base 16) notations as well.
To select
this notation Write a...
Binary letter B after the number

Octal letter O after the number

Hexadecimal letter H after the number, or a $ before the number

C++ expressions allow only decimal notation and hexadecimal notation (using a $ prefix); they don't
support the B, O, and H suffixes.
When you write a hexadecimal constant using the H suffix, and the first significant digit is one of the
hexadecimal digits A through F, an extra zero (0) in front of the number is required.
Examples:
0BAD4H Hexadecimal constant
$BAD4 Hexadecimal constant
BAD4H Identifier (it starts with a letter B, not a digit)

Inline Assembler Reserved Words
Within operands, the following reserved words have a predefined meaning to the inline assembler:

Reserved Words Table
AH
AL
AND
AX
BH
BL
BP
BX
BYTE
CH
CL
CS
CX
DH
DI
DL
DS
DWORD
DX
ES
FAR
HIGH
LOW
MOD
NEAR
NOT
OFFSET
OR
PTR
SEG
SHL
SHR
SI
SP
SS
ST
TYPE
WORD
XOR
These reserved words always take precedence over user-defined identifiers.

Inline Assembler Prefix Opcodes
The inline assembler supports the following prefix opcodes:

Opcode What It Means
LOCK Bus lock
REP Repeat string operation
REPE Repeat string operation while equal
REPZ Repeat string operation while 0
REPNE Repeat string operation while not equal
REPNZ Repeat string operation while not 0
An assembler instruction can be prefixed by zero, one, two, or three of these opcodes. Any more than
three prefix opcodes won't make sense.
If you specify a prefix opcode without an instruction opcodes in the same statement, the prefix opcode
affects the instruction opcode in the next assembler statement.
Because some 80x86 processors do not handle all combinations correctly, ordering in multiple prefix
opcodes is important.

Inline Assembler Instruction Opcodes
The inline assembler supports all 8086/8087 and 80286/80287 instruction opcodes.
For complete descriptions of the instruction opcodes, refer to your 80x86 and 80x87 manuals.

See Also
inline assembler RET instructions
automatic jump sizing

Inline Assembler RET Instructions
Depending on the call model of the current procedure or function, RET generates either a near return or
a far return machine-code instruction.

Inline Assembler Jump Optimization
The inline assembler optimizes jump instructions by automatically selecting the shortest, most efficient
form of a jump instruction.
When the target is a label (not a procedure or function), this automatic jump sizing applies to JMP and to
all conditional jump instructions.

Opcode Distance to Target Label Inline Assembler Generates
JMP Within -128 to 127 bytes Short jump

NOT within -127 to 128 bytes Near jump
Conditional Within -128 to 127 bytes Short jump
Jumps NOT within -127 to 128 bytes Short jump
Jumps to the entry points of procedures and functions are always either near or far, but never short.
Conditional jumps to procedures and functions are not allowed.

Inline Assembler DB, DW, and DD Directives
The inline assembler supports three assembler directives: DB (define byte), DW (define word), and DD
(define double word).

Dir Operand Type Value Range Inline Assembler Generates
DB Constant expression -128 to 255 1 byte

Character string Any length Sequence of bytes corresponding
to ASCII code of each character

DW Constant expression -32,768 to 65,535 1 word
Address expression Near pointer (offset word)

DD Constant expression -2,147,483,648 1 double word
to 4,294,967,295

Address expression Far pointer (offset word followed by segment
word)

The data generated by the DB, DW, and DD directives is always stored in the code segment.
To generate uninitialized or initialized data in the data segment, use normal C++ declarations.
Here are some examples of DB, DW, and DD directives:

Dir Operand Result
DB 0FFH One byte
DB 0,99 Two bytes
DB 'Hello...', 0DH,0AH String + CR/LF
DB 12,"Borland C++" C++-style string
DW 0FFFFH One word
DW 0,9999 Two words
DW 'A' Same as DB 'A',0
DW 'BA' Same as DB 'A','B'
DW MyVar Offset of MyVar
DW MyProc Offset of MyProc
DD 0FFFFFFFFH One double-word
DD 0,999999999 Two double-words
DD 'A' Same as DB 'A',0,0,0
DD 'DCBA' Same as DB 'A','B','C','D'
DD MyVar Pointer to MyVar
DD MyProc Pointer to MyProc
The only kind of symbol that can be defined in an inline assembler statement is a label. All variables
must be declared using C or C++ syntax.

Inline Assembler Statement
The syntax of an assembler statement is
opcode operand <operand operand >; or Newline
where

"opcode" is an assembler instruction opcode
"operand" is an assembler expression
";or Newline" is a semicolon or a new line, either of which signals the end of the asm statement.

Comments are allowed between assembler statements, but not within them.

Inline Assembler Labels
Labels consist of a label identifier and a colon before a statement.

Inline Assembler Subexpression (...)
The expression within the parentheses is a subexpression.

(Expression)
Subexpressions are evaluated completely before they are treated as a single expression element.
Another expression can precede the expression within the parentheses. In this case, the result becomes
the sum of the values of the two expressions, with the type of the first expression.

Inline Assembler Memory Reference Operator [...]
The expression within brackets refers to a memory location.

[Expression]
This memory reference expression is evaluated completely prior to being treated as a single expression
element.
To indicate CPU register indexing, you can use the plus (+) operator to combine the memory reference
expression with the BX, BP, SI, or DI registers.
Another expression can precede the memory reference expression. In this case, the result becomes the
sum of the values of the two expressions, with the type of the first expression.

Result
Always a memory reference.

Inline Assembler Structure Member Operator (xxx . yyy)
The second expression is a member of the structure identified by the first expression.

Expression1.Expression2
Result
Sum of the two expressions.

Result Type
Type of the second expression.
Symbols belonging to the scope identified by the first expression can be accessed in the second
expression.

Inline Assembler HIGH Operator
HIGH returns the high-order 8 bits of the word-sized expression following the operator.

HIGH Expression
The expression must be an absolute immediate value.

Inline Assembler LOW Operator
LOW returns the low-order 8 bits of the word-sized expression following the operator.

LOW Expression
The expression must be an absolute immediate value.

Inline Assembler Unary Plus (+...)
Unary plus returns the expression following the plus with no changes.

+Expression
The expression must be an absolute immediate value.

Inline Assembler Unary Minus (-...)
Unary minus returns the negated value of the expression following the minus.

-Expression
The expression must be an absolute immediate value.

Inline Assembler Segment Override Operator (: ...)
This operator instructs the assembler that the expression after the colon belongs to the segment given
by the segment register name before the colon (CS, DS, SS, or ES).

XX:Expression
where XX = CS, DS, SS, or ES.

Result
A memory reference with the value of the expression after the colon.
When a segment override is used in an instruction operand, the instruction will be prefixed by an
appropriate segment override prefix instruction.
This ensures that the indicated segment is selected.

Inline Assembler OFFSET Operator
OFFSET returns the offset part (low-order word) of the expression following the operator.

OFFSET Expression
Result
An immediate value.

Inline Assembler SEG Operator
SEG returns the segment part (high-order word) of the expression following the operator.

SEG Expression
Result
An immediate value.

Inline Assembler TYPE Operator
TYPE returns the type (size in bytes) of the expression following the operator.

TYPE Expression
The type of an immediate value is 0.

Inline Assembler Typecast Operator (... PTR ...)
PTR casts the second expression to the type of the first expression.

Expression1 PTR Expression2
Result
A memory reference with the value of the second expression and the type of the first expression.

Inline Assembler Multiplication Operator (... * ...)
The * operator multiplies the first expression by the second expression.

Expression1 * Expression2
Both expressions must be absolute immediate values.

Result
Absolute immediate value.

Inline Assembler Integer Division (... / ...)
The / operator divides the first expression by the second expression and returns the integer part of the
operation.

Expression1 / Expression2
Both expressions must be absolute immediate values.

Result
Absolute immediate value.

Inline Assembler Integer Modulus (... MOD ...)
MOD divides the first expression by the second expression and returns the remainder part of the
operation.

Expression1 MOD Expression2
Both expressions must be absolute immediate values.

Result
Absolute immediate value.

Inline Assembler Shift Left Operator (... SHL ...)
SHL shifts the first expression to the left by nnn bits, where nnn is the second expression.

Expression1 SHL Expression2
Both expressions must be absolute immediate values.

Result
Absolute immediate value.

Inline Assembler Shift Right Operator (... SHR ...)
SHR shifts the first expression to the right by nnn bits, where nnn is the second expression.

Expression1 SHR Expression2
Both expressions must be absolute immediate values.

Result
Absolute immediate value.

Inline Assembler Addition Operator (... + ...)
The + operator adds the first expression to the second expression (or vice versa).

Expression1 + Expression2
The expressions can be immediate values or memory references, but only one of the expressions can
be a relocatable value.

Result
Relocatable value if one of the expressions is a relocatable value.
Memory reference if either of the expressions is a memory reference.

Inline Assembler Subtraction Operator (... - ...)
The - operator subtracts the second it from the first expression.

Expression1 - Expression2
The first expression can have any class, but the second expression must be an absolute immediate
value.

Result
Has the same class as the first expression.

Inline Assembler Bitwise Negation (NOT)
NOT returns the bitwise negative (1's complement) of the expression after it.

NOT Expression
The expression must be an absolute immediate value.

Result
Absolute immediate value.

Inline Assembler Bitwise AND
AND returns the bitwise AND of the two expressions.

Expression1 AND Expression2
Both expressions must be absolute immediate values.

Result
Absolute immediate value.

Inline Assembler Bitwise OR
OR returns the bitwise OR of the two expressions.

Expression1 OR Expression2
Both expressions must be absolute immediate values.

Result
Absolute immediate value.

Inline Assembler Bitwise Exclusive XOR
XOR returns the bitwise exclusive-OR of the two expressions.

Expression1 XOR Expression2
Both expressions must be absolute immediate values.

Result
Absolute immediate value.

Inline Assembler Function Returns
Functions using the inline assembler directive (asm) must return their results as follows:

Result Returned In
Ordinal AL (8-bit values)

AX (16-bit values)
DX:AX (32-bit values)

Real DX:BX:AX
8087 ST(0) on the 8087's

register stack
Pointer DX:AX

short jump
1-byte opcode followed by 1-byte displacement.

near jump
1-byte opcode followed by 2-byte displacement.

short inverse jump
A short jump with the inverse condition jumps over a near jump to the target label (5 bytes in total).

ANSI Implementation-specific standards
Certain aspects of the ANSI C standard are not defined exactly by ANSI. Instead, each implementor of a
C compiler is free to define these aspects individually. This topic describes how Borland has chosen to
define these implementation-specific standards. The section numbers refer to the February 1990 ANSI
Standard. Remember that there are differences between C and C++; this topic addresses C only.

2.1.1.3 How to identify a diagnostic.
When the compiler runs with the correct combination of options, any messages it issues beginning with
the words Fatal, Error, or Warning are diagnostics in the sense that ANSI specifies. The options needed
to ensure this interpretation are as follows:

Table 1 Identifying diagnostics in Borland C++
Option Action
–A Enable only ANSI keywords.
–C– No nested comments allowed.
–i32 At least 32 significant characters in identifiers.
–p– Use C calling conventions.
–w– Turn off all warnings except the following.
–wbei Turn on warning about inappropriate initializers.
–wbig Turn on warning about constants being too large.
–wcpt Turn on warning about nonportable pointer comparisons.
–wdcl Turn on warning about declarations without type or storage class.
–wdup Turn on warning about duplicate nonidentical macro definitions.
–wext Turn on warning about variables declared both as external and as static.
–wfdt Turn on warning about function definitions using a typedef.
–wrpt Turn on warning about nonportable pointer conversion.
–wstu Turn on warning about undefined structures.
–wsus Turn on warning about suspicious pointer conversion.
–wucp Turn on warning about mixing pointers to signed and unsigned char.
–wvrt Turn on warning about void functions returning a value.

You cannot use the following options:
–ms! SS must be the same as DS for small data models.
–mm! SS must be the same as DS for small data models.
–mt! SS must be the same as DS for small data models.
–zGxx The BSS group name cannot be changed.
–zSxx The data group name cannot be changed.

Other options not specifically mentioned here can be set to whatever you want.

2.1.2.2.1 The semantics of the arguments to main.
The value of argv[0] is a pointer to a null byte when the program is run on DOS versions prior to version
3.0. For DOS version 3.0 or later, argv[0] points to the program name.
The remaining argv strings point to each component of the DOS command-line arguments. Whitespace
separating arguments is removed, and each sequence of contiguous non-whitespace characters is

treated as a single argument. Quoted strings are handled correctly (that is, as one string containing
spaces).

2.1.2.3 What constitutes an interactive device.
An interactive device is any device that looks like the console.

2.2.1 The collation sequence of the execution character set.
The collation sequence for the execution character set uses the signed value of the character in ASCII.

2.2.1 Members of the source and execution character sets.
The source and execution character sets are the extended ASCII set supported by the IBM PC. Any
character other than Ctrl+Z can appear in string literals, character constants, or comments.

2.2.1.2 Multibyte characters.
Multibyte characters are supported in Borland C++.

2.2.2 The direction of printing.
Printing is from left-to-right, the normal direction for the PC.

2.2.4.2 The number of bits in a character in the execution character set.
There are 8 bits per character in the execution character set.

3.1.2 The number of significant initial characters in identifiers.
The first 32 characters are significant, although you can use a command-line option (–i) to change that
number. Both internal and external identifiers use the same number of significant characters. (The
number of significant characters in C++ identifiers is unlimited.)

3.1.2 Whether case distinctions are significant in external identifiers.
The compiler normally forces the linker to distinguish between uppercase and lowercase. You can use a
command-line option (–l–c) to suppress the distinction.

3.1.2.5 The representations and sets of values of the various types of integers.
Table 2 Identifying diagnostics in C++

Type
16-bit
minimum value

16-bit
maximum value

32-bit
minimum value

32-bit
maximum value

signed char –128 127 –128 127
unsigned char 0 255 0 255
signed short –32,768 32,767 –32,768 32,767
unsigned short 0 65,535 0 65,535
signed int –32,768 32,767 –2,147,483,648 –2,147,483,647
unsigned int 0 65,535 0 4,294,967,295
signed long –2,147,483,648 2,147,483,647 –2,147,483,648 2,147,483,647
unsigned long 0 4,294,967,295 0 4,294,967,295

All char types use one 8-bit byte for storage.
All short types use 2 bytes, whether in a 16- or 32-bit program.
All short and int types use 2 bytes (in 16-bit programs).
All int types use 4 bytes (in 32-bit programs).
All long types use 4 bytes.
If alignment is requested (–a), all nonchar integer type objects will be aligned to even byte boundaries. If

the requested alignment is –a4, the result is 4-byte alignment. Character types are never aligned.

3.1.2.5 The representations and sets of values of the various types of floating-point numbers.
The IEEE floating-point formats as used by the Intel 8087 are used for all Borland C++ floating-point
types. The float type uses 32-bit IEEE real format. The double type uses 64-bit IEEE real format. The
long double type uses 80-bit IEEE extended real format.

3.1.3.4 The mapping between source and execution character sets.
Any characters in string literals or character constants remain unchanged in the executing program. The
source and execution character sets are the same.

3.1.3.4 The value of an integer character constant that contains a character or escape sequence
not represented in the basic execution character set or the extended character set for a wide
character constant.
Wide characters are supported.

3.1.3.4 The current locale used to convert multibyte characters into corresponding wide
characters for a wide character constant.
Wide character constants are recognized.

3.1.3.4 The value of an integer constant that contains more than one character, or a wide
character constant that contains more than one multibyte character.
Character constants can contain one or two characters. If two characters are included, the first character
occupies the low-order byte of the constant, and the second character occupies the high-order byte.

3.2.1.2 The result of converting an integer to a shorter signed integer, or the result of
converting an unsigned integer to a signed integer of equal length, if the value cannot be
represented.
These conversions are performed by simply truncating the high-order bits. Signed integers are stored as
two’s complement values, so the resulting number is interpreted as such a value. If the high-order bit of
the smaller integer is nonzero, the value is interpreted as a negative value; otherwise, it is positive.

3.2.1.3 The direction of truncation when an integral number is converted to a floating-point
number that cannot exactly represent the original value.
The integer value is rounded to the nearest representable value. Thus, for example, the long value (231
–1) is converted to the float value 231. Ties are broken according to the rules of IEEE standard
arithmetic.

3.2.1.4 The direction of truncation or rounding when a floating-point number is converted to a
narrower floating-point number.
The value is rounded to the nearest representable value. Ties are broken according to the rules of IEEE
standard arithmetic.

3.3 The results of bitwise operations on signed integers.
The bitwise operators apply to signed integers as if they were their corresponding unsigned types. The
sign bit is treated as a normal data bit. The result is then interpreted as a normal two’s complement
signed integer.

3.3.2.3 What happens when a member of a union object is accessed using a member of a
different type.
The access is allowed and the different type member will access the bits stored there. You’ll need a
detailed understanding of the bit encodings of floating-point values to understand how to access a
floating-type member using a different member. If the member stored is shorter than the member used
to access the value, the excess bits have the value they had before the short member was stored.

3.3.3.4 The type of integer required to hold the maximum size of an array.

For a normal array, the type is unsigned int, and for huge arrays the type is signed long.

3.3.4 The result of casting a pointer to an integer or vice versa.
When converting between integers and pointers of the same size, no bits are changed. When converting
from a longer type to a shorter type, the high-order bits are truncated. When converting from a shorter
integer type to a longer pointer type, the integer is first widened to an integer type the same size as the
pointer type.
Thus signed integers will sign-extend to fill the new bytes. Similarly, smaller pointer types being
converted to larger integer types will first be widened to a pointer type as wide as the integer type.

3.3.5 The sign of the remainder on integer division.
The sign of the remainder is negative when only one of the operands is negative. If neither or both
operands are negative, the remainder is positive.

3.3.6 The type of integer required to hold the difference between two pointers to elements of the
same array, ptrdiff_t.
The type is signed int when the pointers are near (or the program is a 32-bit application), or signed
long when the pointers are far or huge. The type of ptrdiff_t depends on the memory model in use. In
small data models, the type is int. In large data models, the type is long.

3.3.7 The result of a right shift of a negative signed integral type.
A negative signed value is sign extended when right shifted.

3.5.1 The extent to which objects can actually be placed in registers by using the register
storage-class specifier.
Objects declared with any two-byte integer or pointer types can be placed in registers. The compiler
places any small auto objects into registers, but objects explicitly declared as register take precedence.
At least two and as many as six registers are available. The number of registers actually used depends
on what registers are needed for temporary values in the function.

3.5.2.1 Whether a plain int bit-field is treated as a signed int or as an unsigned int bit field.
Plain int bit fields are treated as signed int bit fields.

3.5.2.1 The order of allocation of bit fields within an int.
Bit fields are allocated from the low-order bit position to the high-order.

3.5.2.1 The padding and alignment of members of structures.
By default, no padding is used in structures. If you use the word alignment option (–a), structures are
padded to even size, and any members that do not have character or character array type are aligned to
an even multiple offset.

3.5.2.1 Whether a bit-field can straddle a storage-unit boundary.
When alignment (–a) is not requested, bit fields can straddle word boundaries, but are never stored in
more than two adjacent bytes.

3.5.2.2 The integer type chosen to represent the values of an enumeration type.
Store all enumerators as full ints. Store the enumerations in a long or unsigned long if the values don’t
fit into an int. This is the default behavior as specified by –b compiler option.
The –b- behavior specifies that enumerations should be stored in the smallest integer type that can
represent the values. This includes all integral types, for example, signed char, unsigned char, signed
short, unsigned short, signed int, unsigned int, signed long, and unsigned long.
For C++ compliance, –b- must be specified because it is not correct to store all enumerations as ints for
C++.

3.5.3 What constitutes an access to an object that has volatile-qualified type.

Any reference to a volatile object will access the object. Whether accessing adjacent memory locations
will also access an object depends on how the memory is constructed in the hardware. For special
device memory, such as video display memory, it depends on how the device is constructed. For normal
PC memory, volatile objects are used only for memory that might be accessed by asynchronous
interrupts, so accessing adjacent objects has no effect.

3.5.4 The maximum number of declarators that can modify an arithmetic, structure, or union
type.
There is no specific limit on the number of declarators. The number of declarators allowed is fairly large,
but when nested deeply within a set of blocks in a function, the number of declarators will be reduced.
The number allowed at file level is at least 50.

3.6.4.2 The maximum number of case values in a switch statement.
There is no specific limit on the number of cases in a switch. As long as there is enough memory to hold
the case information, the compiler will accept them.

3.8.1 Whether the value of a single-character character constant in a constant expression that
controls conditional inclusion matches the value of the same character constant in the execution
character set. Whether such a character constant can have a negative value.
All character constants, even constants in conditional directives, use the same character set (execution).
Single-character character constants will be negative if the character type is signed (default and –K not
requested).

3.8.2 The method for locating includable source files.
For include file names given with angle brackets, if include directories are given in the command line,
then the file is searched for in each of the include directories. Include directories are searched in this
order: first, using directories specified on the command line, then using directories specified in
TURBOC.CFG or BCC32.CFG. If no include directories are specified, then only the current directory is
searched.

3.8.2 The support for quoted names for includable source files.
For quoted file names, the file is first searched for in the current directory. If not found, searches for the
file as if it were in angle brackets.

3.8.2 The mapping of source file name character sequences.
Backslashes in include file names are treated as distinct characters, not as escape characters. Case
differences are ignored for letters.

3.8.8 The definitions for _ _DATE_ _ and _ _TIME_ _ when they are unavailable.
The date and time are always available and will use the operating system date and time.

4.1.1 The decimal point character.
The decimal point character is a period (.).

4.1.5 The type of the sizeof operator, size_t.
The type size_t is unsigned.

4.1.5 The null pointer constant to which the macro NULL expands.
For a 16-bit application, an integer or a long 0, depending on the memory model.
For 32-bit applications, NULL expands to an int zero or a long zero. Both are 32-bit signed numbers.

4.2 The diagnostic printed by and the termination behavior of the assert function.
The diagnostic message printed is “Assertion failed: expression, file filename, line nn”, where expression
is the asserted expression that failed, filename is the source file name, and nn is the line number where
the assertion took place.

Abort is called immediately after the assertion message is displayed.

4.3 The implementation-defined aspects of character testing and case-mapping functions.
None, other than what is mentioned in 4.3.1.

4.3.1 The sets of characters tested for by the isalnum, isalpha, iscntrl, islower, isprint and
isupper functions.
First 128 ASCII characters for the default C locale. Otherwise, all 256 characters.

4.5.1 The values returned by the mathematics functions on domain errors.
An IEEE NAN (not a number).

4.5.1 Whether the mathematics functions set the integer expression errno to the value of the
macro ERANGE on underflow range errors.
No, only for the other errors—domain, singularity, overflow, and total loss of precision.

4.5.6.4 Whether a domain error occurs or zero is returned when the fmod function has a second
argument of zero.
No; fmod(x,0) returns 0.

4.7.1.1 The set of signals for the signal function.
SIGABRT, SIGFPE, SIGILL, SIGINT, SIGSEGV, and SIGTERM.

4.7.1.1 The semantics for each signal recognized by the signal function.
See the description of signal.

4.7.1.1 The default handling and the handling at program startup for each signal recognized by
the signal function.
See the description of signal.

4.7.1.1 If the equivalent of signal(sig, SIG_DFL); is not executed prior to the call of a signal
handler, the blocking of the signal that is performed.
The equivalent of signal(sig, SIG_DFL) is always executed.

4.7.1.1 Whether the default handling is reset if the SIGILL signal is received by a handler
specified to the signal function.
No, it is not.

4.9.2 Whether the last line of a text stream requires a terminating newline character.
No, none is required.

4.9.2 Whether space characters that are written out to a text stream immediately before a
newline character appear when read in.
Yes, they do.

4.9.2 The number of null characters that may be appended to data written to a binary stream.
None.

4.9.3 Whether the file position indicator of an append mode stream is initially positioned at the
beginning or end of the file.
The file position indicator of an append-mode stream is initially placed at the beginning of the file. It is
reset to the end of the file before each write.

4.9.3 Whether a write on a text stream causes the associated file to be truncated beyond that
point.
A write of 0 bytes might or might not truncate the file, depending on how the file is buffered. It is safest to

classify a zero-length write as having indeterminate behavior.

4.9.3 The characteristics of file buffering.
Files can be fully buffered, line buffered, or unbuffered. If a file is buffered, a default buffer of 512 bytes
is created upon opening the file.

4.9.3 Whether a zero-length file actually exists.
Yes, it does.

4.9.3 Whether the same file can be open multiple times.
Yes, it can.

4.9.4.1 The effect of the remove function on an open file.
No special checking for an already open file is performed; the responsibility is left up to the programmer.

4.9.4.2 The effect if a file with the new name exists prior to a call to rename.
Rename returns a –1 and errno is set to EEXIST.

4.9.6.1 The output for %p conversion in fprintf.
In near data models, four hex digits (XXXX). In far data models, four hex digits, colon, four hex digits
(XXXX:XXXX). (For 16-bit programs.)
Eight hex digits (XXXXXXXX). (For 32-bit programs.)

4.9.6.2 The input for %p conversion in fscanf.
See 4.9.6.1.

4.9.6.2 The interpretation of a –(hyphen) character that is neither the first nor the last character
in the scanlist for a %[conversion in fscanf.
See the description of scanf.

4.9.9.1 The value the macro errno is set to by the fgetpos or ftell function on failure.
EBADF Bad file number.

4.9.10.4 The messages generated by perror.
Table 3 Messages generated in both Win16 and Win32
Arg list too big Math argument
Attempted to remove current directory Memory arena trashed
Bad address Name too long
Bad file number No child processes
Block device required No more files
Broken pipe No space left on device
Cross-device link No such device
Error 0 No such device or address
Exec format error No such file or directory
Executable file in use No such process
File already exists Not a directory
File too large Not enough memory
Illegal seek Not same device
Inappropriate I/O control operation Operation not permitted

Input/output error Path not found
Interrupted function call Permission denied
Invalid access code Possible deadlock
Invalid argument Read-only file system
Invalid data Resource busy
Invalid environment Resource temporarily unavailable
Invalid format Result too large
Invalid function number Too many links
Invalid memory block address Too many open files
Is a directory

Table 4 Messages generated only in Win32
Bad address No child processes
Block device required No space left on device
Broken pipe No such device or address
Executable file in use No such process
File too large Not a directory
Illegal seek Operation not permitted
Inappropriate I/O control operation Possible deadlock
Input/output error Read-only file system
Interrupted function call Resource busy
Is a directory Resource temporarily unavailable
Name too long Too many links

4.10.3 The behavior of calloc, malloc, or realloc if the size requested is zero.
calloc and malloc will ignore the request and return 0. realloc will free the block.

4.10.4.1 The behavior of the abort function with regard to open and temporary files.
The file buffers are not flushed and the files are not closed.

4.10.4.3 The status returned by exit if the value of the argument is other than zero,
EXIT_SUCCESS, or EXIT_FAILURE.
Nothing special. The status is returned exactly as it is passed. The status is a represented as a signed
char.

4.10.4.4 The set of environment names and the method for altering the environment list used by
getenv.
The environment strings are those defined in the operating system with the SET command. putenv can
be used to change the strings for the duration of the current program, but the SET command must be
used to change an environment string permanently.

4.10.4.5 The contents and mode of execution of the string by the system function.
The string is interpreted as an operating system command. COMSPEC is used or COMMAND.COM is
executed (for 16-bit programs) or CMD.EXE (for 32-bit programs) and the argument string is passed as
a command to execute. Any operating system built-in command, as well as batch files and executable
programs, can be executed.

4.11.6.2 The contents of the error message strings returned by strerror.
See 4.9.10.4.

4.12.1 The local time zone and Daylight Saving Time.
Defined as local PC time and date.

4.12.2.1 The era for clock.
Represented as clock ticks, with the origin being the beginning of the program execution.

4.12.3.5 The formats for date and time.
 Borland C++ implements ANSI formats.

Floating-point I/O
See also
Floating-point output requires linking of conversion routines used by printf, scanf, and any variants of
these functions. To reduce executable size, the floating-point formats are not automatically linked.
However, this linkage is done automatically whenever your program uses a mathematical routine or the
address is taken of some floating-point number. If neither of these actions occur, the missing floating-
point formats can result in a run-time error.

Example
The following program illustrates how to set up your program to properly execute.
/* PREPARE TO OUTPUT FLOATING-POINT NUMBERS. */
 #Include <stdio.h>

 #pragma extref _floatconvert

 void main() {
 printf("d = %f\n", 1.3);
 }

Floating-point options
See also
There are two types of numbers you work with in C: integer (int, short, long, and so on) and floating
point (float, double, and long double). Your computer’s processor can easily handle integer values, but
more time and effort are required to handle floating-point values.
However, the iAPx86 family of processors has a corresponding family of math coprocessors, the 8087,
the 80287, and the 80387. We refer to this entire family of math coprocessors as the 80x87, or “the
coprocessor."
The 80x87 is a special hardware numeric processor that can be installed in your PC. It executes
floating-point instructions very quickly. If you use floating point a lot, you’ll probably want a coprocessor.
The CPU in your computer interfaces to the 80x87 via special hardware lines.
Note: If you have an 80486 or Pentium processor, the numeric coprocessor is probably already built in.

Emulating the 80x87 chip
See also
The default Borland C++ code-generation option is emulation (the –f command-line compiler option).
This option is for programs that might or might not have floating point, and for machines that might or
might not have an 80x87 math coprocessor.
With the emulation option, the compiler will generate code as if the 80x87 were present, but will also link
in the emulation library (EMU.LIB). When the program runs, it uses the 80x87 if it is present; if no
coprocessor is present at run time, it uses special software that emulates the 80x87. This software uses
512 bytes of your stack, so make allowance for it when using the emulation option and set your stack
size accordingly.

Using the 80x87 code
See also
If your program is going to run only on machines that have an 80x87 math coprocessor, you can save a
small amount in your .EXE file size by omitting the 80x87 autodetection and emulation logic. Choose the
80x87 floating-point code-generation option (the –f87 command-line compiler option). Will then link your
programs with FP87.LIB instead of with EMU.LIB.

No floating-point code
See also
If there is no floating-point code in your program, you can save a small amount of link time by choosing
None for the floating-point code-generation option (the –f– command-line compiler option). Then will not
link with EMU.LIB, FP87.LIB, or MATHx.LIB.

Fast floating-point option
See also
Borland C++ has a fast floating-point option (the –ff command-line compiler option). It can be turned off
with –ff– on the command line. Its purpose is to allow certain optimizations that are technically contrary
to correct C semantics. For example,
double x;
x = (float)(3.5*x);
To execute this correctly, x is multiplied by 3.5 to give a double that is truncated to float precision, then
stored as a double in x. Under the fast floating-point option, the long double product is converted
directly to a double. Since very few programs depend on the loss of precision in passing to a narrower
floating-point type, fast floating point is the default.

The 87 environment variable
See also
If you build your program with 80x87 emulation, which is the default, your program will automatically
check to see if an 80x87 is available, and will use it if it is.

Why to override the default autodetection
There are some situations in which you might want to override this default autodetection behavior. For
example, your own run-time system might have an 80x87, but you might need to verify that your
program will work as intended on systems without a coprocessor. Or your program might need to run on
a PC-compatible system, but that particular system returns incorrect information to the autodetection
logic (saying that a nonexistent 80x87 is available, or vice versa).

How to override the default autodetection
Borland C++ provides an option for overriding the start-up code’s default autodetection logic; this option
is the 87 environment variable.

Defining the 87 environment variable
You set the 87 environment variable at the DOS prompt with the SET command, like this:
 C> SET 87=N
or like this:
 C> SET 87=Y
Don’t include spaces on either side of the =. Setting the 87 environment variable to N (for No) tells the
start-up code that you do not want to use the 80x87, even though it might be present in the system.
Note: Setting the 87 environment variable to Y (for Yes) means that the coprocessor is there, and you

want the program to use it. Let the programmer beware: If you set 87 = Y when, in fact, there is
no 80x87 available on that system, your system will hang.

Undefining the 87 environment variable
If the 87 environment variable has been defined (to any value) but you want to undefine it, enter the
following at the DOS prompt:
C> SET 87=
Press Enter immediately after typing the equal sign.

Registers and the 80x87
See also
When you use floating point, make note of these points about registers:

In 80x87 emulation mode, register wraparound and certain other 80x87 peculiarities are not
supported.

If you are mixing floating point with inline assembly, you might need to take special care when
using 80x87 registers. Unless you are sure that enough free registers exist, you might need to save and
pop the 80x87 registers before calling functions that use the coprocessor.

Disabling floating-point exceptions
See also
By default, programs abort if a floating-point overflow or divide-by-zero error occurs. You can mask
these floating-point exceptions by a call to _control87 in main, before any floating-point operations are
performed.

Example
#include <float.h>
main() {
 _control87(MCW_EM,MCW_EM);
 .
 .
 .
}
You can determine whether a floating-point exception occurred after the fact by calling _status87 or
_clear87.
Certain math errors can also occur in library functions; for instance, if you try to take the square root of a
negative number. The default behavior is to print an error message to the screen, and to return a NAN
(an IEEE not-a-number). Use of the NAN is likely to cause a floating-point exception later, which will
abort the program if unmasked. If you don’t want the message to be printed, insert the following version
of _matherr into your program:
#include <math.h>
int _matherr(struct _exception *e)
{
 return 1; /* error has been handled */
}
Any other use of _matherr to intercept math errors is not encouraged; it is considered obsolete and
might not be supported in future versions of Borland C++.

Running out of memory
See also
Borland C++ does not generate any intermediate data structures to disk when it is compiling (writes only
.OBJ files to disk); instead it uses RAM for intermediate data structures between passes. Because of
this, you might encounter the message “Out of memory” if there isn’t enough memory available for the
compiler.
The solution to this problem is to make your functions smaller, or to split up the file that has large
functions.

Memory models
See also
Borland C++ gives you six memory models, each suited for different program and code sizes. Each
memory model uses memory differently. What do you need to know to use memory models?
To answer that question, you need to take a look at the computer system you’re working on. Its central
processing unit (CPU) is a microprocessor belonging to the Intel iAPx86 family; an 80286, 80386,
80486, or Pentium. For now, we’ll just refer to it as an 8086.

The 8086 registers
See also
This table shows some of the registers found in the 8086 processor. There are other registers—because
they can’t be accessed directly, they aren’t shown here.

General-purpose registers
See also
The general-purpose registers are the registers used most often to hold and manipulate data. Each has
some special functions that only it can do. For example,
 Some math operations can only be done using AX.
 BX can be used as an index register.
 CX is used by LOOP and some string instructions.
 DX is implicitly used for some math operations.
But there are many operations that all these registers can do; in many cases, you can freely exchange
one for another.

Segment registers
See also
The segment registers hold the starting address of each of the four segments. As described in Address
calculation, the 16-bit value in a segment register is shifted left 4 bits (multiplied by 16) to get the true
20-bit address of that segment.

Special-purpose registers
See also
The 8086 also has some special-purpose registers:
 The SI and DI registers can do many of the things the general-purpose registers can, plus they
are used as index registers. They’re also used by for register variables.
 The SP register points to the current top-of-stack and is an offset into the stack segment.
 The BP register is a secondary stack pointer, usually used to index into the stack in order to
retrieve arguments or automatic variables.
Borland C++ functions use the base pointer (BP) register as a base address for arguments and
automatic variables. Parameters have positive offsets from BP, which vary depending on the memory
model. BP points to the saved previous BP value if there is a stack frame. Functions that have no
arguments will not use or save BP if the Standard Stack Frame option is Off.
Automatic variables are given negative offsets from BP. The offsets depend on how much space has
already been assigned to local variables.

The flags register
See also
The 16-bit flags register contains all pertinent information about the state of the 8086 and the results of
recent instructions.
for example, if you wanted to know whether a subtraction produced a zero result, you would check the
zero flag (the Z bit in the flags register) immediately after the instruction; if it were set, you would know
the result was zero. Other flags, such as the carry and overflow flags, similarly report the results of
arithmetic and logical operations.

Flags register of the 80x86 processors

Other flags control the 8086 operation modes. The direction flag controls the direction in which the string
instructions move, and the interrupt flag controls whether external hardware, such as a keyboard or
modem, is allowed to halt the current code temporarily so that urgent needs can be serviced. The trap
flag is used only by software that debugs other software.
The flags register isn’t usually modified or read directly. Instead, the flags register is generally controlled
through special assembler instructions (such as CLD, STI, and CMC) and through arithmetic and logical
instructions that modify certain flags. Likewise, the contents of certain bits of the flags register affect the
operation of instructions such as JZ, RCR, and MOVSB. The flags register is not really used as a storage
location, but rather holds the status and control data for the 8086.

Memory segmentation
See also
The Intel 8086 microprocessor has a segmented memory architecture. It has a total address space of 1
MB, but is designed to directly address only 64K of memory at a time. A 64K chunk of memory is known
as a segment; hence the phrase “segmented memory architecture."
 The 8086 keeps track of four different segments: code, data, stack, and extra. The code segment
is where the machine instructions are; the data segment is where information is; the stack is, of course,
the stack; and the extra segment is also used for extra data.
 The 8086 has four 16-bit segment registers (one for each segment) named CS, DS, SS, and ES;
these point to the code, data, stack, and extra segments, respectively.
 A segment can be located anywhere in memory. In DOS real mode it can be located almost
anywhere. For reasons that will become clear as you read on, a segment must start on an address that’s
evenly divisible by 16 (in decimal).

Address calculation
See also
Note: This discussion is applicable only to real mode under DOS. You can safely ignore it for Windows

development.
A complete address on the 8086 is composed of two 16-bit values: the segment address and the offset.
Suppose the data segment address—the value in the DS register—is 2F84 (base 16), and you want to
calculate the actual address of some data that has an offset of 0532 (base 16) from the start of the data
segment: how is that done?
Address calculation is done as follows: Shift the value of the segment register 4 bits to the left
(equivalent to one hex digit), then add in the offset.
The resulting 20-bit value is the actual address of the data, as illustrated here:
DS register (shifted): 0010 1111 1000 0100 0000 = 2F840
Offset: 0000 0101 0011 0010 = 00532
______________________ __________________________________

Address: 0010 1111 1101 0111 0010 = 2FD72
Note: A chunk of 16 bytes is known as a paragraph, so you could say that a segment always starts on a

paragraph boundary.
The starting address of a segment is always a 20-bit number, but a segment register only holds 16 bits
—so the bottom 4 bits are always assumed to be all zeros. This means segments can only start every
16 bytes through memory, at an address where the last 4 bits (or last hex digit) are zero. So, if the DS
register is holding a value of 2F84, then the data segment actually starts at address 2F840.
the standard notation for an address takes the form segment:offset; for example, the previous address
would be written as 2F84:0532. Note that since offsets can overlap, a given segment:offset pair is not
unique; the following addresses all refer to the same memory location:
0000:0123
0002:0103
0008:00A3
0010:0023
0012:0003
Segments can overlap (but don’t have to). For example, all four segments could start at the same
address, which means that your entire program would take up no more than 64K—but that’s all the
space you’d have for your code, your data, and your stack.

Pointers
See also
Although you can declare a pointer or function to be a specific type regardless of the model used, by
default the type of memory model you choose determines the default type of pointers used for code and
data. There are four types of pointers: near (16 bits), far (32 bits), huge (also 32 bits), and segment (16
bits).

Near pointers
See also
A near pointer (16-bits) relies on one of the segment registers to finish calculating its address; for
example, a pointer to a function would add its 16-bit value to the left-shifted contents of the code
segment (CS) register. In a similar fashion, a near data pointer contains an offset to the data segment
(DS) register. Near pointers are easy to manipulate, since any arithmetic (such as addition) can be done
without worrying about the segment.

Far pointers
See also
A far pointer (32-bits) contains not only the offset within the segment, but also the segment address (as
another 16-bit value), which is then left-shifted and added to the offset. By using far pointers, you can
have multiple code segments; this, in turn, allows you to have programs larger than 64K. You can also
address more than 64K of data.
When you use far pointers for data, you need to be aware of some potential problems in pointer
manipulation. As explained in Address calculation, you can have many different segment:offset pairs
refer to the same address. For example, the far pointers 0000:0120, 0010:0020, and 0012:0000 all
resolve to the same 20-bit address. However, if you had three different far pointer variables—a, b, and c
—containing those three values respectively, then all the following expressions would be false:
if (a == b) · · ·
if (b == c) · · ·
if (a == c) · · ·
A related problem occurs when you want to compare far pointers using the >, >=, <, and <= operators.
In those cases, only the offset (as an unsigned) is used for comparison purposes; given that a, b, and c
still have the values previously listed, the following expressions would all be true:
if (a > b) · · ·
if (b > c) · · ·
if (a > c) · · ·
The equals (==) and not-equal (!=) operators use the 32-bit value as an unsigned long (not as the full
memory address). The comparison operators (<=, >=, <, and >) use just the offset.
The == and != operators need all 32 bits, so the computer can compare to the NULL pointer
(0000:0000). If you used only the offset value for equality checking, any pointer with 0000 offset would
be equal to the NULL pointer, which is not what you want.
Note: If you add values to a far pointer, only the offset is changed. If you add enough to cause the offset

to exceed FFFF (its maximum possible value), the pointer just wraps around back to the
beginning of the segment. For example, if you add 1 to 5031:FFFF, the result would be 5031:0000
(not 6031:0000). Likewise, if you subtract 1 from 5031:0000, you would get 5031:FFFF (not
5030:000F).

If you want to do pointer comparisons, it’s safest to use either near pointers—which all use the same
segment address—or huge pointers, described next.

Huge pointers
See also
Huge pointers are also 32 bits long. Like far pointers, they contain both a segment address and an
offset. Unlike far pointers, they are normalized to avoid the problems associated with far pointers.
A normalized pointer is a 32-bit pointer that has as much of its value in the segment address as
possible. Since a segment can start every 16 bytes (10 in base 16), this means that the offset will only
have a value from 0 to 15 (0 to F in base 16).
To normalize a pointer, convert it to its 20-bit address, then use the right 4 bits for your offset and the left
16 bits for your segment address. For example, given the pointer 2F84:0532, you would convert that to
the absolute address 2FD72, which you would then normalize to 2FD7:0002. Here are a few more
pointers with their normalized equivalents:
0000:0123 0012:0003
0040:0056 0045:0006
500D:9407 594D:0007
7418:D03F 811B:000F
There are three reasons why it is important to always keep huge pointers normalized:
1. For any given memory address there is only one possible huge address (segment:offset) pair. That

means that the == and != operators return correct answers for any huge pointers.
2. in addition, the >, >=, <, and <= operators are all used on the full 32-bit value for huge pointers.

Normalization guarantees that the results of these comparisons will also be correct.
3. Finally, because of normalization, the offset in a huge pointer automatically wraps around every 16

values, but—unlike far pointers—the segment is adjusted as well. For example, if you were to
increment 811B:000F, the result would be 811C:0000; likewise, if you decrement 811C:0000, you get
811B:000F. It is this aspect of huge pointers that allows you to manipulate data structures greater than
64K in size. This ensures that, for example, if you have a huge array of structs that’s larger than 64K,
indexing into the array and selecting a struct field will always work with structs of any size.

There is a price for using huge pointers: additional overhead. Huge pointer arithmetic is done with calls
to special subroutines. Because of this, huge pointer arithmetic is significantly slower than that of far or
near pointers.

The six memory models
See also
Borland C++ gives you six memory models for 16-bit DOS programs: tiny, small, medium, compact,
large, and huge. Your program requirements determine which one you pick. Here’s a brief summary of
each:
 Tiny. As you might guess, this is the smallest of the memory models. All four segment registers
(CS, DS, SS, ES) are set to the same address, so you have a total of 64K for all of your code, data, and
stack. Near pointers are always used. Tiny model programs can be converted to .COM format by linking
with the /t option. Use this model when memory is at an absolute premium.
 Small. The code and data segments are different and don’t overlap, so you have 64K of code and
64K of data and stack. Near pointers are always used. This is a good size for average applications.
 Medium. Far pointers are used for code, but not for data. As a result, data plus stack are limited
to 64K, but code can occupy up to 1 MB. This model is best for large programs without much data in
memory.
 Compact. The inverse of medium: Far pointers are used for data, but not for code. Code is then
limited to 64K, while data has a 1 MB range. This model is best if code is small but needs to address a lot
of data.
 Large. Far pointers are used for both code and data, giving both a 1 MB range. Large and huge
are needed only for very large applications.
 Huge. Far pointers are used for both code and data. Normally limits the size of all static data to
64K; the huge memory model sets aside that limit, allowing data to occupy more than 64K.
The following figures show how memory in the 8086 is apportioned for the memory models. To select
these memory models, you can either use menu selections from the IDE or you can type options
invoking the command-line compiler version of .

Tiny model memory segmentation
Small model memory segmentation
Medium model memory segmentation
Compact model memory segmentation
Large model memory segmentation
Huge model memory segmentation

Comparison of memory models
The following table summarizes the different models and how they compare to one another. The models
are often grouped according to whether their code or data models are small (64K) or large (16 MB);
these groups correspond to the rows and columns in the table.

Data size Code size = 64K Code size = 16MB

Tiny (data, code overlap; total
size = 64K)

64K
Small (no overlap; total size =
128K)

Medium (small data, large
code)

Compact (large data, small
code)

Large (large data, code)

16 MB
Huge (same as large but
static data > 64K)

The models tiny, small, and compact are small code models because, by default, code pointers are

near; likewise, compact, large, and huge are large data models because, by default, data pointers are
far.
When you compile a module (a given source file with some number of routines in it), the resulting code
for that module cannot be greater than 64K, since it must all fit inside of one code segment. This is true
even if you’re using one of the larger code models (medium, large, or huge). If your module is too big to
fit into one (64K) code segment, you must break it up into different source code files, compile each file
separately, then link them together. Similarly, even though the huge model permits static data to total
more than 64K, it still must be less than 64K in each module.

Tiny model memory segmentation

Small model memory segmentation

Medium model memory segmentation

Compact model memory segmentation

Large model memory segmentation

Huge model memory segmentation

Mixed-model programming: Addressing modifiers
See also
Borland C++ introduces eight new keywords not found in standard ANSI C. These keywords are
_ _near, _ _far, _ _huge, _ _cs, _ _ds, _ _es, _ _ss, and _ _seg. These keywords can be used as
modifiers to pointers (and in some cases, to functions), with certain limitations and warnings.
In Borland C++ , you can modify the declarations of pointers, objects, and functions with the keywords
_ _near, _ _far, or _ _huge. (See Pointers for more information on the _ _near, _ _far, and _ _huge
data pointers.) You can declare far objects using the _ _far keyword. _ _Near functions are invoked with
near calls and exit with near returns. Similarly, _ _far functions are called _ _far and return far values.
_ _huge functions are like _ _far functions, except that _ _huge functions set DS to a new value, and
_ _far functions do not.
There are also four special _ _near data pointers: _ _cs, _ _ds, _ _es, and _ _ss. These are 16-bit
pointers that are specifically associated with the corresponding segment register. For example, if you
were to declare a pointer to be
char _ss *p;
Then p would contain a 16-bit offset into the stack segment.
Functions and pointers within a given program default to near or far, depending on the memory model
you select. If the function or pointer is near, it is automatically associated with either the CS or DS
register.
The following table shows how this works. Note that the size of the pointer corresponds to whether it is
working within a 64K memory limit (near, within a segment) or inside the general 1 MB memory space
(far, has its own segment address).

Memory model Function pointers Data pointers
Tiny near, _cs near, _ds
Small near, _cs near, _ds
Medium far near, _ds
Compact near, _cs far
Large far far
Huge far far

Segment pointers
See also
Use _ _seg in segment pointer type declarators. The resulting pointers are 16-bit segment pointers. The
syntax for _ _seg is:

datatype _seg *identifier;
For example,
int _seg *name;
Any indirection through identifier has an assumed offset of 0. In arithmetic involving segment pointers
the following rules hold true:
1. You can’t use the ++, - -, +=, or -= operators with segment pointers.
2. You cannot subtract one segment pointer from another.
3. When adding a near pointer to a segment pointer, the result is a far pointer that is formed by using the

segment from the segment pointer and the offset from the near pointer. Therefore, the two pointers
must either point to the same type, or one must be a pointer to void. There is no multiplication of the
offset regardless of the type pointed to.

4. When a segment pointer is used in an indirection expression, it is also implicitly converted to a far
pointer.

5. When adding or subtracting an integer operand to or from a segment pointer, the result is a far
pointer, with the segment taken from the segment pointer and the offset found by multiplying the size
of the object pointed to by the integer operand. The arithmetic is performed as if the integer were
added to or subtracted from the far pointer.

6. Segment pointers can be assigned, initialized, passed into and out of functions, compared and so
forth. (Segment pointers are compared as if their values were unsigned integers.) in other words,
other than the above restrictions, they are treated exactly like any other pointer.

Declaring far objects
See also
You can declare far objects in Borland C++. For example,
int far x = 5;
int far z;
extern int far y = 4;
static long j;
The command-line compiler options –zE, –zF, and –zH (which can also be set using #pragma option)
affect the far segment name, class, and group, respectively. When you use #pragma option, you can
make them apply to any ensuing far object declarations. Thus you could use the following sequence to
create a far object in a specific segment:
#pragma option -zEmysegment -zHmygroup -zFmyclass
int far x;
#pragma option -zE* -zH* -zF*
This will put x in segment MYSEGMENT ‘MYCLASS’ in the group ‘MYGROUP’, then reset all of the far
object items to the default values. Note that by using these options, several far objects can be forced
into a single segment:
#pragma option -zEcombined -zFmyclass
int far x;
double far y;
#pragma option -zE* -zF*
Both x and y will appear in the segment COMBINED ‘MYCLASS’ with no group.

Declaring functions to be near or far
See also
On occasion, you’ll want (or need) to override the default function type of your memory model.
For example, suppose you’re using the large memory model, but you have a recursive (self-calling)
function in your program, like this:
double power(double x,int exp) {
 if (exp <= 0)
 return(1);
 else
 return(x * power(x, exp-1));
 }
Every time power calls itself, it has to do a far call, which uses more stack space and clock cycles. By
declaring power as _ _near, you eliminate some of the overhead by forcing all calls to that function to be
near:
double _ _near power(double x,int exp)
This guarantees that power is callable only within the code segment in which it was compiled, and that
all calls to it are near calls.
This means that if you’re using a large code model (medium, large, or huge), you can only call power
from within the module where it is defined. Other modules have their own code segment and thus
cannot call _ _near functions in different modules. Furthermore, a near function must be either defined
or declared before the first time it is used, or the compiler won’t know it needs to generate a near call.
Conversely, declaring a function to be far means that a far return is generated. In the small code
models, the far function must be declared or defined before its first use to ensure it is invoked with a far
call.
Look back at the power example at the beginning of this topic. It is wise to also declare power as static,
since it should be called only from within the current module. That way, being a static, its name will not
be available to any functions outside the module.

Declaring pointers to be near, far, or huge
See also
You’ve seen why you might want to declare functions to be of a different model than the rest of the
program. For the same reasons given in Declaring functions to be near or far, you might want to modify
pointer declarations: either to avoid unnecessary overhead (declaring _ _near when the default would
be _ _far) or to reference something outside of the default segment (declaring _ _far or _ _huge when
the default would be _ _near).
There are, of course, potential pitfalls in declaring functions and pointers to be of nondefault types. For
example, say you have the following small model program:
void myputs(s) {
 char *s;
 int i;
 for (i = 0; s[i] != 0; i++) putc(s[i]);
 }
main() {
 char near *mystr;
mystr = "Hello, world\n"
 myputs(mystr);

 }
This program works fine. In fact, the _ _near declaration on mystr is redundant, since all pointers, both
code and data, will be near.
But what if you recompile this program using the compact (or large or huge) memory model? The
pointer mystr in main is still near (it’s still a 16-bit pointer). However, the pointer s in myputs is now far,
because that’s the default. This means that myputs will pull two words out of the stack in an effort to
create a far pointer, and the address it ends up with will certainly not be that of mystr.
How do you avoid this problem? If you’re going to explicitly declare pointers to be of type _ _far or
_ _near, be sure to use function prototypes for any functions that might use them. The solution is to
define myputs in ANSI C style, like this:
void myputs(char *s) {
 /* body of myputs */
 }
Now when Borland C++ compiles your program, it knows that myputs expects a pointer to char; and
since you’re compiling under the large model, it knows that the pointer must be _ _far. Because of that,
will push the data segment (DS) register onto the stack along with the 16-bit value of mystr, forming a
far pointer.
How about the reverse case: arguments to myputs declared as _ _far and compiled with a small data
model? Again, without the function prototype, you will have problems, because main will push both the
offset and the segment address onto the stack, but myputs will expect only the offset. With the
prototype-style function definitions, though, main will only push the offset onto the stack.

Pointing to a given segment:offset address
See also
You can make a far pointer point to a given memory location (a specific segment:offset address). You
can do this with the macro MK_FP, which takes a segment and an offset and returns a far pointer. For
example,
MK_FP(segment_value, offset_value)
Given a _ _far pointer, fp, you can get the segment component with FP_SEG(fp) and the offset
component with FP_OFF(fp). For more information about these three Borland C++ library routines, refer
to the Run-time Library Reference.

Using library files
See also
Borland C++ offers a version of the standard library routines for each of the six memory models. Is
smart enough to link in the appropriate libraries in the proper order, depending on which model you’ve
selected. However, if you’re using the Borland C++ linker, TLINK, directly (as a standalone linker), you
need to specify which libraries to use. See Using TLINK and TLINK32 for details on how to do this.

Linking mixed modules
See also
Suppose you compiled one module using the small memory model and another module using the large
model, then wanted to link them together. This would present some problems, but they can be solved.
The files would link together fine, but the problems you would encounter would be similar to those
described in the topic, Declaring functions to be near or far. If a function in the small module called a
function in the large module, it would do so with a near call, which would probably be disastrous.
Furthermore, you could face the same problems with pointers as described in the topic, Declaring
pointers to be near, far, or huge, since a function in the small module would expect to pass and receive
_ _near pointers, and a function in the large module would expect _ _far pointers.

Using function prototypes
The solution, again, is to use function prototypes. Suppose that you put myputs into its own module and
compile it with the large memory model. Then create a header file called myputs.h (or some other name
with a .h extension), which would have the following function prototype in it:
void far myputs(char far *s);
Now, put main into its own module (called MYMAIN.C), and set things up like this:
#include <stdio.h>
#include "myputs.h"
main() {
 char near *mystr;
 mystr = "Hello, world\n";
 myputs(mystr);

 }
When you compile this program, Borland C++ reads in the function prototype from myputs.h and sees
that it is a _ _far function that expects a _ _far pointer. Therefore, it generates the proper calling code,
even if it’s compiled using the small memory model.

Linking in library routines
What if, on top of all this, you need to link in library routines? Your best bet is to use one of the large
model libraries and declare everything to be _ _far. To do this, make a copy of each header file you
would normally include (such as stdio.h), and rename the copy to something appropriate (such as
fstdio.h).
Then edit each function prototype in the copy so that it is explicitly _ _far, like this:
int far cdecl printf(char far * format, ...);
That way, not only will _ _far calls be made to the routines, but the pointers passed will also be _ _far
pointers. Modify your program so that it includes the new header file:
#include <fstdio.h>
void main() {
 char near *mystr;
 mystr = "Hello, world\n";
 printf(mystr);

}
Compile your program with the command-line compiler BCC then link it with TLINK, specifying a large
model library, such as CL.LIB. Mixing models is tricky, but it can be done; just be prepared for some
difficult bugs if you do things wrong.

Borland C++ Library Routines, by Category
See also Overview
If you know the name of the function you want Help on, see:
Borland C++ Library Routines, by Name
Otherwise, if you do not know the name of a particular function, but you know what type of action it
performs, choose one of the following categories:
Classification Routines
Console I/O Routines
Conversion Routines
Diagnostic Routines
Directory Control Routines
EasyWin Routines
Inline Routines
Input/output Routines
Interface Routines
International API Routines (16-bit)
International API Routines (32-bit)
Manipulation Routines
Math Routines
Memory Routines
Miscellaneous Routines
Obsolete Functions
Process Control Routines
Time and Date Routines
Variable Argument List Routines

Borland C++ has several hundred classes, functions, and macros that you call from within your C and
C++ programs to perform a wide variety of tasks, including low- and high-level I/O, string and file
manipulation, memory allocation, process control, data conversion, mathematical calculations, and
much more. These classes, functions, and macros are collectively referred to as library routines.

Reasons To Access the Run-time Library Source Code
See also
Here are some reasons why you might want to obtain the source code for run-time library routines:

To write a function similar to, but not the same as, a Borland C++ function. With access to the
run-time library source code, you can tailor the library function to suit your needs, and avoid having to
write a separate function of your own.

To know more about the internals of a library function when you debug your code.
To delete the leading underscores on C symbols.
To learn programming techniques by studying tight, professionally written library source code.

Because Borland believes strongly in the concept of open architecture, the Borland C++ run-time library
source code is available for licensing. Just fill out the order form distributed with your Borland C++
package, include your payment, and Borland will ship you the Borland C++ run-time library source code.

Guidelines for Selecting Run-Time Libraries
See also Overview
Use the following guidelines when selecting which run-time libraries to use:

16-bit DLLs are supported only in the large memory model.
For 32-bit programs, only the flat memory model is supported.
32-bit console and GUI programs require different startup code.
Multithread applications are supported only in 32-bit programs.

Run-time Libraries Overview
Borland C++ has several hundred classes, functions, and macros that you call from within your C and
C++ programs to perform a wide variety of tasks, including low- and high-level I/O, string and file
manipulation, memory allocation, process control, data conversion, mathematical calculations, and
much more. These classes, functions, and macros are collectively referred to as library routines.
The Borland C++ run-time libraries are divided into static (OBJ and LIB) and dynamic-link (DLL)
versions.

Static libraries are located in the LIB subdirectory of your installation.
Dynamic-link libraries are located in the BIN subdirectory of your installation.

Several versions of the run-time libraries are available. For example, there are specific versions for each
memory-model, debugging, and 16- and 32-bit versions. There are also optional libraries to provide
mathematics, containers, ObjectWindows development, and international applications.

Static Run-time Libraries
See also Legend Overview
Listed below are each of the Borland C++ static library names, the operating environment in which it is
available, and its use.
File name Environment Use
Directory of BC5\LIB
BIDSI.LIB Win 16 16-bit dynamic BIDS import library for BIDS50.DLL
BIDSF.LIB Win32s, Win32 32-bit BIDS library
BIDSFI.LIB Win32s, Win32 32-bit dynamic BIDS import library for BIDS50F.DLL
BIDS?.LIB Win 16 16-bit BIDS library
BWCC.LIB Win 16 16-bit import library for BWCC.DLL
BWCC32.LIB Win32s, Win32 32-bit import library for BWCC32.DLL
C0D32.OBJ Win32s, Win32 32-bit DLL startup module
C0D?.OBJ Win 16 16-bit DLL startup module
C0W32.OBJ Win32s, Win32 32-bit GUI EXE startup module
C0W?.OBJ Win 16 16-bit EXE startup module
C0X32.OBJ Win32 32-bit console-mode EXE startup module
CRTLDLL.LIB Win 16 16-bit dynamic import library for BC520RTL.DLL
CT.LIB DOS tiny library (DOS only)
CW32.LIB Win32s, Win32 32-bit GUI single-thread library
CW?.LIB Win 16 16-bit library
CW32I.LIB Win32s, Win32 32-bit single-thread, GUI, dynamic RTL import library for

CW3230.DLL
CW32MT.LIB Win32 32-bit GUI multithread library
CW32MTI.LIB Win32 32-bit multithread, GUI, dynamic RTL import library for

CW3220MT.DLL
IMPORT.LIB Win 16 16-bit import library
IMPORT32.LIB Win32 Import library; includes Winsock 1.x
INET.LIB Win32 Import library for the Internet API (URLMON, WININET,

HLINK, MSCONF, WEBPOST)
MSEXTRA.LIB Win32 Import library for some APIs whose module names differ

between Win NT and Win 95.
MSWSOCK.LIB Win32 Import library for MSWSOCK.DLL.
IMPORT32.LIB Win32s, Win32 32-bit import library
MATHW?.LIB Win 16 16-bit math libraries
NOEH?.LIB 16-bit DOS, DPMI16 Eliminate exception handling code in run-time libraries
NOEHW?.LIB Win 16, DPMI16 Eliminate exception handling code in run-time libraries
W32SUT16.LIB Win 16 16-bit universal thunking library
W32SUT32.LIB Win32s 32-bit universal thunking library
OBSOLETE.LIB Win 16, Win32, Win32s Provides obsolete global variables.
OLE2W16.LIB Win 16 Import library for the 16-bit OLE 2.0 API
OLE2W32.LIB Win32 Import library for the 32-bit OLE 2.0 API
RPCEXTRA.LIB Win32 Import library for some RPC APIs whose names differ

between Win NT and Win 95.
TH32.LIB Win32 Import library for the 32-bit ToolHelp API under Win 95.
W32SUT16.LIB Win 16 16-bit universal thunking library.

W32SUT32.LIB Win 32 32-bit universal thunking library.
WS2_32.LIB Win32 Import library for the 32-bit WinSock 2.0 API.

Directory of BC5\LIB\16BIT
FILES.C Win 16 Increases the number of file handles
FILES2.C Win 16 Increases the number of file handles
MATHERR.C Win 16 Sample of a user-defined floating-point math exception

handler for float and double types
MATHERRL.C Win 16 Sample of a user-defined floating-point math exception

handler for long double type
WILDARG.OBJ Win 16 Transforms wild-card arguments into an array of

arguments to main() in console-mode applications
Directory of BC5\LIB\32BIT
FILES.C Win32s, Win32 Increases the number of file handles
FILES2.C Win32s, Win32 Increases the number of file handles
FILEINFO.OBJ Win32s, Win32 Passes open file-handle information to child processes
GP.OBJ Win32s, Win32 Prints register-dump information when an exception

occurs
MATHERR.C Win32s, Win32 Sample of a user-defined floating-point math exception

handler for float and double types
MATHERRL.C Win32s, Win32 Sample of a user-defined floating-point math exception

handler for long double type
WILDARGS.OBJ Win32 Transforms wild-card arguments into an array of

arguments to main() in console-mode applications
Directory of BC5\LIB\STARTUP
BUILD-C0.BAT Win 16 Batch file to build C0D?.OBJ, C0F?.OBJ, and C0W?.OBJ
C0.ASM DOS Source for C0?.OBJ
C0D.ASM Win 16 Source for C0D?.OBJ
C0W.ASM Win 16 Source for C0W?.OBJ
RULES.ASI Win 16 Assembly rules for C0D.ASM and C0W.ASM

Legend
Each memory model has its own library file and math file that contain versions of the routines written for
that particular model.
The ? placeholder in each of the library file names represents one of the supported memory models (S =
small, M = Medium, C = compact, and L = large).
For example, the available versions of the 16-bit DLL startup module (C0D?.OBJ) are:

C0DS.OBJ (small)
C0DM.OBJ (medium)
C0DC.OBJ (compact)
C0DL.OBJ (large)

Dynamic-link Libraries
See also Overview
The dynamic-link library (DLL) version of the run-time library is contained in the BIN subdirectory of your
installation. Several versions of the dynamic-link libraries are available. For example, there are 16- and
32-bit specific versions, and versions that support multithread applications.
In the 16-bit specific version, only the large-memory model DLL is provided. No other memory-model is
supported in a 16-bit DLL.
Listed below are each of the Borland C++ DLL names, the operating environment in which it is
available, and its use.
Directory: BC5\BIN

File Name Environment Use

BC520RTL.DLL Win 16 16-bit, large-memory model
BIDS50.DLL Win 16 16-bit BIDS
BIDS50F.DLL Win32s, Win32 32-bit BIDS
CW3230.DLL Win32s, Win32 32-bit, single thread, GUI mode
CW3220MT.DLL Win32 32-bit, multithread, GUI mode
LOCALE.BLL Win 16 Locale library

Default Run-Time Libraries
See also Overview
The following table identifies the default run-time libraries used with each compiler.
Compiler Environment Default Libraries
BCC.EXE 16 bit Windows C0WS.OBJ, CWS.LIB, MATHWS.LIB, IMPORT.LIB
BCC32.EXE Win32 and Win32s C0W32.OBJ, CW32.LIB, IMPRTW32.LIB
BCW.EXE 16 bit Windows Same as BCC.EXE
BCW32.EXE Win32 and Win32s Same as BCC32.EXE

C++ Prototyped Routines
See also
Certain routines described in this book have multiple declarations. You must choose the prototype
appropriate for your program. In general, the multiple prototypes are required to support the original C
implementation and the stricter and sometimes different C++ function declaration syntax. For example,
some string-handling routines have multiple prototypes because in addition to the ANSI-C specified
prototype, Borland C++ provides prototypes consistent with the ANSI C++ draft.

Function Header
getvect dos.h
max stdlib.h
memchr string.h
min stdlib.h
setvect dos.h
strchr string.h
strpbrk string.h
strrchr string.h
strstr string.h

Classification Routines
See also
The following routines classify ASCII characters as letters, control characters, punctuation, uppercase,
and so.
These routines are all declared in ctype.h.
isalnum islower
isalpha isprint
isascii ispunct
iscntrl isspace
isdigit isupper
isgraph isxdigit

Console I/O Routines
See also
The following routines output text to the screen or read from the keyboard. They cannot be used in a
GUI application.

Function Header Function Header
cgets conio.h movetext conio.h
clreol conio.h normvideo conio.h
clrscr conio.h putch conio.h
cprintf conio.h puttext conio.h
cputs conio.h _setcursortype conio.h
delline conio.h textattr conio.h
getpass conio.h textbackground conio.h
gettext conio.h textcolor conio.h
gettextinfo conio.h textmode conio.h
gotoxy conio.h ungetc stdio.h
highvideo conio.h wherex conio.h
insline conio.h wherey conio.h
lowvideo conio.h window conio.h

Conversion Routines
See also
The following routines convert characters and strings from

alpha to different numeric representations (floating-point, integers, longs)
numeric to alpha representations
uppercase to lowercase (and vice versa).

Function Header Function Header
atof stdlib.h strtol stdlib.h
atoi stdlib.h _strtold stdlib.h
atol stdlib.h strtoul stdlib.h
ecvt stdlib.h toascii ctype.h
fcvt stdlib.h _tolower ctype.h
gcvt stdlib.h tolower ctype.h
itoa stdlib.h _toupper ctype.h
ltoa stdlib.h toupper ctype.h
strtod stdlib.h ultoa stdlib.h

Diagnostic Routines
See also
The following routines provide built-in troubleshooting capability.

Function Header
assert assert.h
_matherr math.h
_matherrl math.h
perror errno.h

Directory Control Routines
See also
The following routines manipulate directories and path names.

Function Header Function Header
chdir dir.h _ getdcwd direct.h
_chdrive direct.h getdisk dir.h
closedir dirent.h _ makepath stdlib.h
_dos_findfirst dos.h mkdir dir.h
_dos_findnext dos.h mktemp dir.h
_dos_getdiskfree dos.h opendir direct.h
_dos_getdrive dos.h readdir dirent.h
_dos_setdrive dos.h rewinddir dirent.h
findfirst dir.h rmdir dir.h
findnext dir.h _searchenv stdlib.h
fnmerge dir.h searchpath dir.h
fnsplit dir.h _searchstr stdlib.h
_ fullpath stdlib.h setdisk dir.h
getcurdir dir.h _splitpath stdlib.h
getcwd dir.h

EasyWin Routines
See also
The following routines are portable to EasyWin programs, but are not available in Windows 16-bit
programs. They are provided to help you port DOS programs into a Windows 16-bit applications.

Function Header Function Header
clreol conio.h printf stdio.h
clrscr conio.h putch conio.h
fgetchar stdio.h putchar stdio.h
getch stdio.h puts stdio.h
getchar stdio.h scanf stdio.h
getche stdio.h vprintf stdio.h
gets stdio.h vscanf stdio.h
gotoxy conio.h wherex conio.h
kbhit conio.h wherey conio.h
perror errno.h

Inline Routines
See also
The following routines have inline versions. The compiler will generate code for the inline versions when
you use #pragma intrinsic or if you specify program optimization..

Function Header Function Header
abs math.h stpcpy string.h
alloca malloc.h strcat string.h
_crotl stdlib.h strchr string.h
_crotr stdlib.h strcmp string.h
_lrotl stdlib.h strcpy string.h
_lrotr stdlib.h strlen string.h
memchr mem.h strncat string.h
memcmp mem.h strncmp string.h
memcpy mem.h strncpy string.h
memset mem.h strnset string.h
_rotl stdlib.h strrchr string.h
_rotr stdlib.h strset string.h

Input/output Routines
See also
The following routines provide stream- and operating-system level I/O capability.

Function Header Function Header
access io.h getftime io.h
chmod io.h gets stdio.h
chsize io.h getw stdio.h
clearerr stdio.h ioctl io.h
close io.h isatty io.h
creat io.h kbhit conio.h
creatnew io.h lock io.h
creattemp io.h locking io.h
cscanf conio.h lseek io.h
_dos_close dos.h open io.h
_pclose stdio.h _open_osfhandle io.h
_dos_creat dos.h perror stdio.h
_dos_creatnew dos.h _pipe io.h
_dos_getfileattr dos.h _popen stdio.h
_dos_getftime dos.h printf stdio.h
_dos_open dos.h putc stdio.h
_dos_read dos.h putchar stdio.h
_dos_setfileattr dos.h puts stdio.h
_dos_setftime dos.h putw stdio.h
_dos_write dos.h read io.h
dup io.h remove stdio.h
dup2 io.h rename stdio.h
eof io.h rewind stdio.h
fclose stdio.h rmtmp stdio.h
fcloseall stdio.h _rtl_chmod io.h
fdopen stdio.h _rtl_close io.h
feof stdio.h _rtl_creat io.h
ferror stdio.h _rtl_open io.h
fflush stdio.h _rtl_read io.h
fgetc stdio.h _rtl_write io.h
fgetchar stdio.h scanf stdio.h
fgetpos stdio.h setbuf stdio.h
fgets stdio.h setftime io.h
filelength io.h setmode io.h
fileno stdio.h setvbuf stdio.h
flushall stdio.h sopen io.h

fopen stdio.h sprintf stdio.h
fprintf stdio.h sscanf stdio.h
fputc stdio.h strerror stdio.h
fputchar stdio.h _strerror string.h, stdio.h
fputs stdio.h tell io.h
fread stdio.h tempnam stdio.h
freopen stdio.h TFile (class) file.h
fscanf stdio.h tmpfile stdio.h
fseek stdio.h tmpnam stdio.h
fsetpos stdio.h umask io.h
_fsopen stdio.h unlink dos.h
fstat sys\stat.h unlock io.h
ftell stdio.h utime utime.h
fwrite stdio.h vfprintf stdio.h
get_osfhandle io.h vfscanf stdio.h
getc stdio.h vprintf stdio.h
getch conio.h vscanf stdio.h
getchar stdio.h vsprintf stdio.h
getche conio.h vsscanf io.h

Interface Routines (DOS, 8086, BIOS)
See also
The following routines provide operating system, BIOS and machine-specific capabilities.

Function Header Function Header
bdos dos.h inp conio.h
bdosptr dos.h inpw conio.h
_bios_equiplist bios.h inport dos.h
biosequip bios.h inportb dos.h
biosmemory bios.h int86 dos.h
biostime bios.h int86x dos.h
_chain_intr dos.h intdos dos.h
country dos.h intdosx dos.h
ctrlbrk dos.h intr dos.h
_disable dos.h MK_FP dos.h
disable dos.h outp conio.h
dosexterr dos.h outpw conio.h
_dos_getvect dos.h outport dos.h
_dos_setvect dos.h outportb dos.h
_enable dos.h parsfnm dos.h
enable dos.h peek dos.h
FP_OFF dos.h peekb dos.h
FP_SEG dos.h poke dos.h
geninterrupt dos.h pokeb dos.h
getcbrk dos.h segread dos.h
getdfree dos.h setcbrk dos.h
getdta dos.h _setcursortype conio.h
getfat dos.h setdta dos.h
getfatd dos.h setvect dos.h
getpsp dos.h setverify dos.h
getvect dos.h sleep dos.h
getverify dos.h

International API Routines (16-bit RTL)
See also
The following routines are affected by the current locale. The current locale is specified by the setlocale
function and is enabled by defining __USELOCALES__ with -D command line option. When you define
__USELOCALES__, only function versions of the following routines are used in the run-time library
rather than macros.

Function Header Function Header

cprintf stdio.h scanf stdio.h

cscanf stdio.h setlocale locale.h

fprintf stdio.h sprintf stdio.h

fscanf stdio.h sscanf stdio.h

isalnum ctype.h strcoll string.h

isalpha ctype.h strftime time.h

iscntrl ctype.h strlwr string.h

isdigit ctype.h strupr string.h

isgraph ctype.h strxfrm string.h

islower ctype.h tolower ctype.h

isprint ctype.h toupper ctype.h

ispunct ctype.h vfprintf stdio.h

isspace ctype.h vfscanf stdio.h

isupper ctype.h vprintf stdio.h

isxdigit ctype.h vscanf stdio.h

localeconv locale.h vsprintf stdio.h

printf stdio.h vsscanf stdio.h

Manipulation Routines
See also
The following routines handle strings and blocks of memory: copying, comparing, converting, and
searching.

Function Header Function Header
mblen stdlib.h strerror string.h
mbstowcs stdlib.h stricmp string.h
mbtowc stdlib.h strlen string.h
memccpy mem.h, string.h strlwr string.h
memchr mem.h, string.h strncat string.h
memcmp mem.h, string.h strncmpi string.h
memcpy mem.h, string.h strncmp string.h
memicmp mem.h, string.h strncpy string.h
memmove mem.h, string.h strnicmp string.h
memset mem.h, string.h strnset string.h
movedata mem.h, string.h strpbrk string.h
movmem mem.h, string.h strrchrstring.h
setmem mem.h strrev string.h
stpcpy string.h strset string.h
strcat string.h strspn string.h
strchr string.h strstr string.h
strcmpi string.h strtok string.h
strcmp string.h strupr string.h
strcoll string.h strxfrm string.h
strcpy string.h wcstombs stdlib.h
strcspn string.h wctomb stdlib.h
strdup string.h

Math Routines
See also
The folowing routines perform mathematical calculations and conversions.

Function Header Function Header
abs complex.h, stdlib.h labs stdlib.h
acos complex.h, math.h ldexp math.h
acosl math.h ldexpl math.h
arg complex.h ldiv math.h
asin complex.h, math.h log complex.h, math.h
asinl math.h logl math.h
atan complex.h, math.h log10 complex.h, math.h
atan2 complex.h, math.h log10l math.h
atan2l math.h _lrotl stdlib.h
atanl math.h _lrotr stdlib.h
atof stdlib.h, math.h ltoa stdlib.h
atoi stdlib.h _matherr math.h
atol stdlib.h _matherrl math.h
_atold math.h modf math.h
bcd (class) bcd.h modfl math.h
cabs math.h norm complex.h
cabsl math.h polar complex.h
ceil math.h poly math.h
ceill math.h polyl math.h
_clear87 float.h pow complex.h, math.h
complex (class) complex.h pow10 math.h
conj complex.h pow10l math.h
_control87 float.h powl math.h
cos complex.h, math.h rand stdlib.h
cosh complex.h, math.h random stdlib.h
coshl math.h randomize stdlib.h
cosl math.h real complex.h
div math.h _rotl stdlib.h
ecvt stdlib.h _rotr stdlib.h
exp complex.h, math.h sin complex.h, math.h
expl math.h sinh complex.h, math.h
fabs math.h sinhl math.h
fabsl math.h sinl complex.h, math.h
fcvt stdlib.h sqrt complex.h, math.h
floor math.h sqrtl math.h
floorl math.h srand stdlib.h

fmod math.h _status87 float.h
fmodl math.h strtod stdlib.h
_fpreset float.h strtol stdlib.h
frexp math.h _strtold stdlib.h
frexpl math.h strtoul stdlib.h
gcvt stdlib.h tan complex.h, math.h
hypot math.h tanh complex.h, math.h
hypotl math.h tanhl complex.h, math.h
imag complex.h tanl math.h
itoa stdlib.h ultoa stdlib.h

Memory Routines
See also
The following routines provide dynamic memory allocation in the small-data and large-data models.

Function Header Function Header
alloca malloc.h heapcheckfree alloc.h
_bios_memsize bios.h heapchecknode alloc.h
calloc alloc.h, stdlib.h heapwalk alloc.h
farcalloc alloc.h malloc alloc.h, stdlib.h
farfree alloc.h realloc alloc.h, stdlib.h
farmalloc alloc.h set_new_handler new.h
free alloc.h, stdlib.h stackavail malloc.h
heapcheck alloc.h

Miscellaneous Routines
See also
The following routines provide non-local goto capabilities and locale.

Function Header

localeconv locale.h
longjmp setjmp.h
setjmp setjmp.h
setlocale locale.h

Obsolete Functions
See also
The old names of the following functions are available, but the compiler will generate a warning that you
are using an obsolete name. Future versions of Borland C++ might not provide support for the old
function names.
The following function names have been changed:

Old name New name Header file
_chmod _rtl_chmod io.h
_close _rtl_close io.h
_creat _rtl_creat io.h
_heapwalk _rtl_heapwalk malloc.h
_open _rtl_open io.h
_read _rtl_read io.h
_write _rtl_write io.h

Process Control Routines
See also
The following routines invoke and terminate new processes from within another routine.

Function Header Function Header

abort (process.h) exit (process.h)

_beginthread _expand (process.h)

_beginthreadNT (process.h) getpid (process.h)

_c_exit (process.h) _pclose (stdio.h)

_cexit (process.h) _popen (stdio.h)

cwait (process.h) raise (signal.h)

_endthread (process.h) signal (signal.h)

execle (process.h) spawnle (process.h)

execl (process.h) spawnlpe (process.h)

execlpe (process.h) spawnlp (process.h)

execlp (process.h) spawnl (process.h)

execve (process.h) spawnve (process.h)

execv (process.h) spawnvpe (process.h)

execvpe (process.h) spawnvp (process.h)

execvp (process.h) spawnv (process.h)

_exit (process.h) wait (process.h)

Time and Date Routines
See also
The following following functions are time conversion and time manipulation routines.

Function Header Function Header
asctime time.h gmtime time.h
_bios_timeofday bios.h localtime time.h
ctime time.h mktime time.h
difftime time.h stime time.h
_dos_getdate dos.h _strdate time.h
_dos_gettime dos.h strftime time.h
_dos_setdate dos.h _strtime time.h
_dos_settime dos.h TDate (class) date.h
dostounix dos.h time time.h
ftime sys\timeb.h TTime (class) date.h
getdate dos.h tzset time.h
gettime dos.h unixtodos dos.h

Variable Argument List Routines
See also
The following routines are for use when accessing variable argument lists (such as with printf, vscanf,
and so on).

Function Header

va_start stdarg.h
va_arg stdarg.h
va_end stdarg.h

Borland C++ Library Routines, by Name
See also Overview
{button A,JI(`',`libxref_a')} {button B,JI(`',`libxref_b')} {button C,JI(`',`libxref_c')} {button D,JI(`',`libxref_d')} {button E,JI(`',`libxref_e')}
{button F,JI(`',`libxref_f')} {button G,JI(`',`libxref_g')} {button H,JI(`',`libxref_h')} {button I,JI(`',`libxref_i')} {button K,JI(`',`libxref_k')}
{button L,JI(`',`libxref_l')} {button M,JI(`',`libxref_m')} {button N,JI(`',`libxref_n')} {button O,JI(`',`libxref_o')} {button P,JI(`',`libxref_p')}
{button Q,JI(`',`libxref_q')} {button R,JI(`',`libxref_r')} {button S,JI(`',`libxref_s')} {button T,JI(`',`libxref_t')} {button U,JI(`',`libxref_u')}
{button V,JI(`',`libxref_v')} {button W,JI(`',`libxref_w')}
If you do not know the name of a particular function, but you know what type of action it performs, see:
Borland C++ Library Routines, by Category
Otherwise, if you know which function you want Help on, choose one of the following topics:

A
abort
abs
access
acos
acosl
alloca
arg
asctime
asin
asinl
assert
atan
atan2
atan2l
atanl
atexit
atof
atoi
atol
_atold

B
bcd (class)

bdos
bdosptr
_beginthread
_beginthreadNT
_bios_equiplist
_bios_memsize
_bios_timeofday
biosequip
biosmemory
biostime
bsearch

C
_c_exit
cabs
cabsl
calloc

ceil
ceill
_cexit
cgets
_chain_intr
chdir
_chdrive
chmod
chsize
_clear87
clearerr
clock
close
closedir
clreol
clrscr
complex (class)
conj
_control87
cos
cosh
coshl
cosl
country
creat
creatnew
creattemp
_crotl
_crotr
cscanf
ctime
ctrlbrk
cwait

D
delline
difftime
disable
_disable
div
_dos_close
_dos_commit
_dos_creat
_dos_creatnew
_dos_findfirst
_dos_findnext
_dos_getdate
_dos_getdiskfree
_dos_getdrive
_dos_getfileattr

_dos_getftime
_dos_gettime
_dos_getvect
_dos_open
_dos_read
_dos_setdate
_dos_setdrive
_dos_setfileattr
_dos_setftime
_dos_settime
_dos_setvect
_dos_write
dosexterr
dostounix
dup

E
ecvt
_ _emit_ _
enable
_enable
_endthread
eof
execl
execle
execlp
execlpe
execv
execve
execvp
execvpe
exit
_exit
exp
_expand
expl

F
fabs
fabsl
farcalloc
farfree
farmalloc
farrealloc
fclose
fcloseall
fcvt
fdopen
feof
ferror

fflush
fgetc
fgetchar
fgetpos
fgets
filelength
fileno
findfirst
findnext
floor
floorl
flushall
_fmemccpy
_fmemchr
_fmemcmp
_fmemcpy
_fmemicmp
_fmemset
fmod
fmodl
fnmerge
fnsplit
fopen
FP_OFF
FP_SEG
_fpreset
fprintf
fputc
fputchar
fputs
fread
free
freopen
frexp
frexpl
fscanf
fseek
fsetpos
_fsopen
fstat
_fstrcat
_fstrchr
_fstrcspn
_fstrdup
_fstricmp
_fstrlen
_fstrlwr
_fstrncat
_fstrncmp

_fstrncpy
_fstrnicmp
_fstrnset
_fstrpbrk
_fstrrchr
_fstrrev
_fstrset
_fstrspn
_fstrstr
_fstrtok
_fstrupr
ftell
ftime
_fullpath
fwrite

G
gcvt
geninterrupt
_get_osfhandle
getc
getcbrk
getch
getchar
getche
getcurdir
getcwd
getdate
_getdcwd
getdfree
getdisk
getdta
getenv
getfat
getfatd
getftime
getpass
getpid
getpsp
gets
gettext
gettextinfo
gettime
getvect
getverify
getw
gmtime
gotoxy

H

heapcheck
heapcheckfree
heapchecknode
_heapchk
heapfillfree
_heapmin
_heapset
heapwalk
highvideo
hypot
hypotl

I
imag
_InitEasyWin
inp
inport
inportb
inpw
insline
int86x
intdos
intdosx
intr
ioctl
isalnum
isalpha
isascii
isatty
iscntrl
isdigit
isgraph
islower
isprint
ispunct
isspace
isupper
isxdigit
itoa

K
kbhit

L
labs
ldexp
ldexpl
ldiv
lfind
localeconv
localtime

lock
locking
log
log10
log10l
logl
longjmp
lowvideo
_lrotl
_lrotr
lsearch
lseek
ltoa

M
_makepath
malloc
_matherr
_matherrl
max
mblen
mbstowcs
mbtowc
memccpy
memchr
memcmp
memcpy
memicmp
memmove
memset
min
MK_FP
mkdir
mktemp
mktime
modf
modfl
movedata
movetext
movmem
_msize

N
norm
normvideo

O
offsetof
open
_open_osfhandle
opendir

outp
outport
outportb
outpw

P
parsfnm
_pclose
peek
peekb
perror
_pipe
poke
pokeb
polar
poly
polyl
_popen
pow
pow10
pow10l
powl
printf
putc
putch
putchar
putenv
puts
puttext
putw

Q
qsort

R
raise
rand
random
randomize
read
readdir
real
realloc
remove
rename
rewind
rewinddir
rmdir
rmtmp
_rotl
_rotr

_rtl_chmod
_rtl_close
_rtl_creat
_rtl_heapwalk
_rtl_open
_rtl_read
_rtl_write

S
scanf
_searchenv
searchpath
_searchstr
segread
set_new_handler
setbuf
setcbrk
_setcursortype
setdate
setdisk
setdta
setftime
setjmp
setlocale
setmem
setmode
settime
setvbuf
setvect
setverify
signal
sin
sinh
sinhl
sinl
sleep
sopen
spawnl
spawnle
spawnlp
spawnlpe
spawnv
spawnve
spawnvp
spawnvpe
_splitpath
sprintf
sqrt
sqrtl
srand

sscanf
stackavail
stat
_status87
stime
stpcpy
strcat
strchr
strcmp
strcmpi
strcoll
strcpy
strcspn
_strdate
strdup
strerror
_strerror
strftime
stricmp
strlen
strlwr
strncat
strncmp
strncmpi
strncpy
strnicmp
strnset
strpbrk
strrchr
strrev
strset
strspn
strstr
_strtime
strtod
strtok
strtol
_strtold
strtoul
strupr
strxfrm
swab
system

T
tan
tanh
tanhl
tanl
tell

tempnam
textattr
textbackground
textcolor
textmode
time
tmpfile
tmpnam
toascii
tolower
_tolower
toupper
_toupper
tzset

U
ultoa
umask
ungetc
ungetch
unixtodos
unlink
unlock
utime

V
va_arg
va_end
va_start
vfprintf
vfscanf
vprintf
vscanf
vsprintf
vsscanf

W
wait
wcstombs
wctomb
wherex
wherey
window
write

abort
See also Example Portability

Syntax
#include <stdlib.h>
void abort(void);
Description
Abnormally terminates a program.
abort causes an abnormal program termination by calling raise(SIGABRT). If there is no signal handler
for SIGABRT, then abort writes a termination message (Abnormal program termination) on stderr, then
aborts the program by a call to _exit with exit code 3.

Return Value
abort returns the exit code 3 to the parent process or to the operating system command processor.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

abs
See also Example Portability

Syntax
#include <stdlib.h>
int abs(int x);
Description
Returns the absolute value of an integer.
abs returns the absolute value of the integer argument x. If abs is called when stdlib.h has been
included, it's treated as a macro that expands to inline code.
If you want to use the abs function instead of the macro, include
#undef abs

in your program, after the #include <stdlib.h>.
This function can be used with bcd and complex types.

Return Value
The abs function returns an integer in the range of 0 to INT_MAX, with the exception that an argument
with the value INT_MIN is returned as INT_MIN. The values for INT_MAX and INT_MIN are defined in
header file limit.h.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

access, _waccess
See also Example Portability

Syntax
#include <io.h>
int access(const char *filename, int amode);
int _waccess(const wchar_t *filename, int amode);
Description
Determines accessibility of a file.
access checks the file named by filename to determine if it exists, and whether it can be read, written to,
or executed.
The list of amode values is as follows:

06 Check for read and write permission
04 Check for read permission
02 Check for write permission
01 Execute (ignored)
00 Check for existence of file

Under DOS, OS/2, and Windows (16- and 32-bit) all existing files have read access (amode equals 04),
so 00 and 04 give the same result. Similarly, amode values of 06 and 02 are equivalent because under
DOS write access implies read access.
If filename refers to a directory, access simply determines whether the directory exists.

Return Value
If the requested access is allowed, access returns 0; otherwise, it returns a value of -1, and the global
variable errno is set to one of the following values:
ENOENT Path or file name not found
EACCES Permission denied

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

acos, acosl
See also Example Portability

Syntax
#include <math.h>
double acos(double x);
long double acosl(long double x);
Description
Calculates the arc cosine.
acos returns the arc cosine of the input value.
acosl is the long double version; it takes a long double argument and returns a long double result.
Arguments to acos and acosl must be in the range -1 to 1, or else acos and acosl return NAN and set
the global variable errno to
EDOM Domain error
This function can be used with bcd and complex types.

Return Value
acos and acosl of an argument between -1 and +1 return a value in the range 0 to pi. Error handling for
these routines can be modified through the functions _matherr_matherr and _matherrl.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

acos + + + + + + +
acosl + + + +

alloca
See also Example Portability

Syntax
#include <malloc.h>
void *alloca(size_t size);
Description
Allocates temporary stack space.
alloca allocates size bytes on the stack; the allocated space is automatically freed up when the calling
function exits.
Because alloca modifies the stack pointer, do not place calls to alloca in an expression that is an
argument to a function.
The alloca function should not be used in the try-block of a C++ program. If an exception is thrown, any
values placed on the stack by alloca will be corrupted.
If the calling function does not contain any references to local variables in the stack, the stack will not be
restored correctly when the function exits, resulting in a program crash. To ensure that the stack is
restored correctly, use the following code in the calling function:
char *p;
char dummy[5];

dummy[0] = 0;

 .
 .
 .
p = alloca(nbytes);
Return Value
If enough stack space is available, alloca returns a pointer to the allocated stack area. Otherwise, it
returns NULL.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

asctime, _wasctime
See also Example Portability

Syntax
#include <time.h>
char *asctime(const struct tm *tblock);
wchar_t *_wasctime(const struct tm *tblock);
Description
asctime converts date and time to ASCII.
_wasctime converts date and time to a wchar_t string.
asctime converts a time stored as a structure in *tblock to a 26-character string of the same form as the
ctime string:
 Sun Sep 16 01:03:52 1973\n\0
Return Value
asctime returns a pointer to the character string containing the date and time. This string is a static
variable that is overwritten with each call to asctime.
Valid values for struct tm are as follows:
tm.day 0 - 6 0 = Sunday

tm.month 0 - 11 0 = January

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

asin, asinl
See also Example Portability

Syntax
#include <math.h>
double asin(double x);
long double asinl(long double x);
Description
Calculates the arc sine.
asin of a real argument returns the arc sine of the input value.
asinl is the long double version; it takes a long double argument and returns a long double result.
Real arguments to asin and asinl must be in the range -1 to 1, or else asin and asinl return NAN and set
the global variable errno to
 EDOM Domain error
This function can be used with bcd and complex types.

Return Value
asin and asinl of a real argument return a value in the range -pi/2 to pi/2. Error handling for these
functions may be modified through the functions _matherr and _matherrl.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

asin + + + + + + +
asinl + + + +

assert
See also Example Portability

Syntax
#include <assert.h>
void assert(int test);
Description
Tests a condition and possibly aborts.
assert is a macro that expands to an if statement; if test evaluates to zero, assert aborts the program
(by calling abort) and asserts the following a message on stderr:
Assertion failed: test, file filename, line linenum
The filename and linenum listed in the message are the source file name and line number where the
assert macro appears.
If you place the #define NDEBUG directive ("no debugging") in the source code before the #include
<assert.h> directive, the effect is to comment out the assert statement.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

atan, atanl
See also Example Portability

Syntax
#include <math.h>
double atan(double x);
long double atanl(long double x);
Description
Calculates the arc tangent.
atan calculates the arc tangent of the input value.
atanl is the long double version; it takes a long double argument and returns a long double result.
This function can be used with bcd and complex types.

Return Value
atan and atanl of a real argument return a value in the range -pi/2 to pi/2. Error handling for these
functions can be modified through the functions _matherr and _matherrl.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

atan + + + + + + +
atanl + + + +

atan2, atan2l
See also Example Portability

Syntax
#include <math.h>
double atan2(double y, double x);
long double atan2l(long double y, long double x);
Description
Calculates the arc tangent of y/x.
atan2 returns the arc tangent of y/x; it produces correct results even when the resulting angle is near
pi/2 or -pi/2 (x near 0). If both x and y are set to 0, the function sets the global variable errno to EDOM,
indicating a domain error.
atan2l is the long double version; it takes long double arguments and returns a long double result.

Return Value
atan2 and atan2l return a value in the range -pi to pi. Error handling for these functions can be modified
through the functions _matherr and _matherrl.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

atan2 + + + + + + +
atan2l + + + +

atexit
See also Example Portability

Syntax
#include <stdlib.h>
int atexit(void (_USERENTRY * func)(void));
Description
Registers termination function.
atexit registers the function pointed to by func as an exit function. Upon normal termination of the
program, exit calls func just before returning to the operating system. fcmp must be used with the
_USERENTRY calling convention.
Each call to atexit registers another exit function. Up to 32 functions can be registered. They are
executed on a last-in, first-out basis (that is, the last function registered is the first to be executed).

Return Value
atexit returns 0 on success and nonzero on failure (no space left to register the function).

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + +

atof, _atold, _wtof, _wtold
See also Example Portability

Syntax
#include <math.h>
double atof(const char *s);
double _wtof(const wchar_t *s);
long double _atold(const char *s);
long double _wtold(const wchar_t *s);
Description
Converts a string to a floating-point number.
atof converts a string pointed to by s to double; this function recognizes the character representation of

a floating-point number, made up of the following:
An optional string of tabs and spaces
An optional sign
A string of digits and an optional decimal point (the digits can be on both sides of the decimal

point)
An optional e or E followed by an optional signed integer

The characters must match this generic format:
 [whitespace] [sign] [ddd] [.] [ddd] [e|E[sign]ddd]
atof also recognizes +INF and -INF for plus and minus infinity, and +NAN and -NAN for Not-a-Number.
In this function, the first unrecognized character ends the conversion.
_atold is the long double version; it converts the string pointed to by s to a long double.
The functions strtod and _strtold are similar to atof and _atold; they provide better error detection, and
hence are preferred in some applications.

Return Value
atof and _atold return the converted value of the input string.
If there is an overflow, atof (or _atold) returns plus or minus HUGE_VAL (or _LHUGE_VAL), errno is set
to ERANGE (Result out of range), and _matherr (or _matherrl) is not called.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

atof + + + + + + +
_atold + + + +

atoi, _atoi64, _wtoi, _wtoi64
See also Example Portability

Syntax
#include <stdlib.h>
int atoi(const char *s);
__int64 _atoi64(const char *s);
int _wtoi(const wchar_t *s);
__int64 _wtoi64(const wchar_t *s);
Description
Converts a string to an integer.
atoi converts a string pointed to by s to int; atoi recognizes (in the following order)

An optional string of tabs and spaces
An optional sign
A string of digits

The characters must match this generic format:
 [ws] [sn] [ddd]
In this function, the first unrecognized character ends the conversion. There are no provisions for
overflow in atoi (results are undefined).

Return Value
atoi returns the converted value of the input string. If the string cannot be converted to a number of the
corresponding type (int), atoi returns 0.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

atol, _wtol
See also Example Portability

Syntax
#include <stdlib.h>
long atol(const char *s);
long _wtol(const wchar_t *s);
Description
Converts a string to a long.
atol converts the string pointed to by s to long. atol recognizes (in the following order)

An optional string of tabs and spaces
An optional sign
A string of digits

The characters must match this generic format:
[ws] [sn] [ddd]
In this function, the first unrecognized character ends the conversion. There are no provisions for
overflow in atol (results are undefined).

Return Value
atol returns the converted value of the input string. If the string cannot be converted to a number of the
corresponding type (b), atol returns 0.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

bdos
See also Example Portability

Syntax
#include <dos.h>
int bdos(int dosfun, unsigned dosdx, unsigned dosal);
Description
Accesses DOS system calls.
bdos provides direct access to many of the DOS system calls. See your DOS reference manuals for
details on each system call.
For system calls that require an integer argument, use bdos; if they require a pointer argument, use
bdosptr. In the large data models (compact, large, and huge), it is important to use bdosptr instead of
bdos for system calls that require a pointer as the call argument.

dosfun is defined in your DOS reference manuals.
dosdx is the value of register DX.
dosal is the value of register AL.

Return Value
The return value of bdos is the value of AX set by the system call.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ +

bdosptr
See also Example Portability

Syntax
#include <dos.h>
int bdosptr(int dosfun, void *argument, unsigned dosal);
Description
Accesses DOS system calls.
bdosptr provides direct access to many of the DOS system calls. See your DOS reference manuals for
details of each system call.
For system calls that require an integer argument, use bdos; if calls require a pointer argument, use
bdosptr. In the large data models (compact, large, and huge), it is important to use bdosptr for system
calls that require a pointer as the call argument. In the small data models, the argument parameter to
bdosptr specifies DX; in the large data models, it gives the DS:DX values to be used by the system call.
dosfun is defined in your DOS reference manuals. dosal is the value of register AL.

Return Value
The return value of bdosptr is the value of AX on success or -1 on failure. On failure, the global variables
errno and _doserrno are set.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ +

_beginthread
See also Example Portability

Syntax
#include <process.h>
unsigned long _beginthread(_USERENTRY (*start_address)(void *), unsigned
stack_size, void *arglist)

Description
Starts execution of a new thread.
Note: The start_address must be declared to be _USERENTRY.
The _beginthread function creates and starts a new thread. The thread starts execution at
start_address.
The size of its stack in bytes is stack_size; the stack is allocated by the operating system after the stack
size is rounded up to the next multiple of 4096. The thread is passed arglist as its only parameter; it can
be NULL, but must be present. The thread terminates by simply returning, or by calling _endthread.
Either this function or _beginthreadNT must be used instead of the operating system thread-creation API
function because _beginthread and _beginthreadNT perform initialization required for correct operation
of the run-time library functions.
This function is available only in the multithread libraries.

Return Value
_beginthread returns the handle of the new thread.
On error, the function returns -1, and the global variable errno is set to one of the following values:
EAGAIN Too many threads
EINVAL Invalid request

Also see the Win32 description of GetLastError.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2
 + +

_beginthreadNT
See also Example Portability

Syntax
#include <process.h>
unsigned long _beginthreadNT(void (_USERENTRY *start_address)(void *),
unsigned stack_size, void *arglist, void *security_attrib, unsigned long
create_flags, unsigned long *thread_id);

Description
Starts execution of a new thread under Windows NT.
Note: The start_address must be declared to be _USERENTRY.
All multithread Windows NT programs must use _beginthreadNT or the _beginthreadfunction instead of
the operating system thread-creation API function because these functions perform initialization required
for correct operation of the run-time library functions. The _beginthreadNT function provides support for
the operating system security. These functions are available only in the multithread libraries.
The _beginthreadNT function creates and starts a new thread. The thread starts execution at
start_address.
The size of its stack in bytes is stack_size; the stack is allocated by the operating system after the stack
size is rounded up to the next multiple of 4096. The thread arglist can be NULL, but must be present.
The thread terminates by simply returning, or by calling _endthread.
The _beginthreadNT function uses the security_attr pointer to access the SECURITY_ATTRIBUTES
structure. The structure contains the security attributes for the thread. If security_attr is NULL, the thread
is created with default security attributes. The thread handle is not inherited if security_attr is NULL.
_beginthreadNT reads the create_flags variable for flags that provide additional information about the
thread creation. This variable can be zero, specifying that the thread will run immediately upon creation.
The variable can also be CREATE_SUSPENDED; in which case, the thread will not run until the
ResumeThread function is called. ResumeThread is provided by the Win32 API.
_beginthreadNT initializes the thread_id variable with the thread identifier.

Return Value
On success, _beginthreadNT returns the handle of the new thread.
On error, it returns -1, and the global variable errno is set to one of the following values:
EAGAIN Too many threads
EINVAL Invalid request

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2
 +

biosequip
Example Portability

Syntax
#include <bios.h>
int biosequip(void);
Description
Checks equipment.
biosequip uses BIOS interrupt 0x11 to return an integer describing the equipment connected to the
system.

Return Value
The return value is interpreted as a collection of bit-sized fields. The IBM PC values follow:
Bits 14-15 Number of parallel printers installed
 00 = 0 printers
 01 = 1 printer
 10 = 2 printers
 11 = 3 printers
Bit 13 Serial printer attached
Bit 12 Game I/O attached
Bits 9-11 Number of COM ports (DOS only sees two ports but can be pushed to see four; the

IBM PS/2 can see up to eight.)
 000 = 0 ports
 001 = 1 port
 010 = 2 ports
 011 = 3 ports
 100 = 4 ports
 101 = 5 ports
 110 = 6 ports
 111 = 7 ports
Bit 8 Direct memory access (DMA)
 0 = Machine has DMA
 1 = Machine does not have DMA; for example, PC Jr.
Bits 6-7 Number of disk drives
 00 = 1 drive
 01 = 2 drives
 10 = 3 drives
 11 = 4 drives, only if bit 0 is 1
Bits 4-5 Initial video mode
 00 = Unused
 01 = 40x25 BW with color card
 10 = 80x25 BW with color card
 11 = 80x25 BW with mono card
Bits 2-3 Motherboard RAM size
 00 = 16K
 01 = 32K
 10 = 48K
 11 = 64K

Bit 1 Floating-point coprocessor
Bit 0 Boot from disk

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ +

_bios_equiplist
Example Portability

Syntax
#include <bios.h>
unsigned _bios_equiplist(void);
Description
Checks equipment.
_bios_equiplist uses BIOS interrupt 0x11 to return an integer describing the equipment connected to the
system.

Return Value
The return value is interpreted as a collection of bit-sized fields. The IBM PC values follow:
Bits 14-15 Number of parallel printers installed
 00 = 0 printers
 01 = 1 printer
 10 = 2 printers
 11 = 3 printers
Bit 13 Serial printer attached
Bit 12 Game I/O attached
Bits 9-11 Number of COM ports (DOS only sees two ports but can be pushed to see four; the

IBM PS/2 can see up to eight.)
 000 = 0 ports
 001 = 1 port
 010 = 2 ports
 011 = 3 ports
 100 = 4 ports
 101 = 5 ports
 110 = 6 ports
 111 = 7 ports
Bit 8 Direct memory access (DMA)
 0 = Machine has DMA
 1 = Machine does not have DMA; for example, PC Jr.
Bits 6-7 Number of disk drives
 00 = 1 drive
 01 = 2 drives
 10 = 3 drives
 11 = 4 drives, only if bit 0 is 1
Bits 4-5 Initial video mode
 00 = Unused
 01 = 40x25 BW with color card
 10 = 80x25 BW with color card
 11 = 80x25 BW with mono card
Bits 2-3 Motherboard RAM size
 00 = 16K
 01 = 32K
 10 = 48K
 11 = 64K

Bit 1 Floating-point coprocessor
Bit 0 Boot from disk

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ +

biosmemory
Example Portability

Syntax
#include <bios.h>
int biosmemory(void);
Description
Returns memory size.
biosmemory returns the size of RAM memory using BIOS interrupt 0x12. This does not include display
adapter memory, extended memory, or expanded memory.

Return Value
biosmemory returns the size of RAM memory in 1K blocks.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ +

_bios_memsize
Example Portability

Syntax
#include <bios.h>
unsigned _bios_memsize(void);
Description
Returns memory size.
_bios_memsize returns the size of RAM memory using BIOS interrupt 0x12. This does not include
display adapter memory, extended memory, or expanded memory.

Return Value
_bios_memsize returns the size of RAM memory in 1K blocks.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ +

biostime
Example Portability

Syntax
#include <bios.h>
long biostime(int cmd, long newtime);
Description
Reads or sets the BIOS timer.
biostime either reads or sets the BIOS timer. This is a timer counting ticks since midnight at a rate of
ticks per second as defined by _BIOS_CLOCKS_PER_SEC. biostime uses BIOS interrupt 0x1A.
If cmd equals 0, biostime returns the current value of the timer. If cmd equals 1, the timer is set to the
long value in newtime. For example:
totalsecs = biostime(int cmd, long newtime) / _BIOS_CLK_TCK;
The _BIOS_CLOCKS_PER_SEC and _BIOS_CLK_TCK constants are defined in bios.h.

Return Value
When biostime reads the BIOS timer (cmd = 0), it returns the timer's current value.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ +

_bios_timeofday
Example Portability

Syntax
#include <bios.h>
unsigned _bios_timeofday(int cmd, long *timep);
Description
Reads or sets the BIOS timer.
_bios_timeofday either reads or sets the BIOS timer. This is a timer counting ticks since midnight at a
rate of roughly 18.2 ticks per second. _bios_timeofday uses BIOS interrupt 0x1A.
The cmd parameter can be either of the following values:
_TIME_GETCLOCK The function stores the current BIOS timer value into the location pointed to by

timep. If the timer has not been read or written since midnight, the function
returns 1. Otherwise, the function returns 0.

_TIME_SETCLOCK The function sets the BIOS timer to the long value pointed to by timep. The
function does not return a value.

Return Value
The _bios_timeofday returns the value in AX that was set by the BIOS timer call.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ +

bsearch
See also Example Portability

Syntax
#include <stdlib.h>
void *bsearch(const void *key, const void *base, size_t nelem, size_t width,
int (_USERENTRY *fcmp)(const void *, const void *));

Description
Binary search of an array.
bsearch searches a table (array) of nelem elements in memory, and returns the address of the first entry
in the table that matches the search key. The array must be in order. If no match is found, bsearch
returns 0.
Note: Because this is a binary search, the first matching entry is not necessarily the first entry in the

table.
The type size_t is defined in stddef.h header file.

nelem gives the number of elements in the table.
width specifies the number of bytes in each table entry.

The comparison routine fcmp must be used with the _USERENTRY calling convention.
fcmp is called with two arguments: elem1 and elem2. Each argument points to an item to be compared.
The comparison function compares each of the pointed-to items (*elem1 and *elem2), and returns an
integer based on the results of the comparison.
For bsearch, the fcmp return value is

< 0 if *elem1 < *elem2
== 0 if *elem1 == *elem2
> 0 if *elem1 > *elem2

Return Value
bsearch returns the address of the first entry in the table that matches the search key. If no match is
found, bsearch returns 0.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

cabs, cabsl
See also Example Portability

Syntax
#include <math.h>
double cabs(struct complex z);
long double cabsl(struct _complexl z);
Description
cabs calculates the absolute value of a complex number. cabs is a macro that calculates the absolute
value of z, a complex number. z is a structure with type complex; the structure is defined in math.h as
struct complex {
 double x, y;
 };

where x is the real part, and y is the imaginary part.
Calling cabs is equivalent to calling sqrt with the real and imaginary components of z, as shown here:
sqrt(z.x * z.x + z.y * z.y)
cabsl is the long double version; it takes a structure with type _complexl as an argument, and returns a
long double result. The structure is defined in math.h as
struct _complexl {
 long double x, y;
};
Note: If you are using C++, you may also use the complex class defined in complex.h, and use the

function abs to get the absolute value of a complex number.

Return Value
cabs (or cabsl) returns the absolute value of z, a double. On overflow, cabs (or cabsl) returns
HUGE_VAL (or _LHUGE_VAL) and sets the global variable errno to
ERANGE Result out of range

Error handling for these functions can be modified through the functions _matherr and _matherrl.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

cabs + + + + +
cabsl + + + +

calloc
See also Example Portability

Syntax
#include <stdlib.h>
void *calloc(size_t nitems, size_t size);
Description
Allocates main memory.
calloc provides access to the C memory heap. The heap is available for dynamic allocation of variable-
sized blocks of memory. Many data structures, such as trees and lists, naturally employ heap memory
allocation.
All the space between the end of the data segment and the top of the program stack is available for use
in the tiny (DOS only), small and medium data models,except for a small margin immediately before the
top of the stack. This margin allows room for the application to grow on the stack, and provides a small
amount of room needed by the operating system.
In the large data models (compact, large, and huge), all space beyond the program stack to the end of
physical memory is available for the heap.
Note: Memory models are available only for 16-bit applications.
calloc allocates a block of size nitems * size. The block is cleared to 0. If you want to allocate a block
larger than 64K, you must use farcalloc.

Return Value
calloc returns a pointer to the newly allocated block. If not enough space exists for the new block or if
nitems or size is 0, calloc returns NULL.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

ceil, ceill
See also Example Portability

Syntax
#include <math.h>
double ceil(double x);
long double ceill(long double x);
Description
Rounds up.
ceil finds the smallest integer not less than x.
ceill is the long double version; it takes a long double argument and returns a long double result.

Return Value
These functions return the integer found as a double (ceil) or a long double (ceill).

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

ceil + + + + + + +
ceill + + + +

_c_exit
See also Example Portability

Syntax
#include <process.h>
void _c_exit(void);
Description
Performs _exit cleanup without terminating the program.
_c_exit performs the same cleanup as _exit, except that it does not terminate the calling process.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

_cexit
See also Example Portability

Syntax
#include <process.h>
void _cexit(void);
Description
Performs exit cleanup without terminating the program.
_cexit performs the same cleanup as exit, closing all files but without terminating the calling process.
The _cexit function calls any registered "exit functions" (posted with atexit). Before _cexit returns, it
flushes all input/output buffers and closes all streams which were open.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

cgets
See also Example Portability

Syntax
#include <conio.h>
char *cgets(char *str);
Description
Reads a string from the console.
cgets reads a string of characters from the console, storing the string (and the string length) in the
location pointed to by str.
cgets reads characters until it encounters a carriage-return/linefeed (CR/LF) combination, or until the
maximum allowable number of characters have been read. If cgets reads a CR/LF combination, it
replaces the combination with a \0 (null terminator) before storing the string.
Before cgets is called, set str[0] to the maximum length of the string to be read. On return, str[1] is set to
the number of characters actually read. The characters read start at str[2] and end with a null terminator.
Thus, str must be at least str[0] plus 2 bytes long.
Note: Do not use this function for Win32s or Win32 GUI applications.

Return Value
On success, cgets returns a pointer to str[2].

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

_chain_intr
See also Example Portability

Syntax
#include <dos.h>
void _chain_intr(void (interrupt far *newhandler)());
Description
Chains to another interrupt handler.
_chain_intr passes control from the currently executing interrupt handler to the new interrupt handler
whose address is newhandler. The current register set is not passed to the new handler. Instead, the
new handler receives the registers that were stacked (and possibly modified in the stack) by the old
handler. The new handler can simply return, as if it were the original handler. The old handler is not
entered again.
_chain_intr can be called only by C interrupt functions. It is useful when writing a TSR that needs to
insert itself in a chain of interrupt handlers (such as the keyboard interrupt).

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ +

chdir, _wchdir
See also Example Portability

Syntax
#include <dir.h>
int chdir(const char *path);
int _wchdir(const wchar_t *path);
Description
Changes current directory.
chdir causes the directory specified by path to become the current working directory; path must specify
an existing directory.
A drive can also be specified in the path argument, such as
 chdir("a:\\BC")
but this method changes only the current directory on that drive; it does not change the active drive.
Under Windows, only the current process is affected.
Under DOS, the function changes the current directory of the parent process.

Return Value
Upon successful completion, the functions return a value of 0. Otherwise, they return a value of -1, and
the global variable errno is set to
ENOENT Path or file name not found

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

_chdrive
See also Example Portability

Syntax
#include <direct.h>
int _chdrive(int drive);
Description
Sets current disk drive.
_chdrive sets the current drive to the one associated with drive: 1 for A, 2 for B, 3 for C, and so on.
This function changes the current drive of the parent process.

Return Value
_chdrive returns 0 if the current drive was changed successfully; otherwise, it returns -1.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

chmod, _wchmod
See also Example Portability

Syntax
#include <io.h>
int chmod(const char *path, int amode);
int _wchmod(const wchar_t *path, int amode);
Description
Changes file access mode.
chmod sets the file-access permissions of the file given by path according to the mask given by amode.
path points to a string.
amode can contain one or both of the symbolic constants S_IWRITE and S_IREAD (defined in sys\
stat.h).

Value of amode Access permission
S_IWRITE Permission to write
S_IREAD Permission to read
S_IREAD | S_IWRITE Permission to read and write (write permission implies read

permission)

Return Value
Upon successfully changing the file access mode, chmod returns 0. Otherwise, chmod returns a value
of -1.
In the event of an error, the global variable errno is set to one of the following values:
EACCES Permission denied
ENOENT Path or file name not found

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

chsize
See also Example Portability

Syntax
#include <io.h>
int chsize(int handle, long size);
Description
Changes the file size.
chsize changes the size of the file associated with handle. It can truncate or extend the file, depending
on the value of size compared to the file's original size.
The mode in which you open the file must allow writing.
If chsize extends the file, it will append null characters (\0). If it truncates the file, all data beyond the
new end-of-file indicator is lost.

Return Value
On success, chsize returns 0. On failure, it returns -1 and the global variable errno is set to one of the
following values:
EACCESS Permission denied
EBADF Bad file number
ENOSPC No space left on device

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

_clear87
See also Example Portability

Syntax
#include <float.h>
unsigned int _clear87 (void);
Description
Clears floating-point status word.
_clear87 clears the floating-point status word, which is a combination of the 80x87 status word and other
conditions detected by the 80x87 exception handler.

Return Value
The bits in the value returned indicate the floating-point status before it was cleared. For information on
the status word, refer to the constants defined in float.h.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

clearerr
See also Example Portability

Syntax
#include <stdio.h>
void clearerr(FILE *stream);
Description
Resets error indication.
clearerr resets the named stream's error and end-of-file indicators to 0. Once the error indicator is set,
stream operations continue to return error status until a call is made to clearerr or rewind. The end-of-file
indicator is reset with each input operation.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

clock
See also Example Portability

Syntax
#include <time.h>
clock_t clock(void);
Description
Determines processor time.
clock can be used to determine the time interval between two events. To determine the time in seconds,
the value returned by clock should be divided by the value of the macro CLK_TCK.

Return Value
On success, clock returns the processor time elapsed since the beginning of the program invocation.
On error (if the processor time is not available or its value cannot be represented), clock returns -1.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + +

close
See also Example Portability

Syntax
#include <io.h>
int close(int handle);
Description
Closes a file.
The close function closes the file associated with handle, a file handle obtained from a call to creat,
creatnew, creattemp, dup, dup2, open, _rtl_creat, or _rtl_open.
It does not write a Ctrl-Z character at the end of the file. If you want to terminate the file with a Ctrl-Z,
you must explicitly output one.

Return Value
Upon successful completion, close returns 0.
On error (if it fails because handle is not the handle of a valid, open file), close returns a value of -1 and
the global variable errno is set to
EBADF Bad file number

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

closedir, wclosedir
See also Example Portability

Syntax
#include <dirent.h>
int closedir(DIR *dirp);
int wclosedir(wDIR *dirp);
Description
Closes a directory stream.
On UNIX platforms, closedir is available on POSIX-compliant systems.
The closedir function closes the directory stream dirp, which must have been opened by a previous call
to opendir. After the stream is closed, dirp no longer points to a valid directory stream.
wclosedir is the Unicode version of closedir.

Return Value
If closedir is successful, it returns 0. Otherwise, closedir returns -1 and sets the global variable errno to
EBADF The dirp argument does not point to a valid open directory stream

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

clreol
See also Example Portability

Syntax
#include <conio.h.>
void clreol(void);
Description
Clears to end of line in text window.
clreol clears all characters from the cursor position to the end of the line within the current text window,
without moving the cursor.
Note: This function should not be used in Win32s or Win32 GUI applications.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

clrscr
See also Example Portability

Syntax
#include <conio.h>
void clrscr(void);
Description
Clears the text-mode window.
clrscr clears the current text window and places the cursor in the upper left corner (at position 1,1).
Note: Do not use this function for Win32s or Win32 GUI applications.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

_control87
See also Portability

Syntax
#include <float.h>
unsigned int _control87(unsigned int newcw, unsigned int mask);
Description
Manipulates the floating-point control word.
_control87 retrieves or changes the floating-point control word.
The floating-point control word is an unsigned int that, bit by bit, specifies certain modes in the floating-
point package; namely, the precision, infinity, and rounding modes. Changing these modes lets you
mask or unmask floating-point exceptions.
_control87 matches the bits in mask to the bits in newcw. If a mask bit equals 1, the corresponding bit in
newcw contains the new value for the same bit in the floating-point control word, and _control87 sets
that bit in the control word to the new value.
Here is a simple illustration:

Original control word: 0100 0011 0110 0011
mask: 1000 0001 0100 1111
newcw: 1110 1001 0000 0101
Changing bits: 1xxx xxx1 x0xx 0101

If mask equals 0, _control87 returns the floating-point control word without altering it.

Return Value
The bits in the value returned reflect the new floating-point control word. For a complete definition of the
bits returned by _control87, see the header file float.h.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

cos, cosl
See also Example Portability

Syntax
#include <math.h>
double cos(double x);
long double cosl(long double x);
Description
Calculates the cosine of a value.
cos computes the cosine of the input value. The angle is specified in radians.
cosl is the long double version; it takes a long double argument and returns a long double result.
This function can be used with bcd and complex types.

Return Value
cos of a real argument returns a value in the range -1 to 1. Error handling for these functions can be
modified through _matherr (or _matherrl).

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

cos + + + + + + +
cosl + + + +

cosh, coshl
See also Example Portability

Syntax
#include <math.h>
double cosh(double x);
long double coshl(long double x);
Description
Calculates the hyperbolic cosine of a value.
cosh computes the hyperbolic cosine, . coshl is the long double version; it takes a long
double argument and returns a long double result.

This function can be used with bcd and complex types.

Return Value
cosh returns the hyperbolic cosine of the argument.
When the correct value would create an overflow, these functions return the value HUGE_VAL (cosh) or
_LHUGE_VAL (coshl) with the appropriate sign, and the global variable errno is set to ERANGE. Error
handling for these functions can be modified through the functions _matherr and _matherrl.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

cosh + + + + + + +
coshl + + + +

country
Example Portability

Syntax
#include <dos.h>
struct COUNTRY *country(int xcode, struct country *cp);
Description
Returns country-dependent information.
country specifies how certain country-dependent data (such as dates, times, and currency) will be
formatted. The values set by this function depend on the operating system version being used.
If cp has a value of -1, the current country is set to the value of xcode, which must be nonzero. The
COUNTRY structure pointed to by cp is filled with the country-dependent information of the current
country (if xcode is set to zero), or the country given by xcode.
The structure COUNTRY is defined as follows:
struct COUNTRY{
 short co_date; /* date format */
 char co_curr[5]; /* currency symbol */
 char co_thsep[2]; /* thousands separator */
 char co_desep[2]; /* decimal separator */
 char co_dtsep[2]; /* date separator */
 char co_tmsep[2]; /* time separator */
 char co_currstyle; /* currency style */
 char co_digits; /* significant digits in currency */
 char co_time; /* time format */
 long co_case; /* case map */
 char co_dasep[2]; /* data separator */
 char co_fill[10]; /* filler */
};
The date format in co_date is

0 for the U.S. style of month, day, year.
1 for the European style of day, month, year.
2 for the Japanese style of year, month, day.

Currency display style is given by co_currstyle as follows:
0 for the currency symbol to precede the value with no spaces between the symbol and the

number.
1 for the currency symbol to follow the value with no spaces between the number and the symbol.
2 for the currency symbol to precede the value with a space after the symbol.
3 for the currency symbol to follow the number with a space before the symbol.

Return Value
On success, country returns the pointer argument cp. On error, it returns NULL.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

cprintf
See also Example Portability

Syntax
#include <conio.h>
int cprintf(const char *format[, argument, ...]);
Description
Writes formatted output to the screen.
cprintf accepts a series of arguments, applies to each a format specifier contained in the format string
pointed to by format, and outputs the formatted data directly to the current text window on the screen.
There must be the same number of format specifiers as arguments.
For details details on format specifiers, see printf Format Specifiers.
The string is written either directly to screen memory or by way of a BIOS call, depending on the value
of the global variable _directvideo.
Unlike fprintf and printf, cprintf does not translate linefeed characters (\n) into carriage-return/linefeed
character pairs (\r\n). Tab characters (specified by \t) are not expanded into spaces.
Note: Do not use this function for Win32s or Win32 GUI applications.

Return Value
cprintf returns the number of characters output.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

cputs
See also Example Portability

Syntax
#include <conio.h>
int cputs(const char *str);
Description
Writes a string to the screen.
cputs writes the null-terminated string str to the current text window. It does not append a newline
character.
The string is written either directly to screen memory or by way of a BIOS call, depending on the value
of the global variable _directvideo. Unlike puts, cputs does not translate linefeed characters (\n) into
carriage-return/linefeed character pairs (\r\n).
Note: Do not use this function for Win32s or Win32 GUI applications.

Return Value
cputs returns the last character printed.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

_creat, _wcreat
See also Example Portability

Syntax
#include <io.h>
int _creat(const char *path, int amode);
int _wcreat(const wchar_t *path, int amode);
Description
Creates a new file or overwrites an existing one.
Note: Remember that a backslash in a path requires '\\'.

_creat creates a new file or prepares to rewrite an existing file given by path. amode applies only to
newly created files.
A file created with creat is always created in the translation mode specified by the global variable
_fmode (O_TEXT or O_BINARY).
If the file exists and the write attribute is set, creat truncates the file to a length of 0 bytes, leaving the file
attributes unchanged. If the existing file has the read-only attribute set, the creat call fails and the file
remains unchanged.
The _creat call examines only the S_IWRITE bit of the access-mode word amode. If that bit is 1, the file
can be written to. If the bit is 0, the file is marked as read-only. All other operating system attributes are
set to 0.
amode can be one of the following (defined in sys\stat.h):

Value of amode Access permission
S_IWRITE Permission to write
S_IREAD Permission to read
S_IREAD / S_IWRITE Permission to read and write (write permission implies read permission)

Return Value
Upon successful completion, _creat returns the new file handle, a nonnegative integer; otherwise, it
returns -1.
In the event of error, the global variable errno is set to one of the following:
EACCES Permission denied
ENOENT Path or file name not found
EMFILE Too many open files

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

creatnew
See also Example Portability

Syntax
#include <io.h>
int creatnew(const char *path, int mode);
Description
Creates a new file.
creatnew is identical to _rtl_creat with one exception: If the file exists, creatnew returns an error and
leaves the file untouched.
The mode argument to creatnew can be zero or an OR-combination of any one of the following
constants (defined in dos.h):
FA_HIDDEN Hidden file
FA_RDONLY Read-only attribute
FA_SYSTEM System file

Return Value
Upon successful completion, creat returns the new file handle, a nonnegative integer; otherwise, it
returns -1.
In the event of error, the global variable errno is set to one of the following values:
EACCES Permission denied
EEXIST File already exists
EMFILE Too many open files
ENOENT Path or file name not found

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

creattemp
See also Example Portability

Syntax
#include <io.h>
int creattemp(char *path, int attrib);
Description
Creates a unique file in the directory associated with the path name.
A file created with creattemp is always created in the translation mode specified by the global variable
_fmode (O_TEXT or O_BINARY).
path is a path name ending with a backslash (\). A unique file name is selected in the directory given by
path. The newly created file name is stored in the path string supplied. path should be long enough to
hold the resulting file name. The file is not automatically deleted when the program terminates.
creattemp accepts attrib, a DOS attribute word. Upon successful file creation, the file pointer is set to the
beginning of the file. The file is opened for both reading and writing.
The attrib argument to creattemp can be zero or an OR-combination of any one of the following
constants (defined in dos.h):
FA_HIDDEN Hidden file
FA_RDONLY Read-only attribute
FA_SYSTEM System file

Return Value
Upon successful completion, the new file handle, a nonnegative integer, is returned; otherwise, -1 is
returned.
In the event of error, the global variable errno is set to one of the following values:
EACCES Permission denied
EMFILE Too many open files
ENOENT Path or file name not found

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

_crotl, _crotr
See also Example Portability

Syntax
#include <stdlib.h>
unsigned char _crotl(unsigned char val, int count);
unsigned char _crotr(unsigned char val, int count);
Description
Rotates an unsigned char left or right.
_crotl rotates the given val to the left count bits. _crotr rotates the given val to the right count bits.
The argument val is an unsigned char, or its equivalent in decimal or hexadecimal form.

Return Value
The functions return the rotated word:

_crotl returns the value of val left-rotated count bits.
_crotr returns the value of val right-rotated count bits.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

cscanf
See also Example Portability

Syntax
#include <conio.h>
int cscanf(char *format[, address, ...]);
Description
Scans and formats input from the console.
cscanf scans a series of input fields one character at a time, reading directly from the console. Then
each field is formatted according to a format specifier passed to cscanf in the format string pointed to by
format. Finally, cscanf stores the formatted input at an address passed to it as an argument following
format, and echoes the input directly to the screen. There must be the same number of format specifiers
and addresses as there are input fields.
Note: For details on format specifiers, see scanf Format Specifiers.
cscanf might stop scanning a particular field before it reaches the normal end-of-field (whitespace)
character, or it might terminate entirely for a number of reasons. See scanf for a discussion of possible
causes.
Note: Do not use this function for Win32s or Win32 GUI applications.

Return Value
cscanf returns the number of input fields successfully scanned, converted, and stored; the return value
does not include scanned fields that were not stored. If no fields were stored, the return value is 0.
If cscanf attempts to read at end-of-file , the return value is EOF.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

actime, _wctime
See also Example Portability

Syntax
#include <time.h>
char *ctime(const time_t *time);
wchar_t *_wctime(const time_t *time);
Description
Converts date and time to a string.
ctime converts a time value pointed to by time (the value returned by the function time) into a 26-
character string in the following form, terminating with a newline character and a null character:
 Mon Nov 21 11:31:54 1983\n\0
All the fields have constant width.
The global long variable _timezone contains the difference in seconds between GMT and local standard
time (in PST, _timezone is 8*60*60). The global variable _daylight is nonzero if and only if the standard
U.S. _daylight saving time conversion should be applied. These variables are set by the tzset function,
not by the user program directly.

Return Value
ctime returns a pointer to the character string containing the date and time. The return value points to
static data that is overwritten with each call to ctime.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

ctrlbrk
See also Example Portability

Syntax
#include <dos.h>
void ctrlbrk(int (*handler)(void));
Description
Sets control-break handler.
ctrlbrk sets a new control-break handler function pointed to by handler. The interrupt vector 0x23 is
modified to call the named function.
ctrlbrk establishes a DOS interrupt handler that calls the named function; the named function is not
called directly.
The handler function can perform any number of operations and system calls. The handler does not
have to return; it can use longjmp to return to an arbitrary point in the program. The handler function
returns 0 to abort the current program; any other value causes the program to resume execution.

Return Value
ctrlbrk returns nothing.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ +

cwait
See also Example Portability

Syntax
#include <process.h>
int cwait(int *statloc, int pid, int action);
Description
Waits for child process to terminate.
The cwait function waits for a child process to terminate. The process ID of the child to wait for is pid. If
statloc is not NULL, it points to the location where cwait will store the termination status. The action
specifies whether to wait for the process alone, or for the process and all of its children.
If the child process terminated normally (by calling exit, or returning from main), the termination status
word is defined as follows:
Bits 0-7 Zero
Bits 8-15 The least significant byte of the return code from the child process. This is the value that

is passed to exit, or is returned from main. If the child process simply exited from main
without returning a value, this value will be unpredictable.

If the child process terminated abnormally, the termination status word is defined as follows:
Bits 0-7 Termination information about the child:
 1 Critical error abort.
 2 Execution fault, protection exception.
 3 External termination signal.
Bits 8-15 Zero

If pid is 0, cwait waits for any child process to terminate. Otherwise, pid specifies the process ID of the
process to wait for; this value must have been obtained by an earlier call to an asynchronous spawn
function.
The acceptable values for action are WAIT_CHILD, which waits for the specified child only, and
WAIT_GRANDCHILD, which waits for the specified child and all of its children. These two values are
defined in process.h.

Return Value
When cwait returns after a normal child process termination, it returns the process ID of the child.
When cwait returns after an abnormal child termination, it returns -1 to the parent and sets errno to
EINTR (the child process terminated abnormally).
If cwait returns without a child process completion, it returns a -1 value and sets errno to one of the
following values:
ECHILD No child exists or the pid value is bad
EINVAL A bad action value was specified

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

 + +

delline
See also Example Portability

Syntax
#include <conio.h>
void delline(void);
Description
Deletes line in text window.
delline deletes the line containing the cursor and moves all lines below it one line up. delline operates
within the currently active text window.
Note: Do not use this function for Win32s or Win32 GUI applications.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

difftime
See also Example Portability

Syntax
#include <time.h>
double difftime(time_t time2, time_t time1);
Description
Computes the difference between two times.
difftime calculates the elapsed time in seconds, from time1 to time2.

Return Value
difftime returns the result of its calculation as a double.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

disable, _disable, enable, _enable
See also Examples Portability

Syntax
#include <dos.h>
void disable(void);
void _disable(void);
void enable(void);
void _enable(void);
Description
Disables and enables interrupts.
These macros are designed to provide a programmer with flexible hardware interrupt control.
disable and _disable macros disable interrupts. Only the NMI (non-maskable interrupt) is allowed from
any external device.
enable and _enable macros enable interrupts, allowing any device interrupts to occur.

Return Value
None.

Examples
disable
_disable
enable
_enable

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

div
See also Example Portability

Syntax
#include <stdlib.h>
div_t div(int numer, int denom);
Description
Divides two integers, returning quotient and remainder.
div divides two integers and returns both the quotient and the remainder as a div_t type. numer and
denom are the numerator and denominator, respectively. The div_t type is a structure of integers defined
(with typedef) in stdlib.h as follows:
typedef struct {
 int quot; /* quotient */
 int rem; /* remainder */
} div_t;
Return Value
div returns a structure whose elements are quot (the quotient) and rem (the remainder).

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + +

_dos_close
See also Example Portability

Syntax
#include <dos.h>
unsigned _dos_close(int handle);
Description
Closes a file.
The _dos_close function closes the file associated with handle; handle is a file handle obtained from a
_dos_creat, _dos_creatnew, or _dos_open call.

Return Value
Upon successful completion, _dos_close returns 0. Otherwise, it returns the operating system error
code and the global variable errno is set to
 EBADF Bad file number

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

_dos_commit
See also Example Portability

Syntax
#include <dos.h>
unsigned _dos_commit(int handle);
Description
Outputs a file to the disk.
This function makes DOS flush any output that it has buffered for a specific handle to the disk.

Return Value
The function returns zero on success. On failure the function returns the DOS error code and sets errno
to EBADF on failure.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ +

_dos_creat
See also Example Portability

Syntax
#include <dos.h>
unsigned _dos_creat(const char *path,int attrib,int *handlep);
Description
Creates a new file or overwrites an existing one.
_dos_creat opens the file specified by path. The file is always opened in binary mode. Upon successful
file creation, the file pointer is set to the beginning of the file. _dos_creat stores the file handle in the
location pointed to by handlep. The file is opened for both reading and writing.
If the file already exists, its size is reset to 0. (This is essentially the same as deleting the file and
creating a new file with the same name.)
The attrib argument is an ORed combination of one or more of the following constants (defined in
dos.h):
_A_NORMAL Normal file
_A_RDONLY Read-only file
_A_HIDDEN Hidden file
_A_SYSTEM System file

Return Value
On success, _dos_creat returns 0.
On error, it returns the operating system error code and the global variable errno is set to one of the
following values:
EACCES Permission denied
ENOENT Path or file name not found
EMFILE Too many open files

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

_dos_creatnew
See also Example Portability

Syntax
#include <dos.h>
unsigned _dos_creatnew(const char *path, int attrib, int *handlep);
Description
Creates a new file.
_dos_creatnew creates and opens the new file path. The file is given the access permission attrib, an
operating-system attribute word. The file is always opened in binary mode. Upon successful file
creation, the file handle is stored in the location pointed to by handlep, and the file pointer is set to the
beginning of the file. The file is opened for both reading and writing.
If the file already exists, _dos_creatnew returns an error and leaves the file untouched.
The attrib argument to _dos_creatnew is an OR combination of one or more of the following constants
(defined in dos.h):
_A_NORMAL Normal file
_A_RDONLY Read-only file
_A_HIDDEN Hidden file
_A_SYSTEM System file

Return Value
Upon successful completion, _dos_creatnew returns 0. Otherwise, it returns the operating system error
code, and the global variable errno is set to one of the following:
EACCES Permission denied
EEXIST File already exists
EMFILE Too many open files
ENOENT Path or file name not found

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

dosexterr
Example Portability

Syntax
#include <dos.h>
int dosexterr(struct DOSERROR *eblkp);
Description
Gets extended DOS error information.
This function fills in the DOSERROR structure pointed to by eblkp with extended error information after
a DOS call has failed. The structure is defined as follows:
struct DOSERROR {
 int de_exterror; /* extended error */
 char de_class; /* error class */
 char de_action; /* action */
 char de_locus; /* error locus */
};
The values in this structure are obtained by way of DOS call 0x59. A de_exterror value of 0 indicates
that the prior DOS call did not result in an error.

Return Value
dosexterr returns the value de_exterror.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ +

_dos_findfirst
See also Example Portability

Syntax
#include <dos.h>
unsigned _dos_findfirst(const char *pathname, int attrib,
 struct find_t *ffblk);
Description
Searches a disk directory.
_dos_findfirst begins a search of a disk directory.
pathname is a string with an optional drive specifier, path, and file name of the file to be found. The file
name portion can contain wildcard match characters (such as ? or *). If a matching file is found, the
find_t structure pointed to by ffblk is filled with the file-directory information.
The format of the find_t structure is as follows:
struct find_t {
 char reserved[21]; /* reserved by the operating system */
 char attrib; /* attribute found */
 int wr_time; /* file time */
 int wr_date; /* file date */
 long size; /* file size */
 char name[13]; /* found file name */
};
attrib is an operating system file-attribute word used in selecting eligible files for the search. attrib is an
OR combination of one or more of the following constants (defined in dos.h):
_A_NORMAL Normal file
_A_RDONLY Read-only attribute
_A_HIDDEN Hidden file
_A_SYSTEM System file
_A_VOLID Volume label
_A_SUBDIR Directory
_A_ARCH Archive

For more detailed information about these attributes, refer to your operating system reference manuals.
Note: wr_time and wr_date contain bit fields for referring to the file's date and time. The structure of

these fields was established by the operating system.
wr_time:
Bits 0-4 The result of seconds divided by 2 (for example, 10 here means 20 seconds)
Bits 5-10 Minutes
Bits 11-15 Hours

wr_date:
Bits 0-4 Day
Bits 5-8 Month
Bits 9-15 Years since 1980 (for example, 9 here means 1989)

Return Value
_dos_findfirst returns 0 on successfully finding a file matching the search pathname. When no more files
can be found, or if there is some error in the file name, the operating system error code is returned, and
the global variable errno is set to

ENOENT Path or file name not found

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

_dos_findnext
See also Example Portability

Syntax
#include <dos.h>
unsigned _dos_findnext(struct find_t *ffblk);
Description
Continues _dos_findfirst search.
_dos_findnext is used to fetch subsequent files that match the pathname given in _dos_findfirst. ffblk is
the same block filled in by the _dos_findfirst call. This block contains necessary information for
continuing the search. One file name for each call to _dos_findnext is returned until no more files are
found in the directory matching the pathname.

Return Value
_dos_findnext returns 0 on successfully finding a file matching the search pathname. When no more
files can be found, or if there is some error in the file name, the operating system error code is returned,
and the global variable errno is set to
ENOENT Path or file name not found

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

_dos_getdate, _dos_setdate, getdate, setdate
See also Examples Portability

Syntax
#include <dos.h>
void _dos_getdate(struct dosdate_t *datep);
unsigned _dos_setdate(struct dosdate_t *datep);
void getdate(struct date *datep);
void setdate(struct date *datep);
Description
Gets and sets system date.
getdate fills in the date structure (pointed to by datep) with the system's current date.
setdate sets the system date (month, day, and year) to that in the date structure pointed to by datep.
Note that a request to set a date might fail if you do not have the privileges required by the operating
system.
The date structure is defined as follows:
struct date{
 int da_year; /* current year */
 char da_day; /* day of the month */
 char da_mon; /* month (1 = Jan) */
};
_dos_getdate fills in the dosdate_t structure (pointed to by datep) with the system's current date.
The dosdate_t structure is defined as follows:
struct dosdate_t {
 unsigned char day; /* 1-31 */
 unsigned char month; /* 1-12 */
 unsigned int year; /* 1980 - 2099 */
 unsigned char dayofweek; /* 0 - 6 (0=Sunday) */
};
Return Value
_dos_getdate, getdate, and setdate do not return a value.
If the date is set successfully, _dos_setdate returns 0.
Otherwise, it returns a non-zero value and the global variable errno is set to
EINVAL Invalid date

Examples
getdate
_dos_getdate
_dos_setdate
setdate

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

_dos_getdiskfree
See also Example Portability

Syntax
#include <dos.h>
unsigned _dos_getdiskfree(unsigned char drive, struct diskfree_t *dtable);
Description
Gets disk free space.
_dos_getdiskfree accepts a drive specifier in drive (0 for default, 1 for A, 2 for B, and so on) and fills in
the diskfree_t structure pointed to by dtable with disk characteristics.
The diskfree_t structure is defined as follows:
struct diskfree_t {
 unsigned avail_clusters; /* available clusters */
 unsigned total_clusters; /* total clusters */
 unsigned bytes_per_sector; /* bytes per sector */
 unsigned sectors_per_cluster; /* sectors per cluster */
};
Return Value
_dos_getdiskfree returns 0 if successful. Otherwise, it returns a non-zero value and the global variable
errno is set to
EINVAL Invalid drive specified

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

_dos_getdrive, _dos_setdrive
See also Examples Portability

Syntax
#include <dos.h>
void _dos_getdrive(unsigned *drivep);
void _dos_setdrive(unsigned drivep, unsigned *ndrives);
Description
Gets and sets the current drive number.
_dos_getdrive gets the current drive number.
_dos_setdrive sets the current drive and stores the total number of drives at the location pointed to by
ndrives.
The drive numbers at the location pointed to by drivep are as follows: 1 for A, 2 for B, 3 for C, and so on.
This function changes the current drive of the parent process.

Return Value
None. Use _dos_getdrive to verify that the current drive was changed successfully.

Examples
_dos_getdrive
_dos_setdrive

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

_dos_getfileattr, _dos_setfileattr
See also Examples Portability

Syntax
#include <dos.h>
int _dos_getfileattr(const char *path, unsigned *attribp);
int _dos_setfileattr(const char *path, unsigned attrib);
Description
Changes file access mode.
_dos_getfileattr fetches the file attributes for the file path. The attributes are stored at the location
pointed to by attribp.
_dos_setfileattr sets the file attributes for the file path to the value attrib. The file attributes can be an
OR combination of the following symbolic constants (defined in dos.h):
_A_RDONLY Read-only attribute
_A_HIDDEN Hidden file
_A_SYSTEM System file
_A_VOLID Volume label
_A_SUBDIR Directory
_A_ARCH Archive
_A_NORMAL Normal file (no attribute bits set)

Return Value
Upon successful completion, _dos_getfileattr and _dos_setfileattr return 0. Otherwise, these functions
return the operating system error code, and the global variable errno is set to
ENOENT Path or file name not found

Examples
_dos_getfileattr
_dos_setfileattr

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

_dos_getftime, _dos_setftime
See also Examples Portability

Syntax
#include <dos.h>
unsigned _dos_getftime(int handle, unsigned *datep, unsigned *timep);
unsigned _dos_setftime(int handle, unsigned date, unsigned time);
Description
Gets and sets file date and time.
_dos_getftime retrieves the file time and date for the disk file associated with the open handle. The file
must have been previously opened using _dos_open, _dos_creat, or _dos_creatnew. _dos_getftime
stores the date and time at the locations pointed to by datep and timep.
_dos_setftime sets the file's new date and time values as specified by date and time.
Note that the date and time values contain bit fields for referring to the file's date and time. The structure
of these fields was established by the operating system.
Date:
Bits 0-4 Day
Bits 5-8 Month
Bits 9-15 Years since 1980 (for example, 9 here means 1989)

Time:
Bits 0-4 The result of seconds divided by 2 (for example, 10 here means 20 seconds)
Bits 5-10 Minutes
Bits 11-15 Hours

Return Value
_dos_getftime and _dos_setftime return 0 on success.
In the event of an error return, the operating system error code is returned and the global variable errno
is set to one of the following values:
EACCES Permission denied
EBADF Bad file number

Examples
_dos_getftime
_dos_setftime

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

_dos_gettime, _dos_settime
See also Examples Portability

Syntax
#include <dos.h>
void _dos_gettime(struct dostime_t *timep);
unsigned _dos_settime(struct dostime_t *timep);
Description
Gets and sets system time.
_dos_gettime fills in the dostime_t structure pointed to by timep with the system's current time.
_dos_settime sets the system time to the values in the dostime_t structure pointed to by timep.
The dostime_t structure is defined as follows:
struct dostime_t {
 unsigned char hour; /* hours 0-23 */
 unsigned char minute; /* minutes 0-59 */
 unsigned char second; /* seconds 0-59 */
 unsigned char hsecond; /* hundredths of seconds 0-99 */
};
Return Value
_dos_gettime does not return a value.
If _dos_settime is successful, it returns 0. Otherwise, it returns the operating system error code, and the
global variable errno is set to:
EINVAL Invalid time

Examples
_dos_gettime
_dos_settime

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

_dos_getvect
See also Example Portability

Syntax
#include <dos.h>
void interrupt(*_dos_getvect(unsigned interruptno)) ();
Description
Gets interrupt vector.
Every processor of the 8086 family includes a set of interrupt vectors, numbered 0 to 255. The 4-byte
value in each vector is actually an address, which is the location of an interrupt function.
_dos_getvect reads the value of the interrupt vector given by interruptno and returns that value as a (far)
pointer to an interrupt function. The value of interruptno can be from 0 to 255.

Return Value
_dos_getvect returns the current 4-byte value stored in the interrupt vector named by interruptno.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ +

_dos_open
See also Example Portability

Syntax
#include <fcntl.h>
#include <share.h>
#include <dos.h>
unsigned _dos_open(const char *filename, unsigned oflags, int *handlep);
Description
Opens a file for reading or writing.
_dos_open open the file specified by filename, then prepares it for reading or writing, as determined by
the value of oflags. The file is always opened in binary mode. _dos_open stores the file handle at the
location pointed to by handlep.
oflags uses the flags from the following two lists. Only one flag from List 1 can be used (and one must
be used) and the flags in List 2 can be used in any logical combination.

List 1: Read/write flags
O_RDONLY Open for reading.
O_WRONLY Open for writing.
O_RDWR Open for reading and writing.

The following additional values can be included in oflags (using an OR operation):

List 2: Other access flags
O_NOINHERIT The file is not passed to child programs.
SH_COMPAT Allow other opens with SH_COMPAT. The call will fail if the file has already been

opened in any other shared mode.
SH_DENYRW Only the current handle can have access to the file.
SH_DENWR Allow only reads from any other open to the file.
SH_DENYRD Allow only writes from any other open to the file.
SH_DENYNO Allow other shared opens to the file, but not other SH_COMPAT opens.

Note: These symbolic constants are defined in fcntl.h and share.h.
Only one of the SH_DENYxx values can be included in a single _dos_open routine. These file-sharing
attributes are in addition to any locking performed on the files.
The maximum number of simultaneously open files is defined by HANDLE_MAX.

Return Value
On success:_dos_open returns 0 and stores the file handle at the location pointed to by handlep. The
file pointer, which marks the current position in the file, is set to the beginning of the file.
On error, it returns the operating system error code and sets the global variable errno to one of the
following values:
EACCES Permission denied
EINVACC Invalid access code
EMFILE Too many open files
ENOENT Path or file not found

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

_dos_read
See also Example Portability

Syntax
#include <dos.h>
unsigned _dos_read(int handle, void *buf, unsigned len, unsigned *nread);
Description
Reads from file.
The _dos_read function reads len bytes from the file associated with handle into the buffer pointed to by
the pointer buf. The actual number of bytes read is stored at the location pointed to by nread; when an
error occurs, or the end-of-file is encountered, this number might be less than len.
_dos_read does not remove carriage returns because it treats all files as binary files.
handle is a file handle obtained from a _dos_creat, _dos_creatnew, or _dos_open call.

For _read, handle is a file handle obtained from a creat, open, dup, or dup2 call.
On disk files, _dos_read begins reading at the current file pointer. When the reading is complete, they
increment the file pointer by the number of bytes read. On devices, the bytes are read directly from the
device.
The maximum number of bytes that _dos_read can read is UINT_MAX -1 (because UINT_MAX is the
same as -1, the error return indicator). UINT_MAX is defined in limits.h.

Return Value
On success, _dos_read returns 0.
On error, it returns the DOS error code and sets the global variable errno.
On success, _read returns a positive integer indicating the number of bytes placed in the buffer. On end-
of-file, _read returns zero. On error, read returns -1, and the global variable errno is set to one of the
following values:
EACCES Permission denied
EBADF Bad file number

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

_dos_setvect
See also Example Portability

Syntax
#include <dos.h>
void _dos_setvect(unsigned interruptno, void interrupt (*isr) ());
Description
Sets interrupt vector entry.
Every processor of the 8086 family includes a set of interrupt vectors, numbered 0 to 255. The 4-byte
value in each vector is actually an address, which is the location of an interrupt function.
_dos_setvect sets the value of the interrupt vector named by interruptno to a new value, isr, which is a
far pointer containing the address of a new interrupt function. The address of a C routine can be passed
to isr only if that routine is declared to be an interrupt routine.
If you use the prototypes declared in dos.h, simply pass the address of an interrupt function to
_dos_setvect in any memory model.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ +

dostounix
See also Example Portability

Syntax
#include <dos.h>
long dostounix(struct date *d, struct time *t);
Description
Converts date and time to UNIX time format.
dostounix converts a date and time as returned from getdate and gettime into UNIX time format. d points
to a date structure, and t points to a time structure containing valid date and time information.
The date and time must not be earlier than or equal to Jan 1 1980 00:00:00.

Return Value
UNIX version of current date and time parameters: number of seconds since 00:00:00 on January 1,
1970 (GMT).

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

_dos_write
See also Example Portability

Syntax
#include <dos.h>
unsigned _dos_write(int handle, const void far *buf, unsigned len, unsigned
*nwritten);

unsigned _dos_write(int handle, const void *buf, unsigned len, unsigned
*nwritten);

Description
Writes to a file.
_dos_write writes len bytes from the buffer pointed to by pointer buf to the file associated with handle.
_dos_write does not translate a linefeed character (LF) to a CR/LF pair because it treats all files as
binary data.
The actual number of bytes written is stored at the location pointed to by nwritten. If the number of bytes
actually written is less than that requested, the condition should be considered an error and probably
indicates a full disk. For disk files, writing always proceeds from the current file pointer. On devices,
bytes are directly sent to the device.

Return Value
On success, _dos_write returns 0.
On error, it returns the operating system error code and sets the global variable errno is set to one of the
following values:
EACCES Permission denied
EBADF Bad file number

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

dup
See also Example Portability

Syntax
#include <io.h>
int dup(int handle);
Description
Duplicates a file handle.
dup creates a new file handle that has the following in common with the original file handle:

Same open file or device
Same file pointer (that is, changing the file pointer of one changes the other)
Same access mode (read, write, read/write)

handle is a file handle obtained from a call to creat, open, dup, dup2, _rtl_creat, or _rtl_open.

Return Value
Upon successful completion, dup returns the new file handle, a nonnegative integer; otherwise, dup
returns -1.
In the event of error, the global variable errno is set to one of the following values:
EBADF Bad file number
EMFILE Too many open files

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

dup2
See also Example Portability

Syntax
#include <io.h>
int dup2(int oldhandle, int newhandle);
Description
Duplicates a file handle (oldhandle) onto an existing file handle (newhandle).
dup2 creates a new file handle that has the following in common with the original file handle:

Same open file or device
Same file pointer (that is, changing the file pointer of one changes the other)
Same access mode (read, write, read/write)

dup2 creates a new handle with the value of newhandle. If the file associated with newhandle is open
when dup2 is called, the file is closed.
newhandle and oldhandle are file handles obtained from a creat, open, dup, or dup2 call.

Return Value
dup2 returns 0 on successful completion, -1 otherwise.
In the event of error, the global variable errno is set to one of the following values:
 EBADF Bad file number
 EMFILE Too many open files

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

ecvt
See also Example Portability

Syntax
#include <stdlib.h>
char *ecvt(double value, int ndig, int *dec, int *sign);
Description
Converts a floating-point number to a string.
ecvt converts value to a null-terminated string of ndig digits, starting with the leftmost significant digit,
and returns a pointer to the string. The position of the decimal point relative to the beginning of the string
is stored indirectly through dec (a negative value for dec means that the decimal lies to the left of the
returned digits). There is no decimal point in the string itself. If the sign of value is negative, the word
pointed to by sign is nonzero; otherwise, it's 0. The low-order digit is rounded.

Return Value
The return value of ecvt points to static data for the string of digits whose content is overwritten by each
call to ecvt and fcvt.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

_ _emit_ _
Example Portability

Syntax
#include <dos.h>
void _ _emit_ _(argument, ...);
Description
Inserts literal values directly into code.
_ _emit_ _ is an inline function that lets you insert literal values directly into object code as it is
compiling. It is used to generate machine language instructions without using inline assembly language
or an assembler.
Generally the arguments of an _ _emit_ _ call are single-byte machine instructions. However, because
of the capabilities of this function, more complex instructions, complete with references to C variables,
can be constructed.
You should use this function only if you are familiar with the machine language of the 80x86 processor
family. You can use this function to place arbitrary bytes in the instruction code of a function; if any of
these bytes is incorrect, the program misbehaves and can easily crash your machine. Borland C++ does
not attempt to analyze your calls for correctness in any way. If you encode instructions that change
machine registers or memory, Borland C++ will not be aware of it and might not properly preserve
registers, as it would in many cases with inline assembly language (for example, it recognizes the usage
of SI and DI registers in inline instructions). You are completely on your own with this function.
You must pass at least one argument to _ _emit_ _; any number can be given. The arguments to this
function are not treated like any other function call arguments in the language. An argument passed to _
emit _ will not be converted in any way.
There are special restrictions on the form of the arguments to _ _emit_ _. Arguments must be in the
form of expressions that can be used to initialize a static object. This means that integer and floating-
point constants and the addresses of static objects can be used. The values of such expressions are
written to the object code at the point of the call, exactly as if they were being used to initialize data. The
address of a parameter or auto variable, plus or minus a constant offset, can also be used. For these
arguments, the offset of the variable from BP is stored.
The number of bytes placed in the object code is determined from the type of the argument, except in

the following cases:
If a signed integer constant (that is 0x90) appears that fits within the range of 0 to 255, it is

treated as if it were a character.
If the address of an auto or parameter variable is used, a byte is written if the offset of the

variable from BP is between -128 and 127; otherwise, a word is written.
Simple bytes are written as follows:
 _ _emit_ _(0x90);
If you want a word written, but the value you are passing is under 255, simply cast it to unsigned using
one of these methods:
 _ _emit_ _(0xB8, (unsigned)17);
 _ _emit_ _(0xB8, 17u);
Two- or four-byte address values can be forced by casting an address to void near * or void far *,
respectively.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

_endthread
See also Examples Portability

Syntax
#include <process.h>
void _endthread(void);
Description
Terminates execution of a thread.
The _endthread function terminates the currently executing thread. The thread must have been started
by an earlier call to _beginthread or _beginthreadNT.
This function is available in the multithread libraries; it is not in the single-thread libraries.

Return Value
The function does not return a value.

Examples
_beginthread (Win32s version)
_beginthreadNT (Windows NT version)

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

 + +

eof
See also Example Portability

Syntax
#include <io.h>
int eof(int handle);
Description
Checks for end-of-file.
eof determines whether the file associated with handle has reached end-of-file.

Return Value
If the current position is end-of-file, eof returns the value 1; otherwise, it returns 0. A return value of -1
indicates an error; the global variable errno is set to
EBADF Bad file number

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

execl, execle, execlp, execlpe, execv, execve, execvp, execvpe
See also Examples Portability

Syntax
#include <process.h>
int execl(char *path, char *arg0 *arg1, ..., *argn, NULL);
int _wexecl(wchar_t *path, wchar_t *arg0 *arg1, ..., *argn, NULL);
int execle(char *path, char *arg0, *arg1, ..., *argn, NULL, char **env);
int _wexecle(wchar_t *path, wchar_t *arg0, *arg1, ..., *argn, NULL, wchar_t
**env);

int execlp(char *path, char *arg0,*arg1, ..., *argn, NULL);
int _wexeclp(wchar_t *path, wchar_t *arg0,*arg1, ..., *argn, NULL);
int execlpe(char *path, char *arg0, *arg1, ..., *argn, NULL, char **env);
int _wexeclpe(wchar_t *path, wchar_t *arg0, *arg1, ..., *argn, NULL, wchar_t
**env);

int execv(char *path, char *argv[]);
int _wexecv(wchar_t *path, wchar_t *argv[]);
int execve(char *path, char *argv[], char **env);
int _wexecve(wchar_t *path, wchar_t *argv[], wchar_t **env);

int execvp(char *path, char *argv[]);
int _wexecvp(wchar_t *path, wchar_t *argv[]);
int execvpe(char *path, char *argv[], char **env);
int _wexecvpe(wchar_t *path, wchar_t *argv[], wchar_t **env);
Description
Loads and runs other programs.
The functions in the exec... family load and run (execute) other programs, known as child processes.
When an exec... call succeeds, the child process overlays the parent process. There must be sufficient
memory available for loading and executing the child process.
path is the file name of the called child process. The exec... functions search for path using the standard
search algorithm:

If no explicit extension is given, the functions search for the file as given. If the file is not found,
they add .EXE and search again. If not found, they add .COM and search again. If found, the command
processor, COMSPEC (Windows) or COMMAND.COM (DOS), is used to run the batch file.

If an explicit extension or a period is given, the functions search for the file exactly as given.
The suffixes l, v, p, and e added to the exec... "family name" specify that the named function operates
with certain capabilities.
l specifies that the argument pointers (arg0, arg1, ..., argn) are passed as separate arguments.

Typically, the l suffix is used when you know in advance the number of arguments to be passed.
v specifies that the argument pointers (argv[0] ..., arg[n]) are passed as an array of pointers.

Typically, the v suffix is used when a variable number of arguments is to be passed.
p specifies that the function searches for the file in those directories specified by the PATH

environment variable (without the p suffix, the function searches only the current working
directory). If the path parameter does not contain an explicit directory, the function searches first
the current directory, then the directories set with the PATH environment variable.

e specifies that the argument env can be passed to the child process, letting you alter the
environment for the child process. Without the e suffix, child processes inherit the environment of
the parent process.

Each function in the exec... family must have one of the two argument-specifying suffixes (either l or v).

The path search and environment inheritance suffixes (p and e) are optional; for example:
execl is an exec... function that takes separate arguments, searches only the root or current

directory for the child, and passes on the parent's environment to the child.
execvpe is an exec... function that takes an array of argument pointers, incorporates PATH in its

search for the child process, and accepts the env argument for altering the child's environment.
The exec... functions must pass at least one argument to the child process (arg0 or argv[0]); this
argument is, by convention, a copy of path. (Using a different value for this 0th argument won't produce
an error.)
path is available for the child process.
When the l suffix is used, arg0 usually points to path, and arg1, ..., argn point to character strings that
form the new list of arguments. A mandatory null following argn marks the end of the list.
When the e suffix is used, you pass a list of new environment settings through the argument env. This
environment argument is an array of character pointers. Each element points to a null-terminated
character string of the form
 envvar = value
where envvar is the name of an environment variable, and value is the string value to which envvar is
set. The last element in env is null. When env is null, the child inherits the parents' environment settings.
The combined length of arg0 + arg1 + ... + argn (or of argv[0] + argv[1] + ... + argn[n]), including space
characters that separate the arguments, must be less than 128 bytes for a 16-bit application, or 260
bytes for Win32 application. Null terminators are not counted.
When an exec... function call is made, any open files remain open in the child process.

Return Value
If successful, the exec... functions do not return. On error, the exec... functions return -1, and the global
variable errno is set to one of the following values:
EACCES Permission denied
EMFILE Too many open files
ENOENT Path or file name not found
ENOEXEC Exec format error
ENOMEM Not enough memory

Examples
execl
execle
execlp
execlpe
execv
execve
execvp
execvpe

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

_exit
See also Example Portability

Syntax
#include <stdlib.h>
void _exit(int status);
Description
Terminates program.
_exit terminates execution without closing any files, flushing any output, or calling any exit functions.
The calling process uses status as the exit status of the process. Typically a value of 0 is used to
indicate a normal exit, and a nonzero value indicates some error.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

exit
See also Example Portability

Syntax
#include <stdlib.h>
void exit(int status);
Description
Terminates program.
exit terminates the calling process. Before termination, all files are closed, buffered output (waiting to be
output) is written, and any registered "exit functions" (posted with atexit) are called.
status is provided for the calling process as the exit status of the process. Typically a value of 0 is used
to indicate a normal exit, and a nonzero value indicates some error. It can be, but is not required, to be
set with one of the following:
EXIT_FAILURE Abnormal program termination; signal to operating system that program has

terminated with an error
EXIT_SUCCESS Normal program termination

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

exp, expl
See also Example Portability

Syntax
#include <math.h>
double exp(double x);
long double expl(long double x);
Description
Calculates the exponential e to the x.
expl is the long double version; it takes a long double argument and returns a long double result.
This function can be used with bcd and complex types.

Return Value
exp returns e to the x.
Sometimes the arguments passed to these functions produce results that overflow or are incalculable.
When the correct value overflows, exp returns the value HUGE_VAL and expl returns _LHUGE_VAL.
Results of excessively large magnitude cause the global variable errno to be set to
ERANGE Result out of range

On underflow, these functions return 0.0, and the global variable errno is not changed. Error handling for
these functions can be modified through the functions _matherr and _matherrl.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

exp + + + + + + +
expl + + + +

_expand
See also Example Portability

Syntax
#include <malloc.h>
void *_expand(void *block, size_t size);
Description
Grows or shrinks a heap block in place.
This function attempts to change the size of an allocated memory block without moving the block's
location in the heap. The data in the block are not changed, up to the smaller of the old and new sizes of
the block. The block must have been allocated earlier with malloc, calloc, or realloc, and must not have
been freed.

Return Value
If _expand is able to resize the block without moving it, _expand returns a pointer to the block, whose
address is unchanged. If _expand is unsuccessful, it returns a NULL pointer and does not modify or
resize the block.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

 + +

fabs, fabsl
See also Example Portability

Syntax
#include <math.h>
double fabs(double x);
long double fabsl(long double x);
Description
Returns the absolute value of a floating-point number.
fabs calculates the absolute value of x, a double. fabsl is the long double version; it takes a long
double argument and returns a long double result.

Return Value
fabs and fabsl return the absolute value of x.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

fabs + + + + + + +
fabsl + + + +

farcalloc
See also Example Portability

Syntax
#include <alloc.h>
void far *farcalloc(unsigned long nunits, unsigned long unitsz);
Description
Allocates memory from the far heap.
farcalloc allocates memory from the far heap for an array containing nunits elements, each unitsz bytes
long.
For allocating from the far heap, note that:

All available RAM can be allocated.
Blocks larger than 64K can be allocated.
Far pointers (or huge pointers if blocks are larger than 64K) are used to access the allocated

blocks.
In the compact, large, and huge memory models, farcalloc is similar, though not identical, to calloc. It
takes unsigned long parameters, while calloc takes unsigned parameters. For DOS users, a tiny
model program cannot use faralloc.

Return Value
farcalloc returns a pointer to the newly allocated block, or NULL if not enough space exists for the new
block.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ +

farfree
See also Example Portability

Syntax
#include <alloc.h>
void farfree(void far * block);
Description
Frees a block from far heap.
farfree releases a block of memory previously allocated from the far heap.
In the small and medium memory models, blocks allocated by farmalloc cannot be freed with normal
free, and blocks allocated with malloc cannot be freed with farfree. In these models, the two heaps are
completely distinct. For DOS users, a tiny model program cannot use farfree.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ +

farmalloc
See also Example Portability

Syntax
#include <alloc.h>
void far *farmalloc(unsigned long nbytes);
Description
Allocates from far heap.
farmalloc allocates a block of memory nbytes bytes long from the far heap.
For allocating from the far heap, note that

All available RAM can be allocated.
Blocks larger than 64K can be allocated.
Far pointers are used to access the allocated blocks.

In the compact, large, and huge memory models, farmalloc is similar though not identical to malloc. It
takes unsigned long parameters, while malloc takes unsigned parameters. For DOS users, a tiny
model program cannot use farmalloc.

Return Value
farmalloc returns a pointer to the newly allocated block, or NULL if not enough space exists for the new
block.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ +

farrealloc
See also Example Portability

Syntax
#include <alloc.h>
void far *farrealloc(void far *oldblock, unsigned long nbytes);
Description
Adjusts allocated block in far heap.
farrealloc adjusts the size of the allocated block to nbytes copying the contents to a new location if
necessary.
For allocating from the far heap:

All available RAM can be allocated.
Blocks larger than 64K can be allocated.
Far pointers are used to access the allocated blocks.

For DOS users, a tiny model program cannot use farrealloc.

Return Value
farrealloc returns the address of the reallocated block which might be different than the address of the
original block. If the block cannot be reallocated farrealloc returns NULL.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ +

fclose
See also Example Portability

Syntax
#include <stdio.h>
int fclose(FILE *stream);
Description
Closes a stream.
fclose closes the named stream. All buffers associated with the stream are flushed before closing.
System-allocated buffers are freed upon closing. Buffers assigned with setbuf or setvbuf are not
automatically freed. (But if setvbuf is passed null for the buffer pointer it will free it upon close.)

Return Value
fclose returns 0 on success. It returns EOF if any errors were detected.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

fcloseall
See also Example Portability

Syntax
#include <stdio.h>
int fcloseall(void);
Description
Closes open streams.
fcloseall closes all open streams except
stdin
stdout
stdprn
stderr
stdauxstdstreams
Note: stdprn and stdaux streams are not available in OS/2 and Win32.

Return Value
fcloseall returns the total number of streams it closed. It returns EOF if any errors were detected.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

fcvt
See also Example Portability

Syntax
#include <stdlib.h>
char *fcvt(double value, int ndig, int *dec, int *sign);
Description
Converts a floating-point number to a string.
fcvt converts value to a null-terminated string digit starting with the leftmost significant digit with ndig
digits to the right of the decimal point. fcvt then returns a pointer to the string. The position of the
decimal point relative to the beginning of the string is stored indirectly through dec (a negative value for
dec means to the left of the returned digits). There is no decimal point in the string itself. If the sign of
value is negative the word pointed to by sign is nonzero; otherwise it is 0.
The correct digit has been rounded for the number of digits to the right of the decimal point specified by
ndig.

Return Value
The return value of fcvt points to static data whose content is overwritten by each call to fcvt and ecvt.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

_fdopen, _wfdopen
See also Example Portability

Syntax
#include <stdio.h>
FILE *_fdopen(int handle, char *type);
FILE *_wfdopen(int handle, wchar_t *type);
Description
Associates a stream with a file handle.
_fdopen associates a stream with a file handle obtained from creat, dup, dup2, or open.
The type of stream must match the mode of the open handle.
The type string used in a call to _fdopen is one of the following values:

Value Description
r Open for reading only. _fdopen returns NULL if the file cannot be opened.
w Create for writing. If the file already exists, its contents are overwritten.
a Append; open for writing at end-of-file or create for writing if the file does not exist.
r+ Open an existing file for update (reading and writing). _fdopen returns NULL if the file

cannot be opened.
w+ Create a new file for update. If the file already exists, its contents are overwritten.
a+ Open for append; open (or create if the file does not exist) for update at the end of the file.

To specify that a given file is being opened or created in text mode, append t to the value of the type
string (for example, rt or w+t).

Similarly, to specify binary mode append b to the type string (for example, rb or w+b).

If t or b is not given in the type string, the mode is governed by the global variable _fmode.
If _fmode is set to O_BINARY, files will be opened in binary mode.
If _fmode is set to O_TEXT, files will be opened in text mode.
Note: The O_... constants are defined in fcntl.h.
When a file is opened for update, both input and output can be done on the resulting stream; however,

output cannot be directly followed by input without an intervening fseekor rewind
input cannot be directly followed by output without an intervening fseek, rewind, or an input that

encounters end-offile

Return Value
On successful completion _fdopen returns a pointer to the newly opened stream. In the event of error it
returns NULL.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

feof
See also Example Portability

Syntax
#include <stdio.h>
int feof(FILE *stream);
Description
Detects end-of-file on a stream.
feof is a macro that tests the given stream for an end-of-file indicator. Once the indicator is set read
operations on the file return the indicator until rewind is called or the file is closed. The end-of-file
indicator is reset with each input operation.

Return Value
feof returns nonzero if an end-of-file indicator was detected on the last input operation on the named
stream and 0 if end-of-file has not been reached.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

ferror
See also Example Portability

Syntax
#include <stdio.h>
int ferror(FILE *stream);
Description
Detects errors on stream.
ferror is a macro that tests the given stream for a read or write error. If the stream's error indicator has
been set it remains set until clearerr or rewind is called or until the stream is closed.

Return Value
ferror returns nonzero if an error was detected on the named stream.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

fflush
See also Example Portability

Syntax
#include <stdio.h>
int fflush(FILE *stream);
Description
Flushes a stream.
If the given stream has buffered output fflush writes the output for stream to the associated file.
The stream remains open after fflush has executed. fflush has no effect on an unbuffered stream.

Return Value
fflush returns 0 on success. It returns EOF if any errors were detected.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

fgetc
See also Example Portability

Syntax
#include <stdio.h>
int fgetc(FILE *stream);
Description
Gets character from stream.
fgetc returns the next character on the named input stream.

Return Value
On success fgetc returns the character read after converting it to an int without sign extension. On end-
of-file or error it returns EOF.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

_fgetchar, _fgetwchar
See also Example Portability

Syntax
#include <stdio.h>
int _fgetchar(void);
wint_t _fgetwchar(void);
Description
Reads a character from stdin.
_fgetchar returns the next character from stdin. It is defined as fgetc(stdin).
Note: For Win32s or Win32 GUI applications, stdin must be redirected.

Return Value
On success _fgetchar returns the character read after converting it to an int without sign extension. On
end-of-file or error it returns EOF.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

fgetpos
See also Example Portability

Syntax
#include <stdio.h>
int fgetpos(FILE *stream, fpos_t *pos);
Description
Gets the current file pointer.
fgetpos stores the position of the file pointer associated with the given stream in the location pointed to
by pos. The exact value is unimportant; its value is opaque except as a parameter to subsequent
fsetpos calls.

Return Value
On success fgetpos returns 0. On failure it returns a nonzero value and sets the global variable errno to
EBADF Bad file number
EINVAL Invalid number

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + +

fgets, fgetws
See also Example Portability

Syntax
#include <stdio.h>
char *fgets(char *s, int n, FILE *stream);
wchar_t *fgetws(wchar_t *s, int n, FILE *stream); // Unicode version
Description
Gets a string from a stream.
fgets reads characters from stream into the string s. The function stops reading when it reads either n -
1 characters or a newline character whichever comes first. fgets retains the newline character at the end
of s. A null byte is appended to s to mark the end of the string.

Return Value
On success fgets returns the string pointed to by s; it returns NULL on end-of-file or error.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

filelength
See also Example Portability

Syntax
#include <io.h>
long filelength(int handle);
Description
Gets file size in bytes.
filelength returns the length (in bytes) of the file associated with handle.

Return Value
On success filelength returns a long value the file length in bytes. On error it returns -1 and the global
variable errno is set to
EBADF Bad file number

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

fileno
See also Example Portability

Syntax
#include <stdio.h>
int fileno(FILE *stream);
Description
Gets file handle.
fileno is a macro that returns the file handle for the given stream. If stream has more than one handle
fileno returns the handle assigned to the stream when it was first opened.

Return Value
fileno returns the integer file handle associated with stream.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

_findfirst, _wfindfirst
See also Example Portability

Syntax
#include <dir.h>
int _findfirst(const char *pathname, struct ffblk *ffblk, int attrib);
int _wfindfirst(const wchar_t *pathname, struct _wffblk *ffblk, int attrib);
Description
Searches a disk directory.
_findfirst begins a search of a disk directory for files specifed by attributes or wildcards.
pathname is a string with an optional drive specifier path and file name of the file to be found. Only the
file name portion can contain wildcard match characters (such as ? or *). If a matching file is found the
ffblk structure is filled with the file-directory information.
When Unicode is defined, the_wfindfirst function uses the following _wffblk structure.
struct _wffblk {
 long ff_reserved;
 long ff_fsize;
 unsigned long ff_attrib;
 unsigned short ff_ftime;
 unsigned short ff_fdate;
 wchar_t ff_name[256];
};

Win16
For Win16, the format of the structure ffblk is as follows:
struct ffblk {
 char ff_reserved[21]; /* reserved by DOS */
 char ff_attrib; /* attribute found */
 int ff_ftime; /* file time */
 int ff_fdate; /* file date */
 long ff_fsize; /* file size */
 char ff_name[13]; /* found file name */
 };
Win32
For Win32, the format of the structure ffblk is as follows:
struct ffblk {
 long ff_reserved;
 long ff_fsize; /* file size */
 unsigned long ff_attrib; /* attribute found */
 unsigned short ff_ftime; /* file time */
 unsigned short ff_fdate; /* file date */
 char ff_name[256]; /* found file name */
 };
attrib is a file-attribute byte used in selecting eligible files for the search. attrib should be selected from
the following constants defined in dos.h:
FA_RDONLY Read-only attribute
FA_HIDDEN Hidden file
FA_SYSTEM System file
FA_LABEL Volume label
FA_DIREC Directory

FA_ARCH Archive
A combination of constants can be ORed together.
For more detailed information about these attributes refer to your operating system documentation.
ff_ftime and ff_fdate contain bit fields for referring to the current date and time. The structure of these
fields was established by the operating system. Both are 16-bit structures divided into three fields.

ff_ftime:
Bits 0 to 4 The result of seconds divided by 2 (for example 10 here means 20 seconds)
Bits 5 to 10 Minutes
Bits 11 to 15 Hours

ff_fdate:
Bits 0-4 Day
Bits 5-8 Month
Bits 9-15 Years since 1980 (for example 9 here means 1989)

The structure ftime declared in io.h uses time and date bit fields similar in structure to ff_ftime and
ff_fdate.

Return Value
_findfirst returns 0 on successfully finding a file matching the search pathname.
When no more files can be found, or if there is an error in the file name:

-1 is returned
errno is set to

ENOENT Path or file name not found
_doserrno is set to one of the following values:

ENMFILE No more files
ENOENT Path or file name not found

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

_findnext, _wfindnext
See also Example Portability

Syntax
#include <dir.h>
int _findnext(struct ffblk *ffblk);
int _wfindnext(struct _wffblk *ffblk);
Description
Continues _findfirst search.
_findnext is used to fetch subsequent files that match the pathname given in findfirst. ffblk is the same
block filled in by the findfirst call. This block contains necessary information for continuing the search.
One file name for each call to _findnext will be returned until no more files are found in the directory
matching the pathname.

Return Value
_findnext returns 0 on successfully finding a file matching the search pathname. When no more files can
be found or if there is an error in the file name

-1 is returned
errno is set to

ENOENT Path or file name not found
_doserrno is set to one of the following values:

ENMFILE No more files
ENOENT Path or file name not found

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

floor, floorl
See also Example Portability

Syntax
#include <math.h>
double floor(double x);
long double floorl(long double x);
Description
Rounds down.
floor finds the largest integer not greater than x.
floorl is the long double version; it takes a long double argument and returns a long double result.

Return Value
floor returns the integer found as a double. floorl returns the integer found as a long double.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

floor + + + + + + +
floorl + + + +

flushall
See also Example Portability

Syntax
#include <stdio.h>
int flushall(void);
Description
Flushes all streams.
flushall clears all buffers associated with open input streams and writes all buffers associated with open
output streams to their respective files. Any read operation following flushall reads new data into the
buffers from the input files. Streams stay open after flushall executes.

Return Value
flushall returns an integer the number of open input and output streams.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

fmod, fmodl
See also Example Portability

Syntax
#include <math.h>
double fmod(double x, double y);
long double fmodl(long double x, long double y);
Description
Calculates x modulo y, the remainder of x/y.
fmod calculates x modulo y (the remainder f, where x = ay + f for some integer a, and 0 < f < y).
fmodl is the long double version; it takes long double arguments and returns a long double result.

Return Value
fmod and fmodl return the remainder f where x = ay + f (as described above). When y = 0, fmod and
fmodl return 0.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

fmod + + + + + + +
fmodl + + + +

fnmerge, _wfnmerge
See also Example Portability

Syntax
#include <dir.h>
void fnmerge(char *path, const char *drive, const char *dir, const char
*name, const char *ext);

void _wfnmerge(wchar_t *path, const wchar_t *drive, const wchar_t *dir,
const wchar_t *name, const wchar_t *ext);

Description
Builds a path from component parts.
fnmerge makes a path name from its components. The new path name is
X:\DIR\SUBDIR\NAME.EXT
where:

drive = X
dir = \\DIR\\SUBDIR\\
name = NAME
ext = .EXT

If drive is empty or NULL, no drive is inserted in the path name. If it is missing a trailing colon (:), a colon
is inserted in the path name.
If dir is empty or NULL, no directory is inserted in the path name. If it is missing a trailing slash (\ or /), a
backslash is inserted in the path name.
If name is empty or NULL, no file name is inserted in the path name.
If ext is empty or NULL, no extension is inserted in the path name. If it is missing a leading period (.), a
period is inserted in the path name.
fnmerge assumes there is enough space in path for the constructed path name. The maximum
constructed length is MAXPATH. MAXPATH is defined in dir.h.
fnmerge and fnsplit are invertible; if you split a given path with fnsplit then merge the resultant
components with fnmerge you end up with path.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

fnsplit, _wfnsplit
See also Example Portability

Syntax
#include <dir.h>
int fnsplit(const char *path, char *drive, char *dir, char *name, char
*ext);

int _wfnsplit(const wchar_t *path, wchar_t *drive, wchar_t *dir, wchar_t
*name, wchar_t *ext);

Description
Splits a full path name into its components.
fnsplit takes a file's full path name (path) as a string in the form X:\DIR\SUBDIR\NAME.EXT and splits
path into its four components. It then stores those components in the strings pointed to by drive, dir,
name, and ext. All five components must be passed but any of them can be a null which means the
corresponding component will be parsed but not stored. If any path component is null, that component
corresponds to a non-NULL, empty string.
The maximum sizes for these strings are given by the constants MAXDRIVE, MAXDIR, MAXPATH,
MAXFILE, and MAXEXT (defined in dir.h) and each size includes space for the null-terminator.

Constant Max 16-bit Max 32-bit String
MAXPATH 80 256 path
MAXDRIVE 3 3 drive; includes colon (:)
MAXDIR 66 260 dir; includes leading and trailing backslashes (\)
MAXFILE 9 256 name
MAXEXT 5 256 ext; includes leading dot (.)

fnsplit assumes that there is enough space to store each non-null component.
When fnsplit splits path it treats the punctuation as follows:

drive includes the colon (C:, A:, and so on)
dir includes the leading and trailing backslashes (\BC\include\, \source\ ,and so on)
name includes the file name
ext includes the dot preceding the extension (.C, .EXE, and so on).

fnmerge and fnsplit are invertible; if you split a given path with fnsplit then merge the resultant
components with fnmerge you end up with path.

Return Value
fnsplit returns an integer (composed of five flags defined in dir.h) indicating which of the full path name
components were present in path. These flags and the components they represent are
EXTENSION An extension
FILENAME A file name
DIRECTORY A directory (and possibly subdirectories)
DRIVE A drive specification (see dir.h)
WILDCARDS Wildcards (* or ?)

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

fopen, _wfopen
See also Example Portability

Syntax
#include <stdio.h>
FILE *fopen(const char *filename, const char *mode);
FILE *_wfopen(const wchar_t *filename, const wchar_t *mode);
Description
Opens a stream.
fopen opens the file named by filename and associates a stream with it. fopen returns a pointer to be
used to identify the stream in subsequent operations.
The mode string used in calls to fopen is one of the following values:

Value Description
r Open for reading only.
w Create for writing. If a file by that name already exists, it will be overwritten.
a Append; open for writing at end-of-file or create for writing if the file does not exist.
r+ Open an existing file for update (reading and writing).
w+ Create a new file for update (reading and writing). If a file by that name already exists, it

will be overwritten.
a+ Open for append; open (or create if the file does not exist) for update at the end of the file.

To specify that a given file is being opened or created in text mode append a t to the mode string (rt w+t
and so on). Similarly to specify binary mode append a b to the mode string (wb a+b and so on). fopen
also allows the t or b to be inserted between the letter and the + character in the mode string; for
example rt+ is equivalent to r+t.
If a t or b is not given in the mode string the mode is governed by the global variable _fmode. If _fmode
is set to O_BINARY files are opened in binary mode. If _fmode is set to O_TEXT they are opened in text
mode. These O_... constants are defined in fcntl.h.
When a file is opened for update, both input and output can be done on the resulting stream; however,

output cannot be directly followed by input without an intervening fseek or rewind
input cannot be directly followed by output without an intervening fseek, rewind, or an input that

encounters end-offile

Return Value
On successful completion fopen returns a pointer to the newly opened stream. In the event of error it
returns NULL.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

FP_OFF, FP_SEG
See also Example Portability

Syntax
#include <dos.h>
unsigned FP_OFF(void far *p);
unsigned FP_SEG(void far *p);
Description
Gets a far address offset or segment.
FP_OFF is a macro that gets or sets the offset of the far pointer p.
FP_SEG is a macro that gets or sets the segment value of the far pointer p.

Return Value
FP_OFF returns an unsigned integer value representing an offset value.
FP_SEG returns an unsigned integer representing a segment value.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ +

_fpreset
See also Portability

Syntax
#include <float.h>
void _fpreset(void);
Description

Reinitializes floating-point math package.
_fpreset reinitializes the floating-point math package. This function is usually used in conjunction with
system or the exec... or spawn... functions. It is also used to recover from floating-point errors before
calling longjmp.
Note: If an 80x87 coprocessor is used in a program a child process (executed by the system, or by an

exec... or spawn... function) might alter the parent process' floating-point state.
If you use an 80x87 take the following precautions:

Do not call system or an exec... or spawn... function while a floating-point expression is being
evaluated.

Call _fpreset to reset the floating-point state after using system exec... or spawn... if there is any
chance that the child process performed a floating-point operation with the 80x87.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

fprintf, fwprintf
See also Example Portability

Syntax
#include <stdio.h>
int fprintf(FILE *stream, const char *format[, argument, ...]);
int fwprintf(FILE *stream, const wchar_t *format[, argument, ...]);
Description
Writes formatted output to a stream.
fprintf accepts a series of arguments applies to each a format specifier contained in the format string
pointed to by format and outputs the formatted data to a stream. There must be the same number of
format specifiers as arguments.
Note: For details on format specifiers, see printf Format Specifiers.

Return Value
fprintf returns the number of bytes output. In the event of error it returns EOF.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

fputc, fputwc
See also Example Portability

Syntax
#include <stdio.h>
int fputc(int c, FILE *stream);
wint_t fputwc(wint_t c, FILE *stream);
Description
Puts a character on a stream.
fputc outputs character c to the named stream.
Note: For Win32s or Win32 GUI applications, stdin must be redirected.

Return Value
On success, fputc returns the character c. On error, it returns EOF.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

_fputchar, _fputwchar
See also Example Portability

Syntax
#include <stdio.h>
int _fputchar(int c);
wint_t _fputwchar(wint_t c);
Description
Outputs a character to stdout.
_fputchar outputs character c to stdout. _fputchar(c) is the same as fputc(cstdout).
For Win32s or Win32 GUI applications, stdout must be redirected.

Return Value
On success _fputchar returns the character c.
On error it returns EOF.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

fputs, fputws
See also Example Portability

Syntax
#include <stdio.h>
int fputs(const char *s, FILE *stream);
int fputws(const wchar_t *s, FILE *stream);
Description
Outputs a string on a stream.
fputs copies the null-terminated string s to the given output stream; it does not append a newline
character and the terminating null character is not copied.

Return Value
On success fputs returns a non-negative value.
On error it returns a value of EOF.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

fread
See also Example Portability

Syntax
#include <stdio.h>
size_t fread(void *ptr, size_t size, size_t n, FILE *stream);
Description
Reads data from a stream.
fread reads n items of data each of length size bytes from the given input stream into a block pointed to
by ptr.
The total number of bytes read is (n * size).

Return Value
On success fread returns the number of items (not bytes) actually read.
On end-of-file or error it returns a short count (possibly 0).

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

free
See also Example Portability

Syntax
#include <stdlib.h>
void free(void *block);
Description
Frees allocated block.
free deallocates a memory block allocated by a previous call to calloc, malloc, or realloc.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

freopen, _wfreopen
See also Example Portability

Syntax
#include <stdio.h>
FILE *freopen(const char *filename, const char *mode, FILE *stream);
FILE *_wfreopen(const wchar_t *filename, const wchar_t *mode, FILE *stream);
Description
Associates a new file with an open stream.
freopen substitutes the named file in place of the open stream. It closes stream regardless of whether
the open succeeds. freopen is useful for changing the file attached to stdin, stdout, or stderr.
The mode string used in calls to fopen is one of the following values:

Value Description
r Open for reading only.
w Create for writing. .
a Append; open for writing at end-of-file or create for writing if the file does not exist.
r+ Open an existing file for update (reading and writing).
w+ Create a new file for update (reading and writing).
a+ Open for append; open (or create if the file does not exist) for update at the end of the file.

To specify that a given file is being opened or created in text mode append a t to the mode string (rt w+t
and so on); similarly to specify binary mode append a b to the mode string (wb a+b and so on).
If a t or b is not given in the mode string the mode is governed by the global variable _fmode. If _fmode
is set to O_BINARY files are opened in binary mode. If _fmode is set to O_TEXT they are opened in text
mode. These O_... constants are defined in fcntl.h.
When a file is opened for update, both input and output can be done on the resulting stream; however,

output cannot be directly followed by input without an intervening fseekor rewind
input cannot be directly followed by output without an intervening fseek, rewind, or an input that

encounters end-offile

Return Value
On successful completion freopen returns the argument stream.
On error it returns NULL.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

frexp, frexpl
See also Example Portability

Syntax
#include <math.h>
double frexp(double x, int *exponent);
long double frexpl(long double x, int *exponent);
Description
Splits a number into mantissa and exponent.
frexp calculates the mantissa m (a double greater than or equal to 0.5 and less than 1) and the integer
value n such that x (the original double value) equals m * 2n. frexp stores n in the integer that exponent
points to.
frexpl is the long double version; it takes a long double argument for x and returns a long double
result.

Return Value
frexp and frexpl return the mantissa m. Error handling for these routines can be modified through the
functions _matherr and _matherrl.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

frexp + + + + + + +
frexpl + + + +

fscanf, fwscanf
See also Example Portability

Syntax
#include <stdio.h>
int fscanf(FILE *stream, const char *format[, address, ...]);
int fwscanf(FILE *stream, const wchar_t *format[, address, ...]);
Description
Scans and formats input from a stream.
fscanf scans a series of input fields one character at a time reading from a stream. Then each field is
formatted according to a format specifier passed to fscanf in the format string pointed to by format.
Finally fscanf stores the formatted input at an address passed to it as an argument following format. The
number of format specifiers and addresses must be the same as the number of input fields.
Note: For details on format specifiers, see scanf Format Specifiers.
fscanf can stop scanning a particular field before it reaches the normal end-of-field character
(whitespace) or it can terminate entirely for a number of reasons. See scanf for a discussion of possible
causes.

Return Value
fscanf returns the number of input fields successfully scanned, converted and stored. The return value
does not include scanned fields that were not stored.
If fscanf attempts to read at end-of-file, the return value is EOF. If no fields were stored, the return value
is 0.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

fseek
See also Example Portability

Syntax
#include <stdio.h>
int fseek(FILE *stream, long offset, int whence);
Description
Repositions a file pointer on a stream.
fseek sets the file pointer associated with stream to a new position that is offset bytes from the file
location given by whence. For text mode streams offset should be 0 or a value returned by ftell.
whence must be one of the values 0. 1, or 2 which represent three symbolic constants (defined in
stdio.h) as follows:

Constant whence File location
SEEK_SET 0 File beginning
SEEK_CUR 1 Current file pointer position
SEEK_END 2 End-of-file

fseek discards any character pushed back using ungetc. fseek is used with stream I/O; for file handle
I/O use lseek.
After fseek the next operation on an update file can be either input or output.

Return Value
fseek returns 0 if the pointer is successfully moved and nonzero on failure.
fseek might return a 0 indicating that the pointer has been moved successfully when in fact it has not
been. This is because DOS, which actually resets the pointer, does not verify the setting. fseek returns
an error code only on an unopened file or device.
In the event of an error return the global variable errno is set to one of the following values:
EBADF Bad file pointer
EINVAL Invalid argument
ESPIPE Illegal seek on device

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

fsetpos
See also Example Portability

Syntax
#include <stdio.h>
int fsetpos(FILE *stream, const fpos_t *pos);
Description
Positions the file pointer of a stream.
fsetpos sets the file pointer associated with stream to a new position. The new position is the value
obtained by a previous call to fgetpos on that stream. It also clears the end-of-file indicator on the file
that stream points to and undoes any effects of ungetc on that file. After a call to fsetpos the next
operation on the file can be input or output.

Return Value
On success fsetpos returns 0.
On failure it returns a nonzero value and also sets the global variable errno to a nonzero value.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + +

_fsopen
See also Example Portability

Syntax
#include <stdio.h>
#include <share.h>
FILE *_fsopen(const char *filename, const char *mode, int shflag);
Description
Opens a stream with file sharing.
_fsopen opens the file named by filename and associates a stream with it. _fsopen returns a pointer that
is used to identify the stream in subsequent operations.
The mode string used in calls to _fsopen is one of the following values:

Mode Description
r Open for reading only.
w Create for writing. If a file by that name already exists, it will be overwritten.
a Append; open for writing at end of file. or create for writing if the file does not exist.
r+ Open an existing file for update (reading and writing).
w+ Create a new file for update (reading and writing). If a file by that name already exists, it

will be overwritten.
a+ Open for append; open (or create if the file does not exist) for update at the end of the file.

To specify that a given file is being opened or created in text mode append a t to the mode string (rt w+t
and so on). Similarly to specify binary mode append a b to the mode string (wb a+b and so on). _fsopen
also allows the t or b to be inserted between the letter and the + character in the mode string; for
example rt+ is equivalent to r+t. If a t or b is not given in the mode string the mode is governed by the
global variable _fmode. If _fmode is set to O_BINARY files are opened in binary mode. If _fmode is set
to O_TEXT they are opened in text mode. These O_... constants are defined in fcntl.h.
When a file is opened for update, both input and output can be done on the resulting stream, however:

output cannot be directly followed by input without an intervening fseekor rewind
input cannot be directly followed by output without an intervening fseek, rewind, or an input that

encounters end-offile
shflag specifies the type of file-sharing allowed on the file filename. Symbolic constants for shflag are
defined in share.h.
Note: For DOS users, the file-sharing flags are ignored if SHARE is not loaded.

Value of shflagDescription
SH_COMPAT Sets compatibility mode
SH_DENYRW Denies read/write access
SH_DENYWR Denies write access
SH_DENYRD Denies read access
SH_DENYNONE Permits read/write access
SH_DENYNO Permits read/write access

Return Value
On successful completion _fsopen returns a pointer to the newly opened stream.
On error it returns NULL.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

fstat, stat, _wstat
See also Examples Portability

Syntax
#include <sys\stat.h>
int fstat(int handle, struct stat *statbuf);
int stat(const char *path, struct stat *statbuf);
int _wstat(const wchar_t *path, struct stat *statbuf);
Description
Gets open file information.
fstat stores information in the stat structure about the file or directory associated with handle.
stat stores information about a given file or directory in the stat structure. The name of the file is path.
statbuf points to the stat structure (defined in sys\stat.h). That structure contains the following fields:
st_mode Bit mask giving information about the file's mode
st_dev Drive number of disk containing the file or file handle if the file is on a device
st_rdev Same as st_dev
st_nlink Set to the integer constant 1
st_size Size of the file in bytes
st_atime Most recent access (Windows) or last time modified (DOS)
st_mtime Same as st_atime
st_ctime Same as st_atime

The stat structure contains three more fields not mentioned here. They contain values that are
meaningful only in UNIX.
The st_mode bit mask that gives information about the mode of the open file includes the following bits:
One of the following bits will be set:
S_IFCHR If handle refers to a device.
S_IFREG If an ordinary file is referred to by handle.

One or both of the following bits will be set:
S_IWRITE If user has permission to write to file.
S_IREAD If user has permission to read to file.

The HPFS and NTFS file-management systems make the following distinctions:
st_atime Most recent access
st_mtime Most recent modify
st_ctime Creation time

Return Value
fstat and stat return 0 if they successfully retrieved the information about the open file.
On error (failure to get the information) these functions return -1 and set the global variable errno to
EBADF Bad file handle

Examples
fstat
stat

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

_fstr*
See also Portability

Syntax
#include <string.h>
__far string functions
Description
Provides string operations in a large-code model.
Choose See Also to see a list of string functions that have a __far version. The __far version of a string
function is prefixed with _fstr. The behavior of a __far string function is identical to the behavior of the
standard function to which it corresponds. The only difference is that arguments and return value (if any)
to a __far string function are modified by the __far keyword. The entry for each of the functions provides
a description for the __far version.

Return Value
The return value for a _fstr-type function is a __far type.
Note: When a far string function returns an int or size_t, the return value is never modified by the far

keyword.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ +

ftell
See also Example Portability

Syntax
#include <stdio.h>
long int ftell(FILE *stream);
Description
Returns the current file pointer.
ftell returns the current file pointer for stream. The offset is measured in bytes from the beginning of the
file (if the file is binary). The value returned by ftell can be used in a subsequent call to fseek.

Return Value
ftell returns the current file pointer position on success. It returns -1L on error and sets the global
variable errno to a positive value.
In the event of an error return the global variable errno is set to one of the following values:
EBADF Bad file pointer
ESPIPE Illegal seek on device

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

ftime
See also Example Portability

Syntax
#include <sys\timeb.h>
void ftime(struct timeb *buf)
Description
Stores current time in timeb structure.
On UNIX platforms ftime is available only on System V systems.
ftime determines the current time and fills in the fields in the timeb structure pointed to by buf. The timeb
structure contains four fields: time, millitm, _timezone, and dstflag:
struct timeb {
 long time ;
 short millitm ;
 short _timezone ;
 short dstflag ;
};
time provides the time in seconds since 00:00:00 Greenwich mean time (GMT) January 1 1970.
millitm is the fractional part of a second in milliseconds.
_timezone is the difference in minutes between GMT and the local time. This value is computed going

west from GMT. ftime gets this field from the global variable _timezone which is set by
tzset.

dstflag is set to nonzero if daylight saving time is taken into account during time calculations.
Note: ftime calls tzset. Therefore it isn't necessary to call tzset explicitly when you use ftime.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

_fullpath, _wfullpath
See also Example Portability

Syntax
#include <stdlib.h>
char * _fullpath(char *buffer, const char *path, int buflen);
wchar_t * _wfullpath(wchar_t *buffer, const wchar_t *path, int buflen);
Description
Converts a path name from relative to absolute.
_fullpath converts the relative path name in path to an absolute path name that is stored in the array of
characters pointed to by buffer. The maximum number of characters that can be stored at buffer is
buflen. The function returns NULL if the buffer isn't big enough to store the absolute path name or if the
path contains an invalid drive letter.
If buffer is NULL, _fullpath allocates a buffer of up to _MAX_PATH characters. This buffer should be
freed using free when it is no longer needed. _MAX_PATH is defined in stdlib.h.

Return Value
If successful the _fullpath function returns a pointer to the buffer containing the absolute path name.
On error, this function returns NULL.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

fwrite
See also Example Portability

Syntax
#include <stdio.h>
size_t fwrite(const void *ptr, size_t size, size_t n, FILE *stream);
Description
Writes to a stream.
fwrite appends n items of data each of length size bytes to the given output file. The data written begins
at ptr. The total number of bytes written is (n x size). ptr in the declarations is a pointer to any object.

Return Value
On successful completion fwrite returns the number of items (not bytes) actually written.
On error it returns a short count.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

gcvt
See also Example Portability

Syntax
#include <stdlib.h>
char *gcvt(double value, int ndec, char *buf);
Description
Converts floating-point number to a string.
gcvt converts value to a null-terminated ASCII string and stores the string in buf. It produces ndec
significant digits in FORTRAN F format, if possible; otherwise, it returns the value in the printf E format
(ready for printing). It might suppress trailing zeros.

Return Value
gcvt returns the address of the string pointed to by buf.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

geninterrupt
See also Example Portability

Syntax
#include <dos.h>
void geninterrupt(int intr_num);
Description
Generates a software interrupt.
The geninterrupt macro triggers a software trap for the interrupt given by intr_num. The state of all
registers after the call depends on the interrupt called.
Interrupts can leave registers in unpredictable states.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

getc, getwc
See also Example Portability

Syntax
#include <stdio.h>
int getc(FILE *stream);
wint_t getwc(FILE *stream);
Description
Gets character from stream.
getc returns the next character on the given input stream and increments the stream's file pointer to
point to the next character.
Note: For Win32s or Win32 GUI applications, stdin must be redirected.

Return Value
On success, getc returns the character read, after converting it to an int without sign extension.
On end-of-file or error, it returns EOF.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

getcbrk
See also Example Portability

Syntax
#include <dos.h>
int getcbrk(void);
Description
Gets control-break setting.
getcbrk uses the DOS system call 0x33 to return the current setting of control-break checking.

Return Value
getcbrk returns 0 if control-break checking is off, or 1 if checking is on.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ +

getch
See also Example Portability

Syntax
#include <conio.h>
int getch(void);
Description
Gets character from keyboard, does not echo to screen.
getch reads a single character directly from the keyboard, without echoing to the screen.
Note: Do not use this function for Win32s or Win32 GUI applications.

Return Value
getch returns the character read from the keyboard.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

getchar, getwchar
See also Example Portability

Syntax
#include <stdio.h>
int getchar(void);
wint_t getwchar(void);
Description
Gets character from stdin.
getchar is a macro that returns the next character on the named input stream stdin. It is defined to be
getc(stdin).
Note: Do not use this function for Win32s or Win32 GUI applications.

Return Value
On success, getchar returns the character read, after converting it to an int without sign extension.
On end-of-file or error, it returns EOF.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + +

getche
See also Example Portability

Syntax
#include <conio.h>
int getche(void);
Description
Gets character from the keyboard, echoes to screen.
getche reads a single character from the keyboard and echoes it to the current text window using direct
video or BIOS.
Note: Do not use this function for Win32s or Win32 GUI applications.

Return Value
getche returns the character read from the keyboard.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

getcurdir, _wgetcurdir
See also Example Portability

Syntax
#include <dir.h>
int getcurdir(int drive, char *directory);
int _wgetcurdir(int drive, wchar_t *directory);
Description
Gets current directory for specified drive.
getcurdir gets the name of the current working directory for the drive indicated by drive. drive specifies a
drive number (0 for default, 1 for A, and so on). directory points to an area of memory of length MAXDIR
where the null-terminated directory name will be placed. The name does not contain the drive
specification and does not begin with a backslash.

Return Value
getcurdir returns 0 on success or -1 in the event of error.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

getcwd, _wgetcwd
See also Example Portability

Syntax
#include <dir.h>
char *getcwd(char *buf, int buflen);
wchar_t *_wgetcwd(wchar_t *buf, int buflen);
Description
Gets current working directory.
getcwd gets the full path name (including the drive) of the current working directory, up to buflen bytes
long and stores it in buf. If the full path name length (including the null terminator) is longer than buflen
bytes, an error occurs.
If buf is NULL, a buffer buflen bytes long is allocated for you with malloc. You can later free the allocated
buffer by passing the return value of getcwd to the function free.

Return Value
getcwd returns the following values:

If buf is not NULL on input, getcwd returns buf on success, NULL on error.
If buf is NULL on input, getcwd returns a pointer to the allocated buffer.

In the event of an error return, the global variable errno is set to one of the following values:
ENODEV No such device
ENOMEM Not enough memory to allocate a buffer (buf is NULL)
ERANGE Directory name longer than buflen (buf is not NULL)

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

_getdcwd, _wgetdcwd
See also Example Portability

Syntax
#include <direct.h>
char * _getdcwd(int drive, char *buffer, int buflen);
wchar_t * _wgetdcwd(int drive, wchar_t *buffer, int buflen);
Description
Gets current directory for specified drive.
_getdcwd gets the full path name of the working directory of the specified drive (including the drive
name), up to buflen bytes long, and stores it in buffer. If the full path name length (including the null-
terminator) is longer than buflen, an error occurs. The drive is 0 for the default drive, 1=A, 2=B, and so
on.
If the working directory is the root directory, the terminating character for the full path is a backslash. If
the working directory is a subdirectory, there is no terminating backslash after the subdirectory name.
If buffer is NULL, _getdcwd allocates a buffer at least buflen bytes long. You can later free the allocated
buffer by passing the _getdcwd return value to the free function.

Return Value
If successful, _getdcwd returns a pointer to the buffer containing the current directory for the specified
drive.
Otherwise it returns NULL, and sets the global variable errno to one of the following values:
ENOMEM Not enough memory to allocate a buffer (buffer is NULL)
ERANGE Directory name longer than buflen (buffer is not NULL)

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

getdfree
See also Example Portability

Syntax
#include <dos.h>
void getdfree(unsigned char drive, struct dfree *dtable);
Description
Gets disk free space.
getdfree accepts a drive specifier in drive (0 for default, 1 for A, and so on) and fills the dfree structure
pointed to by dtable with disk attributes.
The dfree structure is defined as follows:
struct dfree {
 unsigned df_avail; /* available clusters */
 unsigned df_total; /* total clusters */
 unsigned df_bsec; /* bytes per sector */
 unsigned df_sclus; /* sectors per cluster */
};
Return Value
getdfree returns no value. In the event of an error, df_sclus in the dfree structure is set to (unsigned) -1.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

getdisk, setdisk
See also Examples Portability

Syntax
#include <dir.h>
int getdisk(void);
int setdisk(int drive);
Description
Gets or sets the current drive number.
getdisk gets the current drive number. It returns an integer: 0 for A, 1 for B, 2 for C, and so on.
setdisk sets the current drive to the one associated with drive: 0 for A, 1 for B, 2 for C, and so on.
The setdisk function changes the current drive of the parent process.

Return Value
getdisk returns the current drive number. setdisk returns the total number of drives available.

Examples
getdisk
setdisk

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

getdta
See also Example Portability

Syntax
#include <dos.h>
char far *getdta(void);
Description
Gets disk transfer address.
getdta returns the current setting of the disk transfer address (DTA).
In the small and medium memory models, the current data segment is the assumed segment. If you use
C or C++ exclusively, this will be the case, but assembly routines can set the DTA to any hardware
address.
In the compact or large models, the address returned by getdta is the correct hardware address and can
be located outside the program.

Return Value
getdta returns a far pointer to the current DTA.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ +

getenv, _wgetenv
See also Example Portability

Syntax
#include <stdlib.h>
char *getenv(const char *name);
wchar_t *_wgetenv(const wchar_t *name);
Description
Find or delete an environment variable from the system environment.
The environment consists of a series of entries that are of the form name=string\0.
getenv returns the value of a specified variable. On DOS and OS/2, name must be uppercase. On other
systems, name can be either uppercase or lowercase. name must not include the equal sign (=). If the
specified environment variable does not exist, getenv returns a NULL pointer.
To delete the variable from the environment, use getenv("name=").

Note: Environment entries must not be changed directly. If you want to change an environment value,
you must use putenv.

Return Value
On success, getenv returns the value associated with name.
If the specified name is not defined in the environment, getenv returns a NULL pointer.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

getfat
See also Example Portability

Syntax
#include <dos.h>
void getfat(unsigned char drive, struct fatinfo *dtable);
Description
Gets file allocation table information for given drive.
getfat gets information from the file allocation table (FAT) for the drive specified by drive (0 for default, 1
for A, 2 for B, and so on). dtable points to the fatinfo structure to be filled in. The fatinfo structure filled in
by getfat is defined as follows:
struct fatinfo {
 char fi_sclus; /* sectors per cluster */
 char fi_fatid; /* the FAT id byte */
 unsigned fi_nclus; /* number of clusters */
 int fi_bysec; /* bytes per sector */
};
Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ +

getfatd
See also Example Portability

Syntax
#include <dos.h>
void getfatd(struct fatinfo *dtable);
Description
Gets file allocation table information.
getfatd gets information from the file allocation table (FAT) of the default drive. dtable points to the fatinfo
structure to be filled in.
The fatinfo structure filled in by getfatd is defined as follows:
struct fatinfo {
 char fi_sclus; /* sectors per cluster */
 char fi_fatid; /* the FAT id byte */
 int fi_nclus; /* number of clusters */
 int fi_bysec; /* bytes per sector */
};
Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ +

getftime, setftime
See also Examples Portability

Syntax
#include <io.h>
int getftime(int handle, struct ftime *ftimep);
int setftime(int handle, struct ftime *ftimep);
Description
Gets and sets the file date and time.
getftime retrieves the file time and date for the disk file associated with the open handle. The ftime
structure pointed to by ftimep is filled in with the file's time and date.
setftime sets the file date and time of the disk file associated with the open handle to the date and time
in the ftime structure pointed to by ftimep. The file must not be written to after the setftime call or the
changed information will be lost. The file must be open for writing; an EACCES error will occur if the file
is open for read-only access.
setftime requires the file to be open for writing; an EACCES error will occur if the file is open for read-
only access.
The ftime structure is defined as follows:
struct ftime {
 unsigned ft_tsec: 5; /* two seconds */
 unsigned ft_min: 6; /* minutes */
 unsigned ft_hour: 5; /* hours */
 unsigned ft_day: 5; /* days */
 unsigned ft_month: 4; /* months */
 unsigned ft_year: 7; /* year - 1980*/
 };
Return Value
getftime and setftime return 0 on success.
In the event of an error return -1 is returned and the global variable errno is set to one of the following
values:
EACCES Permission denied
EBADF Bad file number
EINVFNC Invalid function number

Examples
getftime
setftime

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

_get_osfhandle
See also Example Portability

Syntax
#include <io.h>
long _get_osfhandle(int filehandle);
Description
Associates file handles.
The _get_osfhandle function associates an operating system file handle with an existing run-time file
handle. The variable filehandle is the file handle of your program.

Return value
On success, _get_osfhandle returns an operating system file handle corresponding to the variable
filehandle.
On error, it returns -1 and sets the global variable errno to
EBADF an invalid file handle

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

 +

getpass
See also Example Portability

Syntax
#include <conio.h>
char *getpass(const char *prompt);
Description
Reads a password.
getpass reads a password from the system console after prompting with the null-terminated string
prompt and disabling the echo. A pointer is returned to a null-terminated string of up to eight characters
(not counting the null-terminator).
Note: Do not use this function for Win32s or Win32 GUI applications.

Return Value
The return value is a pointer to a static string which is overwritten with each call.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

getpid
See also Example Portability

Syntax
#include <process.h>
unsigned getpid(void)
Description
Gets the process ID of a program.
This function returns the current process ID--an integer that uniquely identifies the process.

Return Value
getpid returns the current process' ID.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

getpsp
See also Example Portability

Syntax
#include <dos.h>
unsigned getpsp(void);
Description
Gets the program segment prefix.
getpsp gets the segment address of the program segment prefix (PSP) using DOS call 0x62.

Return Value
getpsp returns the address of the Program Segment Prefix (PSP).

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ +

gets, _getws
See also Example Portability

Syntax
#include <stdio.h>
char *gets(char *s);
wchar_t *_getws(wchar_t *s); // Unicode version
Description
Gets a string from stdin.
gets collects a string of characters terminated by a new line from the standard input stream stdin and
puts it into s. The new line is replaced by a null character (\0) in s.
gets allows input strings to contain certain whitespace characters (spaces, tabs). gets returns when it
encounters a new line; everything up to the new line is copied into s.
The gets function is not length-terminated. If the input string is sufficiently large, data can be overwritten
and corrupted. The fgets function provides better control of input strings.
Note: For Win32s or Win32 GUI applications, stdin must be redirected.

Return Value
On success, gets returns the string argument s.
On end-of-file or error, it returns NULL

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + +

gettext
See also Example Portability

Syntax
#include <conio.h>
int gettext(int left, int top, int right, int bottom, void *destin);
Description
Copies text from text mode screen to memory.
gettext stores the contents of an onscreen text rectangle defined by left, top, right, and bottom into the
area of memory pointed to by destin.
All coordinates are absolute screen coordinates not window-relative. The upper left corner is (1,1).
gettext reads the contents of the rectangle into memory sequentially from left to right and top to bottom.
Each position onscreen takes 2 bytes of memory: The first byte is the character in the cell and the
second is the cell's video attribute. The space required for a rectangle w columns wide by h rows high is
defined as

bytes = (h rows) x (w columns) x 2
Note: Do not use this function for Win32s or Win32 GUI applications.

Return Value
gettext returns 1 if the operation succeeds.
On error, it returns 0 (for example, if it fails because you gave coordinates outside the range of the
current screen mode).

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

gettextinfo
See also Example Portability

Syntax
#include <conio.h>
void gettextinfo(struct text_info *r);
Description
Gets text mode video information.
gettextinfo fills in the text_info structure pointed to by r with the current text video information.
The text_info structure is defined in conio.h as follows:
struct text_info {
 unsigned char winleft; /* left window coordinate */
 unsigned char wintop; /* top window coordinate */
 unsigned char winright; /* right window coordinate */
 unsigned char winbottom; /* bottom window coordinate */
 unsigned char attribute; /* text attribute */
 unsigned char normattr; /* normal attribute */
 unsigned char currmode; /* BW40, BW80, C40, C80, or C4350 */
 unsigned char screenheight; /* text screen's height */
 unsigned char screenwidth; /* text screen's width */
 unsigned char curx; /* x-coordinate in current window */
 unsigned char cury; /* y-coordinate in current window */
};
Note: Do not use this function for Win32s or Win32 GUI applications.

Return Value
None. Results are returned in the structure pointed to by r.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

gettime, settime
See also Examples Portability

Syntax
#include <dos.h>
void gettime(struct time *timep);
void settime(struct time *timep);
Description
Gets and sets the system time.
gettime fills in the time structure pointed to by timep with the system's current time.
settime sets the system time to the values in the time structure pointed to by timep.
The time structure is defined as follows:
struct time {
 unsigned char ti_min; /* minutes */
 unsigned char ti_hour; /* hours */
 unsigned char ti_hund; /* hundredths of seconds */
 unsigned char ti_sec; /* seconds */
};
Return Value
None.

Examples
gettime
settime

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

gettime + + + +
settime + + +

getvect, setvect
See also Example Portability

Syntax
#include <dos.h>
void interrupt(*getvect(int interruptno)) (); /* C version
*/
void interrupt(*getvect(int interruptno)) (...); // C++ version
void setvect(int interruptno, void interrupt (*isr) ()); /* C version
*/
void setvect(int interruptno, void interrupt (*isr) (...)); // C++ version
Description
Gets and sets interrupt vector.
Every processor of the 8086 family includes a set of interrupt vectors numbered 0 to 255. The 4-byte
value in each vector is actually an address which is the location of an interrupt function.
getvect reads the value of the interrupt vector given by interruptno and returns that value as a (far)
pointer to an interrupt function. The value of interruptno can be from 0 to 255.
setvect sets the value of the interrupt vector named by interruptno to a new value, isr, which is a far
pointer containing the address of a new interrupt function. The address of a C routine can be passed to
isr only if that routine is declared to be an interrupt routine.
Note: In C++, only static member functions or non-member functions can be declared to be an interrupt

routine. If you use the prototypes declared in dos.h, simply pass the address of an interrupt
function to setvect in any memory model

Return Value
getvect returns the current 4-byte value stored in the interrupt vector named by interruptno.
setvect does not return a value.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ +

getverify
See also Example Portability

Syntax
#include <dos.h>
int getverify(void);
Description
Returns the state of the operating system verify flag.
getverify gets the current state of the verify flag.
The verify flag controls output to the disk. When verify is off writes are not verified; when verify is on all
disk writes are verified to ensure proper writing of the data.

Return Value
getverify returns the current state of the verify flag either 0 (off) or 1 (on).

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

_getw
See also Example Portability

Syntax
#include <stdio.h>
int _getw(FILE *stream);
Description
Gets an integer from stream.
_getw returns the next integer in the named input stream. It assumes no special alignment in the file.
_getw should not be used when the stream is opened in text mode.

Return Value
_getw returns the next integer on the input stream.
On end-of-file or error, _getw returns EOF.
Note: Because EOF is a legitimate value for _getw to return, feof or ferror should be used to detect end-

of-file or error.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

gmtime
See also Example Portability

Syntax
#include <time.h>
struct tm *gmtime(const time_t *timer);
Description
Converts date and time to Greenwich mean time (GMT).
gmtime accepts the address of a value returned by time and returns a pointer to the structure of type tm
containing the time elements. gmtime converts directly to GMT.
The global long variable _timezone should be set to the difference in seconds between GMT and local
standard time (in PST _timezone is 8 x 60 x 60). The global variable _daylight should be set to nonzero
only if the standard U.S. daylight saving time conversion should be applied.
This is the tm structure declaration from the time.h header file:
struct tm {
 int tm_sec; /* Seconds */
 int tm_min; /* Minutes */
 int tm_hour; /* Hour (0 - 23) */
 int tm_mday; /* Day of month (1 - 31) */
 int tm_mon; /* Month (0 - 11) */
 int tm_year; /* Year (calendar year minus 1900) */
 int tm_wday; /* Weekday (0 - 6; Sunday is 0) */
 int tm_yday; /* Day of year (0 -365) */
 int tm_isdst; /* Nonzero if daylight saving time is in effect.
*/

};
These quantities give the time on a 24-hour clock, day of month (1 to 31), month (0 to 11), weekday
(Sunday equals 0), year - 1900, day of year (0 to 365), and a flag that is nonzero if daylight saving time
is in effect.

Return Value
gmtime returns a pointer to the structure containing the time elements. This structure is a static that is
overwritten with each call.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

gotoxy
See also Example Portability

Syntax
#include <conio.h>
void gotoxy(int x
int y);
Description
Positions cursor in text window.
gotoxy moves the cursor to the given position in the current text window. If the coordinates are in any
way invalid the call to gotoxy is ignored. An example of this is a call to gotoxy(40,30) when (35,25) is the
bottom right position in the window. Neither argument to gotoxy can be zero.
Note: Do not use this function for Win32s or Win32 GUI applications.

Return Value
None.

Examples
gotoxygotoxy_Ex

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

heapcheck
Example Portability

Syntax
#include <alloc.h>
int heapcheck(void);
Description
Checks and verifies the heap.
heapcheck walks through the heap and examines each block, checking its pointers, size, and other
critical attributes. For DOS users, heapcheck maps to farheapcheck in the large and huge memory
models.

Return Value
The return value is less than 0 for an error and greater than 0 for success. The return values and their
meaning are as follows:
_HEAPCORRUPT Heap has been corrupted
_HEAPEMPTY No heap
_HEAPOK Heap is verified

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

heapcheckfree
Example Portability

Syntax
#include <alloc.h>
int heapcheckfree(unsigned int fillvalue);
Description
Checks the free blocks on the heap for a constant value.

Return Value
The return value is less then 0 for an error and greater than 0 for success. The return values and their
meaning are as follows:
_BADVALUE A value other than the fill value was found
_HEAPCORRUPT Heap has been corrupted
_HEAPEMPTY No heap
_HEAPOK Heap is accurate

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

heapchecknode
Example Portability

Syntax
#include <alloc.h>
int heapchecknode(void *node);
Description
Checks and verifies a single node on the heap.
If a node has been freed and heapchecknode is called with a pointer to the freed block, heapchecknode
can return _BADNODE rather than the expected _FREEENTRY. This is because adjacent free blocks
on the heap are merged, and the block in question no longer exists.
The heapchecknode function should be used only to inspect allocations which were created by malloc or
calloc.

Return Value
One of the following values:
_BADNODE Node could not be found
_FREEENTRY Node is a free block
_HEAPCORRUPT Heap has been corrupted
_HEAPEMPTY No heap
_USEDENTRY Node is a used block

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

_heapchk
See also Example Portability

Syntax
#include <malloc.h>
int _heapchk(void);
Description
Checks and verifies the heap.
_heapchk walks through the heap and examines each block, checking its pointers, size, and other
critical attributes.

Return Value
One of the following values:
_HEAPBADNODE A corrupted heap block has been found
_HEAPEMPTY No heap exists
_HEAPOK The heap appears to be uncorrupted

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

 + +

heapfillfree
Example Portability

Syntax
#include <alloc.h>
int heapfillfree(unsigned int fillvalue);
Description
Fills the free blocks on the heap with a constant value.

Return Value
One of the following values:
_HEAPCORRUPT Heap has been corrupted
_HEAPEMPTY No heap
_HEAPOK Heap is accurate

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

_heapmin
See also Portability

Syntax
#include <malloc.h>
int _heapmin(void);
Description
Release unused heap areas.
The _heapmin function returns unused areas of the heap to the operating system. This allows blocks
that have been allocated and then freed to be used by other processes. Due to fragmentation of the
heap, _heapmin might not always be able to return unused memory to the operating system; this is not
an error.

Return Value
_heapmin returns 0 if it is successful, or -1 if an error occurs.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

_heapset
See also Example Portability

Syntax
#include <malloc.h>
int _heapset(unsigned int fillvalue);
Description
Fills the free blocks on the heap with a constant value.
_heapset checks the heap for consistency using the same methods as _heapchk. It then fills each free
block in the heap with the value contained in the least significant byte of fillvalue. This function can be
used to find heap-related problems. It does not guarantee that subsequently allocated blocks will be
filled with the specified value.

Return Value
One of the following values:
_HEAPOK The heap appears to be uncorrupted
_HEAPEMPTY No heap exists
_HEAPBADNODE A corrupted heap block has been found

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

 + +

heapwalk
Example Portability

Syntax
#include <alloc.h>
int heapwalk(struct heapinfo *hi);
Description
heapwalk is used to "walk" through the heap, node by node.
heapwalk assumes the heap is correct. Use heapcheck to verify the heap before using heapwalk.
_HEAPOK is returned with the last block on the heap. _HEAPEND will be returned on the next call to
heapwalk.
heapwalk receives a pointer to a structure of type heapinfo (declared in alloc.h). For the first call to
heapwalk, set the hi.ptr field to null. heapwalk returns with hi.ptr containing the address of the first block.
hi.size holds the size of the block in bytes. hi.in_use is a flag that's set if the block is currently in use.

Return Value
One of the following values:
_HEAPEMPTY No heap exists
_HEAPEND The end of the heap has been reached
_HEAPOK The heapinfo block contains valid information about the next heap block

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

highvideo
See also Example Portability

Syntax
#include <conio.h>
void highvideo(void);
Description
Selects high-intensity characters.
highvideo selects high-intensity characters by setting the high-intensity bit of the currently selected
foreground color.
This function does not affect any characters currently onscreen, but does affect those displayed by
functions (such as cprintf) that perform direct video, text mode output after highvideo is called.
Note: Do not use this function for Win32s or Win32 GUI applications.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

hypot, hypotl
Example Portability

Syntax
#include <math.h>
double hypot(double x, double y);
long double hypotl(long double x, long double y);
Description
Calculates hypotenuse of a right triangle.
hypot calculates the value z where

z2 = x2 + y2 and z >= 0
This is equivalent to the length of the hypotenuse of a right triangle, if the lengths of the two sides are x
and y.
hypotl is the long double version; it takes long double arguments and returns a long double result.

Return Value
On success, these functions return z, a double (hypot) or a long double) (hypotl). On error (such as an
overflow), they set the global variable errno to
ERANGE Result out of range

and return the value HUGE_VAL (hypot) or _LHUGE_VAL) (hypotl). Error handling for these routines
can be modified through the functions _matherr and _matherrl.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

hypot + + + + +
hypotl + + + +

_InitEasyWin
See also Example Portability

Syntax
#include <io.h>
void _InitEasyWin(void);
Description
The purpose of EasyWin is to convert DOS applications to Windows programs, quickly and easily. You
might, however, occasionally want to use EasyWin from within a true 16-bit Windows program. For
example, you might want to add printf functions to your program code to help you debug your 16-bit
Windows program.
To use EasyWin from within a Windows program, make a call to the _InitEasyWin function before doing
any standard input or output.
For example:
#include <windows.h>
#include <stdio.h>

#pragma argsused
int PASCAL WinMain(HANDLE hInstance, HANDLE hPrevInstance,
 LPSTR lpszCmdLine, int cmdShow)

{
 _InitEasyWin();

 /* Normal windows setup */

 printf("Hello, world\n");
 return 0;
}
The prototype for _InitEasyWin can be found in stdio.h and iostream.h.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2
 +

inp
See also Example Portability

Syntax
#include <conio.h>
int inp(unsigned portid);
Description
Reads a byte from a hardware port.
inp is a macro that reads a byte from the input port specified by portid. If inp is called when conio.h has
been included, it will be treated as a macro that expands to inline code. If you don't include conio.h, or if
you do include conio.h and undefine the macro inp, you get the inp function.

Return Value
inp returns the value read.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ +

inport
See also Example Portability

Syntax
#include <dos.h>
int inport(int portid);
Description
Reads a word from a hardware port.
inport works just like the 80x86 instruction IN. It reads the low byte of a word from the input port
specified by portid; it reads the high byte from portid + 1.

Return Value
inport returns the value read.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ +

inportb
See also Example Portability

Syntax
#include <dos.h>
unsigned char inportb(int portid);
Description
Reads a byte from a hardware port.
inportb is a macro that reads a byte from the input port specified by portid.
If inportb is called when dos.h has been included, it will be treated as a macro that expands to inline
code. If you don't include dos.h, or if you do include dos.h and #undef the macro inportb, you get the
inportb function.

Return Value
inportb returns the value read.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ +

inpw
See also Example Portability

Syntax
#include <conio.h>
unsigned inpw(unsigned portid);
Description
Reads a word from a hardware port.
inpw is a macro that reads a 16-bit word from the inport port specified by portid. It reads the low byte of
the word from portid, and the high byte from portid + 1.
If inpw is called when conio.h has been included, it will be treated as a macro that expands to inline
code. If you don't include conio.h, or if you do include conio.h and #undef the macro inpw, you get the
inpw function.

Return Value
inpw returns the value read.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ +

insline
See also Example Portability

Syntax
#include <conio.h>
void insline(void);
Description
Inserts a blank line in the text window.
insline inserts an empty line in the text window at the cursor position using the current text background
color. All lines below the empty one move down one line, and the bottom line scrolls off the bottom of the
window.
Note: Do not use this function for Win32s or Win32 GUI applications.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

int86
See also Example Portability

Syntax
#include <dos.h>
int int86(int intno, union REGS *inregs, union REGS *outregs);
Description
 General 8086 software interrupt.
int86 executes an 8086 software interrupt specified by the argument intno. Before executing the
software interrupt, it copies register values from inregs into the registers.
After the software interrupt returns, int86 copies the current register values to outregs, copies the status
of the carry flag to the x.cflag field in outregs, and copies the value of the 8086 flags register to the
x.flags field in outregs. If the carry flag is set, it usually indicates that an error has occurred.
Note: inregs can point to the same structure that outregs points to.

Return Value
int86 returns the value of AX after completion of the software interrupt. If the carry flag is set (outregs ->
x.cflag != 0), indicating an error, this function sets the global variable _doserrno to the error code. Note
that when the carry flag is not set (outregs -> x.cflag = 0), you may or may not have an error. To
be certain, always check _doserrno.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ +

int86x
See also Example Portability

Syntax
#include <dos.h>
int int86x(int intno, union REGS *inregs, union REGS *outregs, struct SREGS
*segregs);

Description
General 8086 software interrupt interface.
int86x executes an 8086 software interrupt specified by the argument intno. Before executing the
software interrupt, it copies register values from inregs into the registers.
In addition, int86x copies the segregs ->ds and segregs ->es values into the corresponding registers
before executing the software interrupt. This feature allows programs that use far pointers or a large
data memory model to specify which segment is to be used for the software interrupt.
After the software interrupt returns, int86x copies the current register values to outregs, the status of the
carry flag to the x.cflag field in outregs, and the value of the 8086 flags register to the x.flags field in
outregs. In addition, int86x restores DS and sets the segregs ->es and segregs ->ds fields to the values
of the corresponding segment registers. If the carry flag is set, it usually indicates that an error has
occurred.
int86x lets you invoke an 8086 software interrupt that takes a value of DS different from the default data
segment, and/or takes an argument in ES.
Note: inregs can point to the same structure that outregs points to.

Return Value
int86x returns the value of AX after completion of the software interrupt. If the carry flag is set (outregs ->
x.cflag != 0), indicating an error, this function sets the global variable _doserrno to the error code. Note
that when the carry flag is not set (outregs -> x.cflag = 0), you may or may not have an error. To
be certain, always check _doserrno.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ +

intdos
See also Example Portability

Syntax
#include <dos.h>
int intdos(union REGS *inregs, union REGS *outregs);
Description
General DOS interrupt interface.
intdos executes DOS interrupt 0x21 to invoke a specified DOS function. The value of inregs -> h.ah
specifies the DOS function to be invoked.
After the interrupt 0x21 returns, intdos copies the current register values to outregs, copies the status of
the carry flag to the x.cflag field in outregs, and copies the value of the 8086 flags register to the x.flags
field in outregs. If the carry flag is set, it indicates that an error has occurred.
Note: inregs can point to the same structure that outregs points to.

Return Value
intdos returns the value of AX after completion of the DOS function call. If the carry flag is set (outregs ->
x.cflag != 0), indicating an error, it sets the global variable _doserrno to the error code. Note that when
the carry flag is not set (outregs -> x.cflag = 0), you may or may not have an error. To be
certain, always check _doserrno.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ +

intdosx
See also Example Portability

Syntax
#include <dos.h>
int intdosx(union REGS *inregs, union REGS *outregs, struct SREGS *segregs);
Description
General DOS interrupt interface.
intdosx executes DOS interrupt 0x21 to invoke a specified DOS function. The value of inregs -> h.ah
specifies the DOS function to be invoked.
In addition, intdosx copies the segregs ->ds and segregs ->es values into the corresponding registers
before invoking the DOS function. This feature allows programs that use far pointers or a large data
memory model to specify which segment is to be used for the function execution.
After the interrupt 0x21 returns, intdosx copies the current register values to outregs, copies the status
of the carry flag to the x.cflag field in outregs, and copies the value of the 8086 flags register to the
x.flags field in outregs. In addition, intdosx sets the segregs ->es and segregs ->ds fields to the values of
the corresponding segment registers and then restores DS. If the carry flag is set, it indicates that an
error occurred.
intdosx lets you invoke a DOS function that takes a value of DS different from the default data segment
and/or takes an argument in ES.
Note: inregs can point to the same structure that outregs points to.

Return Value
intdosx returns the value of AX after completion of the DOS function call. If the carry flag is set (outregs -
> x.cflag != 0), indicating an error, it sets the global variable _doserrno to the error code. Note that when
the carry flag is not set (outregs -> x.cflag = 0), you may or may not have an error. To be
certain, always check _doserrno.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ +

intr
See also Example Portability

Syntax
#include <dos.h>
void intr(int intno, struct REGPACK *preg);
Description
 Alternate 8086 software interrupt interface.
The intr function is an alternate interface for executing software interrupts. It generates an 8086 software
interrupt specified by the argument intno.
intr copies register values from the REGPACK structure *preg into the registers before executing the
software interrupt. After the software interrupt completes, intr copies the current register values into
*preg, including the flags.
The arguments passed to intr are as follows:
intno Interrupt number to be executed
preg Address of a structure containing

(a) the input registers before the interrupt call
(b) the value of the registers after the interrupt call

The REGPACK structure (defined in dos.h) has the following format:
struct REGPACK {
 unsigned r_ax, r_bx, r_cx, r_dx;
 unsigned r_bp, r_si, r_di, r_ds, r_es, r_flags;
};
Return Value
No value is returned. The REGPACK structure *preg contains the value of the registers after the
interrupt call.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ +

ioctl
Example Portability

Syntax
#include <io.h>
int ioctl(int handle, int func [, void *argdx, int argcx]);
Description
Controls I/0 device.
ioctl is available on UNIX systems, but not with these parameters or functionality. UNIX version 7 and
System III differ from each other in their use of ioctl. ioctl calls are not portable to UNIX and are rarely
portable across DOS machines.
DOS 3.0 extends ioctl with func values of 8 and 11.
This is a direct interface to the DOS call 0x44 (IOCTL).
The exact function depends on the value of func as follows:

0 Get device information.
1 Set device information (in argdx).
2 Read argcx bytes into the address pointed to by argdx.
3 Write argcx bytes from the address pointed to by argdx.
4 Same as 2 except handle is treated as a drive number (0 equals default, 1 equals A, and so on).
5 Same as 3 except handle is a drive number (0 equals default, 1 equals A, and so on).
6 Get input status.
7 Get output status.
8 Test removability; DOS 3.0 only.

11 Set sharing conflict retry count; DOS 3.0 only.
ioctl can be used to get information about device channels. Regular files can also be used, but only func
values 0, 6, and 7 are defined for them. All other calls return an EINVAL error for files.
See the documentation for system call 0x44 in your DOS reference manuals for detailed information on
argument or return values.
The arguments argdx and argcx are optional.
ioctl provides a direct interface to DOS device drivers for special functions. As a result, the exact
behavior of this function varies across different vendors' hardware and in different devices. Also, several
vendors do not follow the interfaces described here. Refer to the vendor BIOS documentation for exact
use of ioctl.

Return Value
For func 0 or 1, the return value is the device information (DX of the ioctl call). For func values of 2
through 5, the return value is the number of bytes actually transferred. For func values of 6 or 7, the
return value is the device status.
In any event, if an error is detected, a value of -1 is returned, and the global variable errno is set to one
of the following:
EBADF Bad file number
EINVAL Invalid argument
EINVDAT Invalid data

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

isalnum, iswalnum, _ismbcalnum
Example Portability

Syntax
#include <ctype.h>
int isalnum(int c);
int iswalnum(wint_t c);

#include <mbstring.h>
int _ismbcalnum(unsigned int c);
Description
Tests for an alphanumeric character.
isalnum is a macro that classifies ASCII-coded integer values by table lookup. The macro is affected by
the current locale's LC_CTYPE category. For the default C locale, c is a letter (A to Z or a to z) or a digit
(0 to 9).
You can make this macro available as a function by undefining (#undef) it.

Return Value
It is a predicate returning nonzero for true and 0 for false. isalnum returns nonzero if c is a letter or a
digit.
iswalnum returns nonzero if iswalpha or iswdigit return true for c.
_ismbcalnum returns true if and only if the argument c is a single-byte ASCII English letter.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

isalpha, iswalpha, _ismbcalpha
Example Portability

Syntax
#include <ctype.h>
int isalpha(int c);
int iswalpha(wint_t c);

#include <mbstring.h>
int _ismbcalpha(unsigned int c);
Description
Classifies an alphabetical character.
isalpha is a macro that classifies ASCII-coded integer values by table lookup. The macro is affected by
the current locale's LC_CTYPE category. For the default C locale, c is a letter (A to Z or a to z).
You can make this macro available as a function by undefining (#undef) it.

Return Value
isalpha returns nonzero if c is a letter.
iswalpha returns nonzero if c is a wchar_t in the character set defined by the implementation.
_ismbcalpha returns true if and only if the argument c is a single-byte ASCII English letter.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

isascii, iswascii
Example Portability

Syntax
#include <ctype.h>
int isascii(int c);
int iswascii(wint_t c);
Description
Character classification macro.
These functions depend on the LC_CTYPE
isascii is a macro that classifies ASCII-coded integer values by table lookup. It is a predicate returning
nonzero for true and 0 for false.
isascii is defined on all integer values.

Return Value
isascii returns nonzero if c is in the range 0 to 127 (0x00-0x7F).
iswascii returns nonzero if c is

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

isatty
Example Portability

Syntax
#include <io.h>
int isatty(int handle);
Description
Checks for device type.
isatty determines whether handle is associated with any one of the following character devices:

a terminal
a console
a printer
a serial port

Return Value
If the device is one of the four character devices listed above, isatty returns a nonzero integer. If it is not
such a device, isatty returns 0.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

iscntrl, iswcntrl
Example Portability

Syntax
#include <ctype.h>
int iscntrl(int c);
int iswcntrl(wint_t c);
Description
Tests for a control character.
iscntrl is a macro that classifies ASCII-coded integer values by table lookup. The macro is affected by
the current locale's LC_CTYPE category. For the default C locale, c is a delete character or control
character (0x7F or 0x00 to 0x1F).
You can make this macro available as a function by undefining (#undef) it.

Return Value
iscntrl returns nonzero if c is a delete character or ordinary control character.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

isdigit, iswdigit, _ismbcdigit
Example Portability

Syntax
#include <ctype.h>
int isdigit(int c);
int iswdigit(wint_t c);

#include <mbstring.h>
int _ismbcdigit(unsigned int c);
Description
Tests for decimal-digit character.
isdigit is a macro that classifies ASCII-coded integer values by table lookup. The macro is affected by
the current locale's LC_CTYPE category. For the default C locale, c is a digit (0 to 9).
You can make this macro available as a function by undefining (#undef) it.

Return Value
isdigit returns nonzero if c is a digit.
_ismbcdigit returns true if and only if the argument c is a single-byte representation of an ASCII digit.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

isgraph, iswgraph, _ismbcgraph
Example Portability

Syntax
#include <ctype.h>
int isgraph(int c);
int iswgraph(wint_t c);

#include <mbstring.h>
int _ismbcgraph(unsigned int c);
Description
Tests for printing character.
isgraph is a macro that classifies ASCII-coded integer values by table lookup. The macro is affected by
the current locale's LC_CTYPE category. For the default C locale, c is a printing character except blank
space (' ').
You can make this macro available as a function by undefining (#undef) it.

Return Value
isgraph returns nonzero if c is a printing character.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

islower, iswlower, _ismbclower
Example Portability

Syntax
#include <ctype.h>
int islower(int c);
int iswlower(wint_t c);

#include <mbstring.h>
int _ismbclower(unsigned int c);
Description
Tests for lowercase character.
islower is a macro that classifies ASCII-coded integer values by table lookup. The macro is affected by
the current locale's LC_CTYPE category. For the default C locale, c is a lowercase letter (ato z).
You can make this macro available as a function by undefining (#undef) it.

Return Value
islower returns nonzero if c is a lowercase letter.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

_ismbblead, _ismbbtrail

Syntax
#include <mbstring.h>
int _ismbblead(unsigned int c);
int _ismbbtrail(unsigned int c);
Description
_ismbblead and _ismbbtrail are used to test whether the argument c is the first or the second byte of a
multibyte character.
_ismbblead and _ismbbtrail are affected by the code page in use. You can set the code page by using
the _setlocale function.

Return Value
If c is in the lead byte of a multibyte character, _ismbblead returns true.
If c is in the trail byte of a multibyte character, _ismbbtrail returns a nonzero value.

_ismbclegal

Syntax
#include <mbstring.h>
int _ismbclegal(unsigned int c);
Description
_ismbclegal tests whether each byte of the c argument is in the code page that is currently in use.

Return Value
_ismbclegal returns a nonzero value if the argument c is a valid multibyte character on the current code
page. Otherwise, the function returns zero.

_ismbslead, _ismbstrail
See also

Syntax
#include <mbstring.h>
int _ismbslead(const unsigned char *s1, const unsigned char *s2);
int _ismbstrail(const unsigned char *s1, const unsigned char *s2);
Description
The _ismbslead and _ismbstrail functions test the s1 argument to determine whether the s2 argument is
a pointer to the lead byte or the trail byte. The test is case-sensitive.

Return Value
The _ismbslead and _ismbstrail routines return -1 if s2 points to a lead byte or a trail byte, respectively.
If the test is false, the routines return zero.

isprint, iswprint, _ismbcprint
Example Portability

Syntax
#include <ctype.h>
int isprint(int c);
int iswprint(wint_t c);

#include <mbstring.h>
int _ismbcprint(unsigned int c);
Description
Tests for printing character.
isprint is a macro that classifies ASCII-coded integer values by table lookup. The macro is affected by
the current locale's LC_CTYPE category. For the default C locale, c is a printing character including the
blank space (' ').
You can make this macro available as a function by undefining (#undef) it.

Return Value
isprint returns nonzero if c is a printing character.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

ispunct, iswpunct, _ismbcpunct
Example Portability

Syntax
#include <ctype.h>
int ispunct(int c);
int iswpunct(wint_t c);

#include <mbstring.h>
int _ismbcpunct(unsigned int c);
Description
Tests for punctuation character.
ispunct is a macro that classifies ASCII-coded integer values by table lookup. The macro is affected by
the current locale's LC_CTYPE category. For the default C locale, c is any printing character that is
neither an alphanumeric nor a blank space (' ').
You can make this macro available as a function by undefining (#undef) it.

Return Value
ispunct returns nonzero if c is a punctuation character.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

isspace, iswspace, _ismbcspace
Example Portability

Syntax
#include <ctype.h>
int isspace(int c);
int iswspace(wint_t c);

#include <mbstring.h>
int _ismbcspace(unsigned int c);
Description
Tests for space character.
isspace is a macro that classifies ASCII-coded integer values by table lookup. The macro is affected by
the current locale's LC_CTYPE category.
You can make this macro available as a function by undefining (#undef) it.

Return Value
isspace returns nonzero if c is a space, tab, carriage return, new line, vertical tab, formfeed (0x09 to
0x0D, 0x20), or any other locale-defined space character.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

isupper, iswupper, _ismbcupper
Example Portability

Syntax
#include <ctype.h>
int isupper(int c);
int iswupper(wint_t c);

#include <mbstring.h>
int _ismbcupper(unsigned int c);
Description
 Tests for uppercase character.
isupper is a macro that classifies ASCII-coded integer values by table lookup. The macro is affected by
the current locale's LC_CTYPE category. For the default C locale, c is an uppercase letter (A to Z).
You can make this macro available as a function by undefining (#undef) it.

Return Value
isupper returns nonzero if c is an uppercase letter.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

isxdigit, iswxdigit
Example Portability

Syntax
#include <ctype.h>
int isxdigit(int c);
int iswxdigit(wint_t c);
Description
Tests for hexadecimal character.
isxdigit is a macro that classifies ASCII-coded integer values by table lookup. The macro is affected by
the current locale's LC_CTYPE category.
You can make this macro available as a function by undefining (#undef) it.

Return Value
isxdigit returns nonzero if c is a hexadecimal digit (0 to 9, A to F, a to f) or any other hexadecimal digit
defined by the locale.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

itoa, _itow
See also Example Portability

Syntax
#include <stdlib.h>
char *itoa(int value, char *string, int radix);
wchar_t *_itow(int value, wchar_t *string, int radix);
Description
Converts an integer to a string.
itoa converts value to a null-terminated string and stores the result in string. With itoa, value is an
integer.
radix specifies the base to be used in converting value; it must be between 2 and 36, inclusive. If value
is negative and radix is 10, the first character of string is the minus sign (-).
Note: The space allocated for string must be large enough to hold the returned string, including the

terminating null character (\0). itoa can return up to 17 bytes.

Return Value
itoa returns a pointer to string.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

kbhit
See also Example Portability

Syntax
#include <conio.h>
int kbhit(void);
Description
Checks for currently available keystrokes.
kbhit checks to see if a keystroke is currently available. Any available keystrokes can be retrieved with
getch or getche.
Note: Do not use this function for Win32s or Win32 GUI applications.

Return Value
If a keystroke is available, kbhit returns a nonzero value. Otherwise, it returns 0.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

labs
See also Example Portability

Syntax
#include <math.h>
long labs(long int x);
Description
Gives long absolute value.
labs computes the absolute value of the parameter x.

Return Value
labs returns the absolute value of x.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

ldexp, ldexpl
See also Example Portability

Syntax
#include <math.h>
double ldexp(double x, int exp);
long double ldexpl(long double x, int exp);
Description
Calculates

lexpl is the long double version; it takes a long double argument for x and returns a long double result.

Return Value
On success, ldexp (or ldexpl) returns the value it calculated, . Error handling for these routines
can be modified through the functions _matherr and _matherrl.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

ldexp + + + + + + +
ldexpl + + + +

ldiv
See also Example Portability

Syntax
#include <stdlib.h>
ldiv_t ldiv(long int numer, long int denom);
Description
Divides two longs, returning quotient and remainder.
ldiv divides two longs and returns both the quotient and the remainder as an ldiv_t type. numer and
denom are the numerator and denominator, respectively.
The ldiv_t type is a structure of longs defined in stdlib.h as follows:
typedef struct {
 long int quot; /* quotient */
 long int rem; /* remainder */
 } ldiv_t;
Return Value
ldiv returns a structure whose elements are quot (the quotient) and rem (the remainder).

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + +

lfind
See also Example Portability

Syntax
#include <stdlib.h>
void *lfind(const void *key, const void *base, size_t *num, size_t width,
int (_USERENTRY *fcmp)(const void *, const void *));

Description
Performs a linear search.
lfind makes a linear search for the value of key in an array of sequential records. It uses a user-defined
comparison routine fcmp. The fcmp function must be used with the _USERENTRY calling convention.
The array is described as having *num records that are width bytes wide, and begins at the memory
location pointed to by base.

Return Value
lfind returns the address of the first entry in the table that matches the search key. If no match is found,
lfind returns NULL. The comparison routine must return 0 if *elem1 == *elem2, and nonzero otherwise
(elem1 and elem2 are its two parameters).

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

localeconv
See also Example Portability

Syntax
#include <locale.h>
struct lconv *localeconv(void);
Description
Queries the locale for numeric format.
This function provides information about the monetary and other numeric formats for the current locale.
The information is stored in a struct lconv type. The structure can only be modified by the setlocale.
Subsequent calls to localeconv will update the lconv structure.
The lconv structure is defined in locale.h. It contains the following fields:

Field Application
char *decimal_point; Decimal point used in nonmonetary formats. This can never be an

empty string.
char *thousands_sep; Separator used to group digits to the left of the decimal point. Not used

with monetary quantities.
char *grouping; Size of each group of digits. Not used with monetary quantities. See the

value listing table below.
char *int_curr_symbol; International monetary symbol in the current locale. The symbol format

is specified in the ISO 4217 Codes for the Representation of Currency
and Funds.

char *currency_symbol; Local monetary symbol for the current locale.
char *mon_decimal_point; Decimal point used to format monetary quantities.
char *mon_thousands_sep; Separator used to group digits to the left of the decimal point for

monetary quantities.
char *mon_grouping; Size of each group of digits used in monetary quantities. See the value

listing table below.
char *positive_sign; String indicating nonnegative monetary quantities.
char *negative_sign; String indicating negative monetary quantities.
char int_frac_digits; Number of digits after the decimal point that are to be displayed in an

internationally formatted monetary quantity.
char frac_digits; Number of digits after the decimal point that are to be displayed in a

formatted monetary quantity.
char p_cs_precedes; Set to 1 if currency_symbol precedes a nonnegative formatted monetary

quantity. If currency_symbol is after the quantity, it is set to 0.
char p_sep_by_space; Set to 1 if currency_symbol is to be separated from the nonnegative

formatted monetary quantity by a space. Set to 0 if there is no space
separation.

char n_cs_precedes; Set to 1 if currency_symbol precedes a negative formatted monetary
quantity. If currency_symbol is after the quantity, set to 0.

char n_sep_by_space; Set to 1 if currency_symbol is to be separated from the negative
formatted monetary quantity by a space. Set to 0 if there is no space
separation.

char p_sign_posn; Indicate where to position the positive sign in a nonnegative formatted
monetary quantity.

char n_sign_posn; Indicate where to position the positive sign in a negative formatted
monetary quantity.

Any of the above strings (except decimal_point) that is empty " " is not supported in the current locale.
The nonstring char elements are nonnegative numbers. Any nonstring char element that is set to
CHAR_MAX indicates that the element is not supported in the current locale.
The grouping and mon_grouping elements are set and interpreted as follows:

Value Meaning
CHAR_MAX No further grouping is to be performed.
0 The previous element is to be used repeatedly for the remainder of the digits.
any other integer Indicates how many digits make up the current group. The next element is read

to determine the size of the next group of digits before the current group.
The p_sign_posn and n_sign_posn elements are set and interpreted as follows:

Value Meaning
0 Use parantheses to surround the quantity and currency_symbol.
1 Sign string precedes the quantity and currency_symbol.
2 Sign string succeeds the quatity and currency_symbol.
3 Sign string immediately precedes the quantity and currency_symbol.
4 Sign string immediately succeeds the quantity and currency_symbol.

Return Value
Returns a pointer to the the filled-in structure of type struct lconv. The values in the structure will
change whenever setlocale modifies the LC_MONETARY or LC_NUMERIC categories.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + +

localtime
See also Example Portability

Syntax
#include <time.h>
struct tm *localtime(const time_t *timer);
Description
Converts date and time to a structure.
localtime accepts the address of a value returned by time and returns a pointer to the structure of type
tm containing the time elements. It corrects for the time zone and possible daylight saving time.
The global long variable _timezone contains the difference in seconds between GMT and local standard
time (in PST, _timezone is 8 x 60 x 60). The global variable daylight contains nonzero only if the
standard U.S. daylight saving time conversion should be applied. These values are set by tzset, not by
the user program directly.
This is the tm structure declaration from the time.h header file:
struct tm {
 int tm_sec;
 int tm_min;
 int tm_hour;
 int tm_mday;
 int tm_mon;
 int tm_year;
 int tm_wday;
 int tm_yday;
 int tm_isdst;
};
These quantities give the time on a 24-hour clock, day of month (1 to 31), month (0 to 11), weekday
(Sunday equals 0), year - 1900, day of year (0 to 365), and a flag that is nonzero if _daylight saving time
is in effect.

Return Value
localtime returns a pointer to the structure containing the time elements. This structure is a static that is
overwritten with each call.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

lock
See also Example Portability

Syntax
#include <io.h>
int lock(int handle, long offset, long length);
Description
Sets file-sharing locks. DOS users must be sure to load SHARE.EXE before using lock.
lock provides an interface to the operating system file-sharing mechanism.
A lock can be placed on arbitrary, nonoverlapping regions of any file. A program attempting to read or
write into a locked region will retry the operation three times. If all three retries fail, the call fails with an
error.

Return Value
lock returns 0 on success. On error, lock returns -1 and sets the global variable errno to
EACCES Locking violation

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

locking
See also Example Portability

Syntax
#include <io.h>
#include <sys\locking.h>
int locking(int handle, int cmd, long length);
Description
Sets or resets file-sharing locks. DOS users must be sure to load SHARE.EXE before using locking.
locking provides an interface to the operating system file-sharing mechanism. The file to be locked or
unlocked is the open file specified by handle. The region to be locked or unlocked starts at the current
file position, and is length bytes long.
Locks can be placed on arbitrary, nonoverlapping regions of any file. A program attempting to read or
write into a locked region will retry the operation three times. If all three retries fail, the call fails with an
error.
The cmd specifies the action to be taken (the values are defined in sys\locking.h):
LK_LOCK Lock the region. If the lock is unsuccessful, try once a second for 10 seconds before

giving up.
LK_RLCK Same as LK_LOCK.
LK_NBLCK Lock the region. If the lock if unsuccessful, give up immediately.
LK_NBRLCK Same as LK_NBLCK.
LK_UNLCK Unlock the region, which must have been previously locked.

Return Value
On successful operations, locking returns 0. Otherwise, it returns -1, and the global variable errno is set
to one of the following values:
EACCES File already locked or unlocked
EBADF Bad file number
EDEADLOCK File cannot be locked after 10 retries (cmd is LK_LOCK or LK_RLCK)
EINVAL Invalid cmd, or SHARE.EXE not loaded

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

log, logl
See also Example Portability

Syntax
#include <math.h>
double log(double x);
long double logl(long double x);
Description
Calculates the natural logarithm of x.
log calculates the natural logarithm of x.
logl is the long double version; it takes a long double argument and returns a long double result.
This function can be used with bcd and complex types.

Return Value
On success, log and logl return the value calculated, ln(x).
If the argument x passed to these functions is real and less than 0, the global variable errno is set to
EDOM Domain error

If x is 0, the functions return the value negative HUGE_VAL (log) or negative _LHUGE_VAL (logl), and
set errno to ERANGE. Error handling for these routines can be modified through the functions _matherr
and _matherrl.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

log + + + + + + +
logl + + + +

log10, log10l
See also Example Portability

Syntax
#include <math.h>
double log10(double x);
long double log10l(long double x);
Description
log10 calculates the base 10 logarithm of x.
log10l is the long double version; it takes a long double argument and returns a long double result.
This function can be used with bcd and complex types.

Return Value
On success, log10 (or log10l) returns the value calculated, .
If the argument x passed to these functions is real and less than 0, the global variable errno is set to
EDOM Domain error

If x is 0, these functions return the value negative HUGE_VAL (log10) or _LHUGE_VAL (log10l). Error
handling for these routines can be modified through the functions _matherr and _matherrl.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

log10 + + + + + + +
log10l + + + +

longjmp
See also Example Portability

Syntax
#include <setjmp.h>
void longjmp(jmp_buf jmpb, int retval);
Description
Performs nonlocal goto.
A call to longjmp restores the task state captured by the last call to setjmp with the argument jmpb. It
then returns in such a way that setjmp appears to have returned with the value retval.
A task state includes
Win 16 Win 32

All segment registers
CS, DS, ES, SS

No segment registers are saved

Register variables Register variables
DI and SI EBX, EDI, ESI
Stack pointer SP Stack pointer ESP
Frame pointer BP Frame pointer EBP
Flags Flags are not saved

A task state is complete enough that setjmp and longjmp can be used to implement co-routines.
setjmp must be called before longjmp. The routine that called setjmp and set up jmpb must still be active
and cannot have returned before the longjmp is called. If this happens, the results are unpredictable.
longjmp cannot pass the value 0; if 0 is passed in retval, longjmp will substitute 1.

DOS Users
You cannot use setjmp and longjmp for implementing co-routines if your program is overlaid. Normally,
setjmp and longjmp save and restore all the registers needed for co-routines, but the overlay manager
needs to keep track of stack contents and assumes there is only one stack. When you implement co-
routines, there are usually either two stacks or two partitions of one stack, and the overlay manager will
not track them properly.
You can have background tasks that run with their own stacks or sections of stack, but you must ensure
that the background tasks do not invoke any overlaid code, and you must not use the overlay versions
of setjmp or longjmp to switch to and from background.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

lowvideo
See also Example Portability

Syntax
#include <conio.h>
void lowvideo(void);
Description
Selects low-intensity characters.
lowvideo selects low-intensity characters by clearing the high-intensity bit of the currently selected
foreground color.
This function does not affect any characters currently onscreen. It affects only those characters
displayed by functions that perform text mode, direct console output after this function is called.
Note: Do not use this function for Win32s or Win32 GUI applications.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

_lrotl, _lrotr
See also Example Portability

Syntax
#include <stdlib.h>
unsigned long _lrotl(unsigned long val, int count);
unsigned long _lrotr(unsigned long val, int count);
Description
Rotates an unsigned long integer value to the left or right.
_Irotlrotates the given val to the left count bits. _lrotr rotates the given val to the right count bits.

Return Value

The functions return the rotated integer:
_lrotl returns the value of val left-rotated count bits.
_lrotr returns the value of val right-rotated count bits.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

lsearch
See also Example Portability

Syntax
#include <stdlib.h>
void *lsearch(const void *key, void *base, size_t *num, size_t width, int
(_USERENTRY *fcmp)(const void *, const void *));

Description
 Performs a linear search.
lsearch searches a table for information. Because this is a linear search, the table entries do not need to
be sorted before a call to lsearch. If the item that key points to is not in the table, lsearch appends that
item to the table.

base points to the base (0th element) of the search table.
num points to an integer containing the number of entries in the table.
width contains the number of bytes in each entry.
key points to the item to be searched for (the search key).

The function fcmp must be used with the _USERENTRY calling convention.
The argument fcmp points to a user-written comparison routine, that compares two items and returns a
value based on the comparison.
To search the table, lsearch makes repeated calls to the routine whose address is passed in fcmp.
On each call to the comparison routine, lsearch passes two arguments:

key a pointer to the item being searched for
elem pointer to the element of base being compared.

fcmp is free to interpret the search key and the table entries in any way.

Return Value
lsearch returns the address of the first entry in the table that matches the search key.
If the search key is not identical to *elem, fcmp returns a nonzero integer. If the search key is identical to
*elem, fcmp returns 0.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

lseek
See also Example Portability

Syntax
#include <io.h>
long lseek(int handle, long offset, int fromwhere);
Description
Moves file pointer.
lseek sets the file pointer associated with handle to a new position offset bytes beyond the file location
given by fromwhere. fromwhere must be one of the following symbolic constants (defined in io.h):

fromwhere File location
SEEK_CUR Current file pointer position
SEEK_END End-of-file
SEEK_SET File beginning

Return Value
lseek returns the offset of the pointer's new position measured in bytes from the file beginning. lseek
returns -1L on error, and the global variable errno is set to one of the following values:
EBADF Bad file handle
EINVAL Invalid argument
ESPIPE Illegal seek on device

On devices incapable of seeking (such as terminals and printers), the return value is undefined.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

_ltoa, _ltow, _i64toa, _ui64toa, _i64tow, _ui64tow
See also Example Portability

Syntax
#include <stdlib.h>
char *_ltoa(long value, char *string, int radix);
char *_i64toa(__int64 value, char *strP, int radix);
char *_ui64toa(unsigned __int64 value, char *strP, int radix);

// The following are Unicode versions
wchar_t *_ltow(long value, wchar_t *string, int radix);
wchar_t *_i64tow(__int64 value, wchar_t *strP, int radix);
wchar_t *_ui64tow(unsigned __int64 value, wchar_t *strP, int radix);
Description
Converts a long to a string.
_ltoa converts value to a null-terminated string and stores the result in string. value is a long integer.
radix specifies the base to be used in converting value; it must be between 2 and 36, inclusive. If value
is negative and radix is 10, the first character of string is the minus sign (-).
Note: The space allocated for string must be large enough to hold the returned string, including the

terminating null character (\0). _ltoa can return up to 33 bytes.

Return Value
_ltoa returns a pointer to string.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

_makepath, _wmakepath
See also Example Portability

Syntax
#include <stdlib.h>
void _makepath(char *path, const char *drive, const char *dir, const char
*name, const char *ext);

void _wmakepath(wchar_t *path, const wchar_t *drive, const wchar_t *dir,
const wchar_t *name, const wchar_t *ext);

Description
Builds a path from component parts.
_makepath makes a path name from its components. The new path name is
 X:\DIR\SUBDIR\NAME.EXT
where
drive = X:
dir = \DIR\SUBDIR\
name = NAME
ext = .EXT

If drive is empty or NULL, no drive is inserted in the path name. If it is missing a trailing colon (:), a colon
is inserted in the path name.
If dir is empty or NULL, no directory is inserted in the path name. If it is missing a trailing slash (\ or /), a
backslash is inserted in the path name.
If name is empty or NULL, no file name is inserted in the path name.
If ext is empty or NULL, no extension is inserted in the path name. If it is missing a leading period (.), a
period is inserted in the path name.
_makepath assumes there is enough space in path for the constructed path name. The maximum
constructed length is _MAX_PATH. _MAX_PATH is defined in stdlib.h.
_makepath and _splitpath are invertible; if you split a given path with _splitpath, then merge the
resultant components with _makepath, you end up with path.

Return Value
None

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

malloc
See also Example Portability

Syntax
#include <stdlib.h> or #include<alloc.h>
void *malloc(size_t size);
Description
malloc allocates a block of size bytes from the memory heap. It allows a program to allocate memory
explicitly as it's needed, and in the exact amounts needed.
Allocates main memory.The heap is used for dynamic allocation of variable-sized blocks of memory.
Many data structures, for example, trees and lists, naturally employ heap memory allocation.
For 16-bit programs, all the space between the end of the data segment and the top of the program
stack is available for use in the small data models, except for a small margin immediately before the top
of the stack. This margin is intended to allow the application some room to make the stack larger, in
addition to a small amount needed by DOS.
In the large data models, all the space beyond the program stack to the end of available memory is
available for the heap.

Return Value
On success, malloc returns a pointer to the newly allocated block of memory. If not enough space exists
for the new block, it returns NULL. The contents of the block are left unchanged. If the argument size ==
0, malloc returns NULL.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

_matherr, _matherrl
Example Portability

Syntax
#include <math.h>
int _matherr(struct _exception *e);
int _matherrl(struct _exceptionl *e);
Description
User-modifiable math error handler.
_matherr is called when an error is generated by the math library.
_matherrl is the long double version; it is called when an error is generated by the long double math
functions.
_matherr and _matherrl each serve as a user hook (a function that can be customized by the user) that
you can replace by writing your own math error-handling routine.
_matherr and _matherrl are useful for information on trapping domain and range errors caused by the
math functions. They do not trap floating-point exceptions, such as division by zero. See signal for
information on trapping such errors.
You can define your own _matherr or _matherrl routine to be a custom error handler (such as one that
catches and resolves certain types of errors); this customized function overrides the default version in
the C library. The customized _matherr or _matherrl should return 0 if it fails to resolve the error, or
nonzero if the error is resolved. When _matherr or _matherrl return nonzero, no error message is printed
and the global variable errno is not changed.
Here are the _exception and _exceptionl structures (defined in math.h):
struct _exception {
 int type;
 char *name;
 double arg1, arg2, retval;
};

struct _exceptionl {
 int type;
 char *name;
 long double arg1, arg2, retval;
};
The members of the _exception and _exceptionl structures are shown in the following table:

Member What It Is (Or Represents)
type The type of mathematical error that occurred; an enum type defined in the typedef

_mexcep (see definition after this list).
name A pointer to a null-terminated string holding the name of the math library function that

resulted in an error.
arg1, arg2 The arguments (passed to the function that name points to) caused the error; if only one

argument was passed to the function, it is stored in arg1.
retval The default return value for _matherr (or _matherrl); you can modify this value.

The typedef _mexcep, also defined in math.h, enumerates the following symbolic constants
representing possible mathematical errors:

Symbolic Constant Mathematical Error
DOMAIN Argument was not in domain of function, such as log(-1).
SING Argument would result in a singularity, such as pow(0, -2).

OVERFLOW Argument would produce a function result greater than DBL_MAX (or
LDBL_MAX), such as exp(1000).

UNDERFLOW Argument would produce a function result less than DBL_MIN (or
LDBL_MIN), such as exp(-1000).

TLOSS Argument would produce function result with total loss of significant digits,
such as sin(10e70).

The macros DBL_MAX, DBL_MIN, LDBL_MAX, and LDBL_MIN are defined in float.h
The source code to the default _matherr and _matherrl is on the Borland C++ distribution disks.
The UNIX-style _matherr and _matherrl default behavior (printing a message and terminating) is not
ANSI compatible. If you want a UNIX-style version of these routines, use MATHERR.C and
MATHERRL.C provided on the Borland C++ distribution disks.

Return Value
The default return value for _matherr and _matherrl is 1 if the error is UNDERFLOW or TLOSS, 0
otherwise. _matherr and _matherrl can also modify e -> retval, which propagates back to the original
caller.
When _matherr and _matherrl return 0 (indicating that they were not able to resolve the error), the
global variable errno is set to 0 and an error message is printed.
When _matherr and _matherrl return nonzero (indicating that they were able to resolve the error), the
global variable errno is not set and no messages are printed.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

max
See also Example Portability

Syntax
#include <stdlib.h> /* macro version */
(type) max(a, b);
template <class T> T max(T t1, T t2); // C++ only
Description
Returns the larger of two values.
The C macro and the C++ template function compare two values and return the larger of the two. Both
arguments and the routine declaration must be of the same type.

Return Value
max returns the larger of two values.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

_mbbtype
See also

Syntax
#include <mbstring.h>
int _mbbtype(unsigned char ch, int mode);
Description
The _mbbtype function inspects the multibyte argument, character ch, to determine whether it is a
single-byte character, or whether ch is the leadbyte or trailing byte in a multibyte character. The
_mbbtype function can determine whether ch is an invalid character.

Return Value
The value that _mbbtype returns is one of the following manifest constants, defined in mbctype.h. The
return value depends on the value of ch and the test which you want performed on ch.
Value of mode Value of ch Test performed Return value
 mode != 1 Single byte Valid single or lead byte _MBC_SINGLE
 mode != 1 Leadbyte Valid single or lead byte _MBC_LEAD
 mode = 1 Trailbyte Valid single or trail byte _MBC_TRAIL
Any value Any value Valid character _MBC_ILLEGAL

_mbccpy

Syntax
#include <mbstring.h>
void _mbccpy(unsigned char *dest, unsigned char *src);
Description
The _mbccpy function copies a multibyte character from src to dest. The _mbccpy function makes an
implicit call to _ismbblead so that the src pointer references a lead byte. If src doesn’t reference a lead
byte, no copy is performed.

Return Value
None.

mblen
See also Example Portability

Syntax
#include <stdlib.h>
int mblen(const char *s, size_t n);
Description
Determines the length of a multibyte character.
If s is not null, mblen determines the number of bytes in the multibyte character pointed to by s. The
maximum number of bytes examined is specified by n.
The behavior of mblen is affected by the setting of LC_CTYPE category of the current locale.

Return Value
If s is null, mblen returns a nonzero value if multibyte characters have state-dependent encodings.
Otherwise, mblen returns 0.
If s is not null, mblen returns 0 if s points to the null character, and -1 if the next n bytes do not comprise
a valid multibyte character; the number of bytes that comprise a valid multibyte character.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + +

_mbsbtype
See also

Syntax
#include <mbstring.h>
int _mbsbtype(const unsigned char *str, size_t nbyte);
Description
The nbyte argument specifies the number of bytes from the start of the zero-based string.
The _mbsbtype function inspects the argument str to determine whether the byte at the position
specified by nbyte is a single-byte character, or whether it is the leadbyte or trailing byte in a multibyte
character. The _mbsbtype function can determine whether the byte pointed at is an invalid character or
a NULL byte.
Any invalid bytes in str before nbyte are ignored.

Return Value
The value that _mbsbtype returns is one of the following manifest constants, defined in mbctype.h.
Type of byte found Return value

Single byte _MBC_SINGLE
Leadbyte _MBC_LEAD
Trailbyte _MBC_TRAIL
Invalid character or byte _MBC_ILLEGAL

_mbsnbcmp
See also

Syntax
#include <mbstring.h>
int _mbsnbcmp(const unsigned char *s1, const unsigned char s2, size_t
maxlen);

Description
_mbsnbcmp makes an case-sensitive comparison of s1 and s2 for no more than maxlen bytes. It starts
with the first byte in each string and continues with subsequent bytes until the corresponding bytes differ
or until it has examined maxlen bytes.
_mbsnbcmp is case sensitive.
_mbsnbcmp is not affected by locale.
_mbsnbcmp compares bytes based on the current multibyte code page.

Return Value
_mbsnbcmp returns an integer value based on the result of comparing s1 (or part of it) to s2 (or part of

it):
< 0 if s1 is less than s2
== 0 if s1 is the same as s2
> 0 if s1 is greater than s2

_mbsnbcoll, _mbsnbicoll
See also

Syntax
#include <mbstring.h>
int _mbsnbcoll(const unsigned char *s1, const unsigned char *s2, maxlen);
int _mbsnbicoll(const unsigned char *s1, const unsigned char *s2, maxlen);
Description
_mbsnbicoll is the case-insensitive version of _mbsnbcoll.
These functions collate the strings specified by arguments s1 and s2. The collation order is determined
by lexicographic order as specified by the current multibyte code page. At most, maxlen number of bytes
are collated.
Note: The lexicographic order is not always the same as the order of characters in the character set.
If the last byte in s1 or s2 is a leadbyte, it is not compared.

Return Value
Each of these functions return an integer value based on the result of comparing s1 (or part of it) to s2

(or part of it):
< 0 if s1 is less than s2
== 0 if s1 is the same as s2
> 0 if s1 is greater than s2

On error, each of these functions returns _NLSCMPERROR.

_mbsnbcpy
See also

Syntax
#include <mbstring.h>
unsigned char *_mbsnbcpy(unsigned char *dest, unsigned char *src, size_t
maxlen);

Description
The _mbsnbcpy function copies at most maxlen number of characters from the src buffer to the dest
buffer. The dest buffer is null terminated after the copy.
It is the user’s responsibility to be sure that dest is large enough to allow the copy. An improper buffer
size can result in memory corruption.

Return Value
The functon returns dest.

_mbsnbicmp
See also

Syntax
#include <mbstring.h>
int _mbsnbicmp(const unsigned char *s1, const unsigned char s2, size_t
maxlen);

Description
_mbsnbicmp ignores case while making a comparison of s1 and s2 for no more than maxlen bytes. It
starts with the first byte in each string and continues with subsequent bytes until the corresponding
bytes differ or until it has examined maxlen bytes.
_mbsnbicmp is not case sensitive.
_mbsnbicmp is not affected by locale.
_mbsnbicmp compares bytes based on the current multibyte code page.

Return Value
_mbsnbicmp returns an integer value based on the result of comparing s1 (or part of it) to s2 (or part of

it):
< 0 if s1 is less than s2
== 0 if s1 is the same as s2
> 0 if s1 is greater than s2

_mbsnbset
See also

Syntax
#include <mbstring.h>
unsigned char *_mbsnbset(unsigned char str, unsigned int ch, size_t maxlen);
Description
_mbsnbset sets at most maxlen number of bytes in the string str to the character ch. The argument ch
can be a single or multibyte character.
The function quits if the terminating null character is found before maxlen is reached. If ch is a multibyte
character that cannot be accomodated at the end of str, the last character in str is set to a blank
character.

Return Value
strset returns str.

_mbsninc, _strninc, _wcsninc
See also

Syntax
#include <mbstring.h>
unsigned char *_mbsninc(const unsigned char *str, size_t num);
Description
These functions should be accessed throught the portable macro, _tcsninc, defined in tchar.h.
The functions increment the character array str by num number of characters.

Return value
The functions return a pointer to the resized character string specified by the argument str.

_mbsnbcnt, _mbsnccnt, _strncnt, _wcsncnt
See also

Syntax
#include <mbstring.h>
size_t _mbsnbcnt(const unsigned char * str, size_t nmbc);
size_t _mbsnccnt(const unsigned char * str, size_t nbyte);
Description
If _MBCS is defined:

· _mbsnbcnt is mapped to the portable macro _tcsnbcnt
· _mbsnccnt is mapped to the portable macro _tcsnccnt
If _UNICODE is defined:

· both _mbsnbcnt and _mbsnccnt are mapped to the _wcsncnt macro
If neither _MBCS nor _UNICODE are defined.

· _tcsnbcnt and _tcsnccnt are mapped to the _strncnt macro
_strncnt is the single-byte version of these functions.
_wcsncnt is the wide-character version of these functions.
_strncnt and _wcsncnt are available only for generic-text mappings. They should not be used directly.
_mbsnbcnt examines the first nmbc multibyte characters of the str argument. The function returns the
number of bytes found in the those characters.
_mbsnccnt examines the first nmbc bytes of the str argument. The function returns the number of
characters found in those bytes. If NULL is encountered in the second byte of a multibyte character, the
whole character is considered NULL and will not be included in the return value.
Each of the functions ends its examination of the str argument if NULL is reached before the specified
number of characters or bytes is examined.
If str has fewer than the specified number of characters or bytes, the function return the number of
characters or bytes found in str.

Return Value
_mbsnbcnt returns the number of bytes found.
_mbsnccnt returns the number of characters found.
If nmbc or nbyte are less than zero, the functions return 0.

_mbsspnp, _strspnp, _wcsspnp
See also Example

Syntax
#include <mbstring.h>
unsigned char *_mbsspnp(const unsigned char *s1, const unsigned char *s2);
Description
Use the portable macro, _tcsspnp, defined in tchar.h, to access these functions.
Each of these functions search for the first character in s1 that is not contained in s2.

Return Value
The functions return a pointer to the first character in s1 that is not found in the character set for s2.
If every character from s1 is found in s2, each of the functions return NULL.

mbstowcs
See also Example Portability

Syntax
#include <stdlib.h>
size_t mbstowcs(wchar_t *pwcs, const char *s, size_t n);
Description
Converts a multibyte string to a wchar_t array.
The function converts the multibyte string s into the array pointed to by pwcs. No more than n values are
stored in the array. If an invalid multibyte sequence is encountered, mbstowcs returns (size_t) -1.
The pwcs array will not be terminated with a zero value if mbstowcs returns n.

Return Value
If an invalid multibyte sequence is encountered, mbstowcs returns (size_t) -1. Otherwise, the function
returns the number of array elements modified, not including the terminating code, if any.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + +

mbtowc
See also Example Portability

Syntax
#include <stdlib.h>
int mbtowc(wchar_t *pwc, const char *s, size_t n);
Description
Converts a multibyte character to wchar_t code.
If s is not null, mbtowc determines the number of bytes that comprise the multibyte character pointed to
by s. Next, mbtowc determines the value of the type wchar_t that corresponds to that multibyte
character. If there is a successful match between wchar_t and the multibyte character, and pwc is not
null, the wchar_t value is stored in the array pointed to by pwc. At most n characters are examined.

Return Value
When s points to an invalid multibyte character, -1 is returned. When s points to the null character, 0 is
returned. Otherwise, mbtowc returns the number of bytes that comprise the converted multibyte
character.
The return value never exceeds MB_CUR_MAX or the value of n.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + +

memccpy, _fmemccpy
See also Example Portability

Syntax
#include <mem.h>
void *memccpy(void *dest, const void *src, int c, size_t n);
void far * far _fmemccpy(void far *dest, const void far *src, int c, size_t
n)

Description
Copies a block of n bytes.
memccpy is available on UNIX System V systems.
memccpy copies a block of n bytes from src to dest. The copying stops as soon as either of the
following occurs:

The character c is first copied into dest.
n bytes have been copied into dest.

Return Value
memccpy returns a pointer to the byte in dest immediately following c, if c was copied; otherwise,
memccpy returns NULL.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

memccpy + + + + +
_fmemccpy + +

memchr, _wmemchr, _fmemchr
Example Portability

Syntax
#include <mem.h>
void *memchr(const void *s, int c, size_t n); /* C
only */

void far * far _fmemchr(const void far *s, int c, size_t n); /* C
only */

const void *memchr(const void *s, int c, size_t n); // C++
only

void *memchr(void *s, int c, size_t n); // C++
only

const void far * far _fmemchr(const void far *s, int c, size_t n); //C++
only

void far * far _fmemchr(void far *s, int c, size_t n); // C++ only
void *memchr(const void *s, int c, size_t n);
void * _wmemchr(void *s, int c, size_t n); // Unicode version
void far * far _fmemchr(const void far *s, int c, size_t n);
Description
Searches n bytes for character c.
memchr is available on UNIX System V systems.
memchr searches the first n bytes of the block pointed to by s for character c.

Return Value
On success, memchr returns a pointer to the first occurrence of c in s; otherwise, it returns NULL.
Note: If you are using the intrinsic version of these functions, the case of n = 0 will return NULL.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

memchr + + + + + + +
_fmemchr + +

memcmp, _fmemcmp
See also Example Portability

Syntax
#include <mem.h>
int memcmp(const void *s1, const void *s2, size_t n);
int far _fmemcmp(const void far *s1, const void far *s2, size_t n)
Description
Compares two blocks for a length of exactly n bytes.
memcmp is available on UNIX System V systems.
memcmp compares the first n bytes of the blocks s1 and s2 as unsigned chars.

Return Value
Because it compares bytes as unsigned chars, memcmp returns a value that is

< 0 if s1 is less than s2
= 0 if s1 is the same as s2
> 0 if s1 is greater than s2

For example,
 memcmp("\xFF", "\x7F", 1)
returns a value greater than 0.
Note: If you are using the intrinsic version of these functions, the case of n = 0 will return NULL.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

memcmp + + + + + + +
_fmemcmp + +

memcpy, _wmemcpy, _fmemcpy
See also Example Portability

Syntax
#include <mem.h>
void *memcpy(void *dest, const void *src, size_t n);
void *_wmemcpy(void *dest, const void *src, size_t n);
void far *far _fmemcpy(void far *dest, const void far *src, size_t n);
Description
Copies a block of n bytes.
memcpy is available on UNIX System V systems.
memcpy copies a block of n bytes from src to dest. If src and dest overlap, the behavior of memcpy is
undefined.

Return Value
memcpy returns dest.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

memcpy + + + + + + +
_fmemcpy + +

memicmp, _fmemicmp
See also Example Portability

Syntax
#include <mem.h>
int memicmp(const void *s1, const void *s2, size_t n);
int far _fmemicmp(const void far *s1, const void far *s2, size_t n)
Description
Compares n bytes of two character arrays, ignoring case.
memicmp is available on UNIX System V systems.
memicmp compares the first n bytes of the blocks s1 and s2, ignoring character case (upper or lower).

Return Value
memicmp returns a value that is

< 0 if s1 is less than s2
= 0 if s1 is the same as s2
> 0 if s1 is greater than s2

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

memicmp + + + + +
_fmemicmp + +

memmove, _fmemmove
See also Example Portability

Syntax
#include <mem.h>
void *memmove(void *dest, const void *src, size_t n);
void far * far _fmemmove (void far *dest, const void far *src, size_t n)
Description
Copies a block of n bytes.
memmove copies a block of n bytes from src to dest. Even when the source and destination blocks
overlap, bytes in the overlapping locations are copied correctly.
_fmemmove is the far version.

Return Value
memmove and _fmemmove return dest.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

memmove + + + + + + +
_fmemmove + +

memset, _wmemset, _fmemset
See also Example Portability

Syntax
#include <mem.h>
void *memset(void *s, int c, size_t n);
void *_wmemset(void *s, int c, size_t n);
void far * far _fmemset (void far *s, int c, size_t n)
Description
Sets n bytes of a block of memory to byte c.
memset sets the first n bytes of the array s to the character c.

Return Value
memset returns s.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

memset + + + + + + +
_fmemset + +

min
See also Example Portability

Syntax
#include <stdlib.h> /* macro version */
(type) min(a, b);
template <class T> T min(T t1, T t2); // C++ only
Description
Returns the smaller of two values.
The C macro and the C++ template function compare two values and return the smaller of the two. Both
arguments and the routine declaration must be of the same type.

Return Value
min returns the smaller of two values.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

mkdir, _wmkdir
See also Example Portability

Syntax
#include <dir.h>
int mkdir(const char *path);
int _wmkdir(const wchar_t *path);
Description
Creates a directory.
mkdir is available on UNIX, though it then takes an additional parameter.
mkdir creates a new directory from the given path name path.

Return Value
mkdir returns the value 0 if the new directory was created.
A return value of -1 indicates an error, and the global variable errno is set to one of the following values:
EACCES Permission denied
ENOENT No such file or directory

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

MK_FP
See also Example Portability

Syntax
#include <dos.h>
void far * MK_FP(unsigned seg, unsigned ofs);
Description
Makes a far pointer.
MK_FP is a macro that makes a far pointer from its component segment (seg) and offset (ofs) parts.

Return Value
MK_FP returns a far pointer.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ +

_mktemp, _wmktemp
Example Portability

Syntax
#include <dir.h>
char *_mktemp(char *template);
wchar_t *_wmktemp(wchar_t *template);
Description
Makes a unique file name.
_mktemp replaces the string pointed to by template with a unique file name and returns template.
template should be a null-terminated string with six trailing Xs. These Xs are replaced with a unique
collection of letters plus a period, so that there are two letters, a period, and three suffix letters in the
new file name.
Starting with AA.AAA, the new file name is assigned by looking up the name on the disk and avoiding
pre-existing names of the same format.

Return Value
If a unique name can be created and template is well-formed, _mktemp returns the address of the
template string. Otherwise, it returns null.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

mktime
See also Example Portability

Syntax
#include <time.h>
time_t mktime(struct tm *t);
Description
Converts time to calendar format.
Converts the time in the structure pointed to by t into a calendar time with the same format used by the
time function. The original values of the fields tm_sec, tm_min, tm_hour, tm_mday, and tm_mon are not
restricted to the ranges described in the tm structure. If the fields are not in their proper ranges, they are
adjusted. Values for fields tm_wday and tm_yday are computed after the other fields have been
adjusted.
The allowable range of calendar times is Jan 1 1970 00:00:00 to Jan 19 2038 03:14:07.

Return Value
On success, mktime returns calendar time as described above.
On error (if the calendar time cannot be represented), mktime returns -1.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + +

modf, modfl
See also Example Portability

Syntax
#include <math.h>
double modf(double x, double *ipart);
long double modfl(long double x, long double *ipart);
Description
Splits a double or long double into integer and fractional parts.
modf breaks the double x into two parts: the integer and the fraction. modf stores the integer in ipart
and returns the fraction.
modfl is the long double version; it takes long double arguments and returns a long double result.

Return Value
modf and modfl return the fractional part of x.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

modf + + + + + + +
modfl + + + +

movedata
See also Example Portability

Syntax
#include <mem.h>
void movedata(unsigned srcseg, unsigned srcoff, unsigned dstseg, unsigned
dstoff, size_t n);

Description
Copies n bytes.
movedata copies n bytes from the source address (srcseg:srcoff) to the destination address
(dstseg:dstoff). movedata provides a memory-model independent means for moving blocks of data.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ +

movmem, _fmovmem
See also Examples Portability

Syntax
#include <mem.h>
void movmem(const void *src, void *dest, unsigned length);
void _fmovmem(const void far *src, void far *dest, unsigned length);
Description
Moves a block of length bytes.
movmem moves a block of length bytes from src to dest. Even if the source and destination blocks
overlap, the move direction is chosen so that the data is always moved correctly.
_fmovmem is the far version.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ +

movetext
See also Example Portability

Syntax
#include <conio.h>
int movetext(int left, int top, int right, int bottom, int destleft, int
desttop);

Description
Copies text onscreen from one rectangle to another.
movetext copies the contents of the onscreen rectangle defined by left, top, right, and bottom to a new
rectangle of the same dimensions. The new rectangle's upper left corner is position (destleft, desttop).
All coordinates are absolute screen coordinates. Rectangles that overlap are moved correctly.
movetext is a text mode function performing direct video output.
Note: Do not use this function for Win32s or Win32 GUI applications.

Return Value
On success, movetext returns nonzero.
On error (for example, if it failed because you gave coordinates outside the range of the current screen
mode), movetext returns 0.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

_msize
See also Example Portability

Syntax
#include <malloc.h>
size_t _msize(void *block);
Description
Returns the size of a heap block.
_msize returns the size of the allocated heap block whose address is block. The block must have been
allocated with malloc, calloc, or realloc. The returned size can be larger than the number of bytes
originally requested when the block was allocated.

Return Value
_msize returns the size of the block in bytes.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

 + +

normvideo
See also Example Portability

Syntax
#include <conio.h>
void normvideo(void);
Description
Selects normal-intensity characters.
normvideo selects normal characters by returning the text attribute (foreground and background) to the
value it had when the program started.
This function does not affect any characters currently on the screen, only those displayed by functions
(such as cprintf) performing direct console output functions after normvideo is called.
Note: Do not use this function for Win32s or Win32 GUI applications.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

offsetof
Example Portability

Syntax
#include <stddef.h>
size_t offsetof(struct_type, struct_member);
Description
Gets the byte offset to a structure member.
offsetof is available only as a macro. The argument struct_type is a struct type. struct_member is any
element of the struct that can be accessed through the member selection operators or pointers.
If struct_member is a bit field, the result is undefined.
See also Chapter 2 in the Programmer's Guide for a discussion of the sizeof operator, memory
allocation, and alignment of structures.

Return Value
offsetof returns the number of bytes from the start of the structure to the start of the named structure
member.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

open, _wopen
See also Example Portability

Syntax
#include <fcntl.h>
#include<io.h>
int open(const char *path, int access [, unsigned mode]);
int _wopen(const wchar_t *path, int access [, unsigned mode]);
Description
Opens a file for reading or writing.
open opens the file specified by path, then prepares it for reading and/or writing as determined by the
value of access.
To create a file in a particular mode, you can either assign to the global variable _fmode or call open
with the O_CREAT and O_TRUNC options ORed with the translation mode desired.
For example, the call
 open("XMP",O_CREAT|O_TRUNC|O_BINARY,S_IREAD)
creates a binary-mode, read-only file named XMP, truncating its length to 0 bytes if it already existed.
For open, access is constructed by bitwise ORing flags from the following lists. Only one flag from the
first list can be used (and one must be used); the remaining flags can be used in any logical
combination.
These symbolic constants are defined in fcntl.h.
Read/Write Flags
O_RDONLY Open for reading only.
O_WRONLY Open for writing only.
O_RDWR Open for reading and writing.

Other Access Flags
O_NDELAY Not used; for UNIX compatibility.
O_APPEND If set, the file pointer will be set to the end of the file prior to each write.
O_CREAT If the file exists, this flag has no effect. If the file does not exist, the file is

created, and the bits of mode are used to set the file attribute bits as in chmod.
O_TRUNC If the file exists, its length is truncated to 0. The file attributes remain

unchanged.
O_EXCL Used only with O_CREAT. If the file already exists, an error is returned.
O_BINARY Can be given to explicitly open the file in binary mode.
O_TEXT Can be given to explicitly open the file in text mode.

If neither O_BINARY nor O_TEXT is given, the file is opened in the translation mode set by the global
variable _fmode.
If the O_CREAT flag is used in constructing access, you need to supply the mode argument to open
from the following symbolic constants defined in sys\stat.h.

Value Of Mode Access Permission
S_IWRITE Permission to write
S_IREAD Permission to read
S_IREAD|S_IWRITE Permission to read and write

Return Value
On success, open returns a nonnegative integer (the file handle). The file pointer, which marks the

current position in the file, is set to the beginning of the file.
On error, open returns -1 and the global variable errno is set to one of the following values:
EACCES Permission denied
EINVACC Invalid access code
EMFILE Too many open files
ENOENT No such file or directory

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

opendir, wopendir
See also Example Portability

Syntax
#include <dirent.h>
DIR *opendir(char *dirname);
wDIR *wopendir(const wchar_t *dirname);
Description
Opens a directory stream for reading.
opendir is available on POSIX-compliant UNIX systems.
The opendir function opens a directory stream for reading. The name of the directory to read is dirname.
The stream is set to read the first entry in the directory.
A directory stream is represented by the DIR structure, defined in dirent.h. This structure contains no
user-accessible fields. Multiple directory streams can be opened and read simultaneously. Directory
entries can be created or deleted while a directory stream is being read.
Use the readdir function to read successive entries from a directory stream. Use the closedir function to
remove a directory stream when it is no longer needed.

Return Value
On success, opendir returns a pointer to a directory stream that can be used in calls to readdir,
rewinddir, and closedir.
On errror (If the directory cannot be opened), it returns NULL and sets the global variable errno to
ENOENT The directory does not exist
ENOMEM Not enough memory to allocate a DIR object

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

_open_osfhandle
See also Example Portability

Syntax
#include <io.h>
int _open_osfhandle(long osfhandle, int flags);
Description
Associates file handles.
The _open_osfhandle function allocates a run-time file handle and sets it to point to the operating
system file handle specified by osfhandle.
The value flags is a bitwise OR combination of one or more of the following manifest constants (defined
in fcntl.h):
O_APPEND Repositions the file pointer to the end of the file before every write operation.
O_RDONLY Opens the file for reading only.
O_TEXT Opens the file in text (translated) mode.

Return Value
On success, _open_osfhandle returns a C run-time file handle. Otherwise, it returns -1.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

 +

outp
See also Example Portability

Syntax
#include <conio.h>
int outp(unsigned portid, int value);
Description
Outputs a byte to a hardware port.
outp is a macro that writes the low byte of value to the output port specified by portid.
If outp is called when conio.h has been included, it will be treated as a macro that expands to inline
code. If you don't include conio.h, or if you do include conio.h and #undef the macro outp, you'll get the
outp function.

Return Value
outp returns value.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ +

outport, outportb
See also Examples Portability

Syntax
#include <dos.h>
void outport(int portid, int value);
void outportb(int portid, unsigned char value);
Description
Outputs a word or byte to a hardware port.
outport works just like the 80x86 instruction OUT. It writes the low byte of the word given by value to the
output port specified by portid and writes the high byte of the word to portid +1.
outportb is a macro that writes the byte given by value to the output port specified by portid.
If you include dos.h,, outportb will be treated as a macro that expands to inline code. If you do not
include dos.h, or if you include dos.h and #undef the macro outportb, you will get the outportb function.

Return Value
None.

Examples
outport
outportb

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ +

outpw
See also Example Portability

Syntax
#include <conio.h>
unsigned outpw(unsigned portid, unsigned value);
Description
Outputs a word to a hardware port.
outpw is a macro that writes the 16-bit word given by value to the output port specified by portid. It writes
the low byte of value to portid, and the high byte of the word to portid +1, using a single 16-bit OUT
instruction.
If outpw is called when conio.h has been included, it will be treated as a macro that expands to inline
code. If you don't include conio.h, or if you do include conio.h and #undef the macro outpw, you'll get the
outpw function.

Return Value
outpw returns value.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ +

parsfnm
Example Portability

Syntax
#include <dos.h>
char *parsfnm(const char *cmdline, struct fcb *fcb, int opt);
Description
Parses file name.
parsfnm parses a string pointed to by cmdline for a file name. The string is normally a command line.
The file name is placed in a file control block (FCB) as a drive, file name, and extension. The FCB is
pointed to by fcb.
The opt parameter is the value documented for AL in the DOS parse system call. See your DOS
reference manuals under system call 0x29 for a description of the parsing operations performed on the
file name.

Return Value
On success, parsfnm returns a pointer to the next byte after the end of the file name.
On error (in parsing the file name), parsfnm returns null.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ +

_pclose
See also Example Portability

Syntax
#include <stdio.h>
int _pclose(FILE * stream);
Description
Waits for piped command to complete.
_pclose closes a pipe stream created by a previous call to _popen, and then waits for the associated
child command to complete.

Return Value
On success, _pclose returns the termination status of the child command. This is the same value as the
termination status returned by cwait, except that the high and low order bytes of the low word are
swapped.
On error, it returns -1.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

 + +

peek
See also Example Portability

Syntax
#include <dos.h>
int peek(unsigned segment, unsigned offset);
Description
Returns the word at memory location specified by segment:offset.
peek returns the word at the memory location segment:offset.
If peek is called when dos.h has been included, it is treated as a macro that expands to inline code. If
you don't include dos.h, or if you do include it and #undef peek, you'll get the function rather than the
macro.

Return Value
peek returns the word of data stored at the memory location segment:offset.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ +

peekb
See also Example Portability

Syntax
#include <dos.h>
char peekb(unsigned segment, unsigned offset);
Description
Returns the byte of memory specified by segment:offset.
peekb returns the byte at the memory location addressed by segment:offset.
If peekb is called when dos.h has been included, it is treated as a macro that expands to inline code. If
you don't include dos.h, or if you do include it and #undef peekb, you'll get the function rather than the
macro.

Return Value
peekb returns the byte of information stored at the memory location segment:offset.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ +

perror, _wperror
See also Example Portability

Syntax
#include <stdio.h>
void perror(const char *s);
void _wperror(const wchar_t *s);
Description
Prints a system error message.
perror prints to the stderr stream (normally the console) the system error message for the last library
routine that set the global variable errno.
It prints the argument s followed by a colon (:) and the message corresponding to the current value of
the global variable errno and finally a new line. The convention is to pass the file name of the program
as the argument string.
The array of error message strings is accessed through the global variable _sys_errlist. The global
variable errno can be used as an index into the array to find the string corresponding to the error
number. None of the strings include a newline character.
The global variable _sys_nerr contains the number of entries in the array.
The following messages are generated by perror:

Win 16 and Win 32 messages
Arg list too big
Attempted to remove current directory
Bad address
Bad file number
Block device required
Broken pipe
Cross-device link
Error 0
Exec format error
Executable file in use
File already exists
File too large
Illegal seek
Inappropriate I/O control operation
Input/output error
Interrupted function call
Invalid access code
Invalid argument Resource busy
Invalid dataResource temporarily unavailable
Invalid environment
Invalid format
Invalid function number
Invalid memory block address
Is a directory
Math argument
Memory arena trashed

Name too long
No child processes
No more files
No space left on device
No such device
No such device or address
No such file or directory
No such process
Not a directory
Not enough memory
Not same device
Operation not permitted
Path not found
Permission denied
Possible deadlock
Read-only file system
Resource busy
Resource temporarily unavailable
Result too large
Too many links
Too many open files

Win 32 only messages
Note: For Win32s or Win32 GUI applications, stderr must be redirected.
Bad address
Block device required
Broken pipe
Executable file in use
File too large
Illegal seek
Inappropriate I/O control
Input/output error
Interrupted function call
Is a directory
Name too long
No child processes
No space left on device
No such device or address
No such process
Not a directory
Operation not permitted
Possible deadlock
Read-only file system
Resource busy
Resource temporarily unavailable
Too many links

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + +

_pipe
See also Example Portability

Syntax
#include <fcntl.h>
#include<io.h>
int _pipe(int *handles, unsigned int size, int mode);
Description
Creates a read/write pipe.
The _pipe function creates an anonymous pipe that can be used to pass information between
processes. The pipe is opened for both reading and writing. Like a disk file, a pipe can be read from and
written to, but it does not have a name or permanent storage associated with it; data written to and from
the pipe exist only in a memory buffer managed by the operating system.
The read handle is returned to handles[0], and the write handle is returned to handles[1]. The program
can use these handles in subsequent calls to read, write, dup, dup2, or close. When all pipe handles are
closed, the pipe is destroyed.
The size of the internal pipe buffer is size. A recommended minimum value is 512 bytes.
The translation mode is specified by mode, as follows:
O_BINARY The pipe is opened in binary mode
O_TEXT The pipe is opened in text mode

If mode is zero, the translation mode is determined by the external variable _fmode.

Return Value
On success, _pipe returns 0 and returns the pipe handles to handles[0] and handles[1].
On error, it returns -1 and sets errno to one of the following values:
EMFILE Too many open files
ENOMEM Out of memory

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

 + +

poke
See also Example Portability

Syntax
#include <dos.h>
void poke(unsigned segment, unsigned offset, int value);
Description
Stores an integer value at a memory location given by segment:offset.
poke stores the integer value at the memory location segment:offset.
If this routine is called when dos.h has been included, it will be treated as a macro that expands to inline
code. If you don't include dos.h, or if you do include it and #undef poke, you'll get the function rather
than the macro.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ +

pokeb
See also Example Portability

Syntax
#include <dos.h>
void pokeb(unsigned segment, unsigned offset, char value);
Description
Stores a byte value at memory location segment:offset.
pokeb stores the byte value at the memory location segment:offset.
If this routine is called when dos.h has been included, it will be treated as a macro that expands to inline
code. If you don't include dos.h, or if you do include it and #undef pokeb, you'll get the function rather
than the macro.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ +

poly, polyl
Example Portability

Syntax
#include <math.h>
double poly(double x, int degree, double coeffs[]);
long double polyl(long double x, int degree, long double coeffs[]);
Description
Generates a polynomial from arguments.
poly generates a polynomial in x, of degree degree, with coefficients coeffs[0], coeffs[1], ...,
coeffs[degree]. For example, if n = 4, the generated polynomial is:

polyl is the long double version; it takes long double arguments and returns a long double result.

Return Value
poly and polyl return the value of the polynomial as evaluated for the given x.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

poly + + + + +
polyl + + + +

_popen, _wpopen
See also Example Portability

Syntax
#include <stdio.h>
FILE *_popen (const char *command, const char *mode);
FILE *_wpopen (const wchar_t *command, const wchar_t *mode);
Description
Creates a command processor pipe.
The _popen function creates a pipe to the command processor. The command processor is executed
asynchronously, and is passed the command line in command. The mode string specifies whether the
pipe is connected to the command processor's standard input or output, and whether the pipe is to be
opened in binary or text mode.
The mode string can take one of the following values:

Value Description
rt Read child command's standard output (text).
rb Read child command's standard output (binary).
wt Write to child command's standard input (text).
wb Write to child command's standard input (binary).

The terminating t or b is optional; if missing, the translation mode is determined by the external variable
_fmode.
Use the _pclose function to close the pipe and obtain the return code of the command.

Return Value
On success, _popen returns a FILE pointer that can be used to read the standard output of the
command, or to write to the standard input of the command, depending on the mode string.
On error, it returns NULL.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

 + +

pow, powl
See also Example Portability

Syntax
#include <math.h>
double pow(double x, double y);
long double powl(long double x, long double y);
Description
Calculates x to the power of y.
powl is the long double version; it takes long double arguments and returns a long double result.
This function can be used with bcd and complex types.

Return Value
On success, pow and powl return the value calculated of x to the power of y.
Sometimes the arguments passed to these functions produce results that overflow or are incalculable.
When the correct value would overflow, the functions return the value HUGE_VAL (pow) or
_LHUGE_VAL (powl). Results of excessively large magnitude can cause the global variable errno to be
set to
ERANGE Result out of range

If the argument x passed to pow or powl is real and less than 0, and y is not a whole number, or you call
pow(0,0), the global variable errno is set to
EDOM Domain error

Error handling for these functions can be modified through the functions _matherr and _matherrl.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

pow + + + + + + +
 powl + + + +

pow10, pow10l
See also Example Portability

Syntax
#include <math.h>
double pow10(int p);
long double pow10l(int p);
Description
Calculates 10 to the power of p.
pow10l is the long double version; it takes long double arguments and returns a long double result.

Return Value
On success, pow10 returns the value calculated, 10 to the power of p and pow10l returns a long
double result.
The result is actually calculated to long double accuracy. All arguments are valid, although some can
cause an underflow or overflow.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

pow10 + + + + +
pow10l + + + +

printf, wprintf
See also Example Portability

Syntax
#include <stdio.h>
int printf(const char *format[, argument, ...]);
int wprintf(const wchar_t *format[, argument, ...]);
Description
Writes formatted output to stdout.
The printf function:

Accepts a series of arguments
Appllies to each argument a format specifier contained in the format string *format
Outputs the formatted data (to the screen, a stream, stdout, or a string)

There must be enough arguments for the format. If there are not, the results will be unpredictable and
likely disastrous. Excess arguments (more than required by the format) are merely ignored.
Note: For Win32s or Win32 GUI applications, stdout must be redirected.

Return Value
On success, printf returns the number of bytes output.
On error, printf returns EOF.

More About printf
Unicode output format specifiers
Format String
Format Specifiers
Format Specifier Conventions
Flag Characters
Input-size Modifiers
Precision Specifiers
Type Characters
Width Specifiers

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + +

printf Format String
See also
The format string, present in each of the printf function calls, controls how each function will convert,
format, and print its arguments.
Note: There must be enough arguments for the format; if not, the results will be unpredictable and

possibly disastrous. Excess arguments (more than required by the format) are ignored.
The format string is a character string that contains two types of objects:

Plain characters are copied verbatim to the output stream.
Conversion specifications fetch arguments from the argument list and apply formatting to them.

Plain characters are simply copied verbatim to the output stream.
Conversion specifications fetch arguments from the argument list and apply formatting to them.

printf Format Specifiers
See also
print format specifiers have the following form
% [flags] [width] [.prec] [F|N|h|l|L] type_char
Each format specifier begins with the percent character (%).

After the % come the following optional specifiers, in this order:

Optional Format String Components
These are the general aspects of output formatting controlled by the optional characters, specifiers, and
modifiers in the format string:

Component Optional/Required What it Controls or Specifies
[flags] (Optional) Flag character(s) Output justification, numeric signs,

decimal points, trailing zeros, octal and hex prefixes
[width] (Optional) Width specifier Minimum number of characters to print,

padding with blanks or zeros
[prec] (Optional) Precision specifier Maximum number of characters to print;

for integers, minimum number of digits to print
[F|N|h|l|L] (Optional) Input size modifier Override default size of next input

argument:
N = near pointer
F = far pointer
h = short int
l = long
L = long double

type_char (Required) Conversion-type character

printf Flag characters
See also
They can appear in any order and combination.

Flag What it means
- Left-justifies the result, pads on the right with blanks. If not given, it right-justifies the result,

pads on the left with zeros or blanks.
+ Signed conversion results always begin with a plus (+) or minus (-) sign.
blank If value is nonnegative, the output begins with a blank instead of a plus; negative values still

begin with a minus.
Specifies that arg is to be converted using an alternate form.

Note: Plus (+) takes precedence over blank () if both are given.

Alternate Forms for printf Conversion
See also
If you use the # flag conversion character, it has the following effect on the argument (arg) being
converted:

Conversion character How # affects the argument
c s d iu No effect.

0 0 is prepended to a nonzero arg.

x X 0x (or 0X) is prepended to arg.

e E f The result always contains a decimal point even if no digits follow the
point. Normally, a decimal point appears in these results only if a digit
follows it.

g G Same as e and E, except that trailing zeros are not removed.

printf Width Specifiers
See also
The width specifier sets the minimum field width for an output value.
Width is specified in one of two ways:

directly, through a decimal digit string
indirectly, through an asterisk (*)

If you use an asterisk for the width specifier, the next argument in the call (which must be an int)
specifies the minimum output field width.
Nonexistent or small field widths do not cause truncation of a field. If the result of a conversion is wider
than the field width, the field is expanded to contain the conversion result.

Width specifierHow output width is affected
n At least n characters are printed. If the output value has less than n characters,

the output is padded with blanks (right-padded if - flag given, left-padded
otherwise).

0n At least n characters are printed. If the output value has less than n characters, it
is filled on the left with zeros.

* The argument list supplies the width specifier, which must precede the actual
argument being formatted.

printf Precision Specifiers
See also
The printf precision specifiers set the maximum number of characters (or minimum number of integer
digits) to print.
A printf precision specification always begins with a period (.) to separate it from any preceding width
specifier.
Then, like [width], precision is specified in one of two ways:

directly, through a decimal digit string
indirectly, through an asterisk (*)

If you use an * for the precision specifier, the next argument in the call (treated as an int) specifies the
precision.
If you use asterisks for the width or the precision, or for both, the width argument must immediately
follow the specifiers, followed by the precision argument, then the argument for the data to be
converted.

[.prec] How Output Precision Is Affected
(none) Precision set to default:

= 1 for d,i,o,u,x,X types
= 6 for e,E,f types
= All significant digits for g,G types
= Print to first null character for s types
= No effect on c types

.0 For d,i,o,u,x types, precision set to defaul
for e,E,f types, no decimal point is printed.

.n n characters or n decimal places are printed.
If the output value has more than n characters, the output might be truncated or
rounded. (Whether this happens depends on the type character.)

. The argument list supplies the precision specifier, which must precede the actual
argument being formatted.

No numeric characters will be output for a field (i.e., the field will be blank) if the following conditions are
all met:

you specify an explicit precision of 0
the format specifier for the field is one of the integer formats (d, i, o, u, or x)
the value to be printed is 0

How [.prec] Affects Conversion
Char Type Effect of [.prec] (.n) on Conversion
d Specifies that at least n digits are printed.
i If input argument has less than n digits,
o output value is left-padded x with zeros.
u If input argument has more than n digits,
x the output value is not truncated.
X

e Specifies that n characters are
E printed after the decimal point, and

f the last digit printed is rounded.

g Specifies that at most n significant
G digits are printed.

c Has no effect on the output.
s Specifies that no more than n characters are printed.

printf Conversion-Type Characters
See also
The information in this table is based on the assumption that no flag characters, width specifiers,
precision specifiers, or input-size modifiers were included in the format specifier.
Note: Certain conventions accompany some of these format specifiers.

Type Char Expected InputFormat of output
Numerics
d Integer signed decimal integer
i Integer signed decimal integer
o Integer unsigned octal integer
u Integer unsigned decimal integer
x Integer unsigned hexadecimal int (with a, b, c, d, e, f)
X Integer unsigned hexadecimal int (with A, B, C, D, E, F)
f Floating point signed value of the form [-]dddd.dddd.
e Floating point signed value of the form [-]d.dddd or e[+/-]ddd
g Floating point signed value in either e or f form, based on given value and

precision. Trailing zeros and the decimal point are printed if
necessary.

E Floating point Same as e; with E for exponent.
G Floating point Same as g; with E for exponent if e format used

Characters
c Character Single character
s String pointer Prints characters until a null-terminator is pressed or

precision is reached
% None Prints the % character

Pointers
n Pointer to int Stores (in the location pointed to by the input argument) a

count of the chars written so far.
p Pointer Prints the input argument as a pointer; format depends on

which memory model was used. It will be either
XXXX:YYYY or YYYY (offset only).

Infinite floating-point numbers are printed as +INF and -INF.

An IEEE Not-A-Number is printed as +NAN or -NAN.

printf Input-size Modifiers
See also
These modifiers determine how printf functions interpret the next input argument, arg[f].

Modifier Type of arg arg is interpreted as ...
F Pointer (p, s, A far pointer

N and n) A near pointer (Note: N can't be used with any conversion in
huge model.)

h d i o u x X A short int

l d i o u x X A long int
e E f g G A double

L e E f g G A long double
These modifiers affect how all the printf functions interpret the data type of the corresponding input
argument arg.
Both F and N reinterpret the input variable arg. Normally, the arg for a %p, %s, or %n conversion is a
pointer of the default size for the memory model.
h, l, and L override the default size of the numeric data input arguments. Neither h nor l affects character
(c,s) or pointer (p,n) types.

printf Format Specifier Conventions
See also
Certain conventions accompany some of the printf format specifiers for the following conversions:
- %e or %E
- %f
- %g or %G
- %x or %X
Note: Infinite floating point numbers are printed as +INF and -INF. An IEEE Not-a-Number is printed as

+NAN or -NAN.

%e or %E Conversions
See also
The argument is converted to match the style
[-] d.ddd...e[+/-]ddd
where:

one digit precedes the decimal point
the number of digits after the decimal point is equal to the precision.
the exponent always contains at least two digits

%f Conversions
See also
The argument is converted to decimal notation in the style
[-] ddd.ddd...
where the number of digits after the decimal point is equal to the precision (if a non-zero precision was
given).

%g or %G Conversions
See also
The argument is printed in style e, E or f, with the precision specifying the number of significant digits.
Trailing zeros are removed from the result, and a decimal point appears only if necessary.
The argument is printed in style e or f (with some restraints) if g is the conversion character. Style e is
used only if the exponent that results from the conversion is either greater than the precision or less
than -4.
The argument is printed in style E if G is the conversion character.

%x or %X Conversions
See also
For x conversions, the letters a, b, c, d, e, and f appear in the output.
For X conversions, the letters A, B, C, D, E, and F appear in the output.

...printf functions
The ...printf functions include
fprintf sends formatted output to a stream
printf sends formatted output to stdout
sprintf sends formatted output to a string
vfprintf sends formatted output to a stream, using an argument list
vprintf sends formatted output to stdout, using an argument list
vsprintf sends formatted output to a string, using an argument list

putc, putwc
See also Portability

Syntax
#include <stdio.h>
int putc(int c, FILE *stream);
wint_t putwc(wint_t c, FILE *stream);
Description
Outputs a character to a stream.
putc is a macro that outputs the character c to the stream given by stream.
Return Value
On success, putc returns the character printed, c.
On error, putc returns EOF.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

putch
See also Example Portability

Syntax
#include <conio.h>
int putch(int c);
Description
Outputs character to screen.
putch outputs the character c to the current text window. It is a text mode function performing direct
video output to the console. putch does not translate linefeed characters (\n) into
carriage-return/linefeed pairs.
The string is written either directly to screen memory or by way of a BIOS call, depending on the value
of the global variable _directvideo.
Note: This function should not be used in Win32s or Win32 GUI applications.

Return Value
On success, putch returns the character printed, c. On error, it returns EOF.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

putchar, putwchar
See also Example Portability

Syntax
#include <stdio.h>
int putchar(int c);
wint_t putwchar(wint_t c);
Description
putchar(c) is a macro defined to be putc(c, stdout).
Note: For Win32s or Win32 GUI applications, stdout must be redirected.

Return Value
On success, putchar returns the character c. On error, putchar returns EOF.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

putenv, _wputenv
See also Example Portability

Syntax
#include <stdlib.h>
int putenv(const char *name);
int _wputenv(const wchar_t *name);
Description
Adds string to current environment.
putenv accepts the string name and adds it to the environment of the current process. For example,
 putenv("PATH=C:\\BC");
putenv can also be used to modify an existing name. On DOS and OS/2, name must be uppercase. On
other systems, name can be either uppercase or lowercase. name must not include the equal sign (=).
You can set a variable to an empty value by specifying an empty string on the right side of the '=' sign.
putenv can be used only to modify the current program's environment. Once the program ends, the old
environment is restored. The environment of the current process is passed to child processes, including
any changes made by putenv.
Note that the string given to putenv must be static or global. Unpredictable results will occur if a local or
dynamic string given to putenv is used after the string memory is released.

Return Value
On success, putenv returns 0; on failure, -1.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

puts, _putws
See also Example Portability

Syntax
#include <stdio.h>
int puts(const char *s);
int _putws(const wchar_t *s);
Description
Outputs a string to stdout.
puts copies the null-terminated string s to the standard output stream stdout and appends a newline
character.
Note: For Win32s or Win32 GUI applications, stdout must be redirected.

Return Value
On successful completion, puts returns a nonnegative value. Otherwise, it returns a value of EOF.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + +

puttext
See also Example Portability

Syntax
#include <conio.h>
int puttext(int left, int top, int right, int bottom, void *source);
Description
Copies text from memory to the text mode screen.
puttext writes the contents of the memory area pointed to by source out to the onscreen rectangle
defined by left, top, right, and bottom.
All coordinates are absolute screen coordinates, not window-relative. The upper left corner is (1,1).
puttext places the contents of a memory area into the defined rectangle sequentially from left to right
and top to bottom.
Each position onscreen takes 2 bytes of memory: The first byte is the character in the cell, and the
second is the cell's video attribute. The space required for a rectangle w columns wide by h rows high is
defined as
bytes = (h rows) x (w columns) x 2
puttext is a text mode function performing direct video output.
Note: This function should not be used in Win32s or Win32 GUI applications.

Return Value
puttext returns a nonzero value if the operation succeeds; it returns 0 if it fails (for example, if you gave
coordinates outside the range of the current screen mode).

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

putw
See also Example Portability

Syntax
#include <stdio.h>
int putw(int w, FILE *stream);
Description
Puts an integer on a stream.
putw outputs the integer w to the given stream. putw neither expects nor causes special alignment in the
file.

Return Value
On success, putw returns the integer w. On error, putw returns EOF. Because EOF is a legitimate
integer, use ferror to detect errors with putw.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

qsort
See also Example Portability

Syntax
#include <stdlib.h>
void qsort(void *base, size_t nelem, size_t width, int (_USERENTRY *fcmp)
(const void *, const void *));

Description
Sorts using the quicksort algorithm.
qsort is an implementation of the "median of three" variant of the quicksort algorithm. qsort sorts the
entries in a table by repeatedly calling the user-defined comparison function pointed to by fcmp.

base points to the base (0th element) of the table to be sorted.
nelem is the number of entries in the table.
width is the size of each entry in the table, in bytes.

fcmp, the comparison function, must be used with the _USERENTRY calling convention.
fcmp accepts two arguments, elem1 and elem2, each a pointer to an entry in the table. The
comparison function compares each of the pointed-to items (*elem1 and *elem2), and returns an
integer based on the result of the comparison.

*elem1 < *elem2 fcmp returns an integer < 0
*elem1 == *elem2 fcmp returns 0
*elem1 > *elem2 fcmp returns an integer > 0

In the comparison, the less-than symbol (<) means the left element should appear before the right
element in the final, sorted sequence. Similarly, the greater-than (>) symbol means the left element
should appear after the right element in the final, sorted sequence.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

raise
See also Example Portability

Syntax
#include <signal.h>
int raise(int sig);
Description
Sends a software signal to the executing program.
raise sends a signal of type sig to the program. If the program has installed a signal handler for the
signal type specified by sig, that handler will be executed. If no handler has been installed, the default
action for that signal type will be taken.
The signal types currently defined in signal.h are noted here:

Signal Description
SIGABRT Abnormal termination
SIGFPE Bad floating-point operation
SIGILL Illegal instruction
SIGINT Ctrl-C interrupt
SIGSEGV Invalid access to storage
SIGTERM Request for program termination
SIGUSR1 User-defined signal
SIGUSR2 User-defined signal
SIGUSR3 User-defined signal
SIGBREAK Ctrl-Break interrupt

Note: SIGABRT isn't generated by Borland C++ during normal operation. It can, however, be generated
by abort, raise, or unhandled exceptions.

Return Value
On succes, raise returns 0.
On error it returns nonzero.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

rand
See also Example Portability

Syntax
#include <stdlib.h>
int rand(void);
Description
Random number generator.
rand uses a multiplicative congruential random number generator with period 2 to the 32nd power to
return successive pseudorandom numbers in the range from 0 to RAND_MAX. The symbolic constant
RAND_MAX is defined in stdlib.h.

Return Value
rand returns the generated pseudorandom number.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

random
See also Example Portability

Syntax
#include <stdlib.h>
int random(int num);
Description
Random number generator.
random returns a random number between 0 and (num-1). random(num) is a macro defined in stdlib.h.
Both num and the random number returned are integers.

Return Value
random returns a number between 0 and (num-1).

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

randomize
See also Example Portability

Syntax
#include <stdlib.h>
#include <time.h>
void randomize(void);
Description
Initializes random number generator.
randomize initializes the random number generator with a random value.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

read
See also Example Portability

Syntax
#include <io.h>
int read(int handle, void *buf, unsigned len);
Description
Reads from file.
read attempts to read len bytes from the file associated with handle into the buffer pointed to by buf.
For a file opened in text mode, read removes carriage returns and reports end-of-file when it reaches a
Ctrl-Z.
The file handle handle is obtained from a creat, open, dup, or dup2 call.
On disk files, read begins reading at the current file pointer. When the reading is complete, it increments
the file pointer by the number of bytes read. On devices, the bytes are read directly from the device.
The maximum number of bytes that read can read is UINT_MAX -1, because UINT_MAX is the same as
-1, the error return indicator. UINT_MAX is defined in limits.h.

Return Value
On successful completion, read returns an integer indicating the number of bytes placed in the buffer. If
the file was opened in text mode, read does not count carriage returns or Ctrl-Z characters in the number
of bytes read.
On end-of-file, read returns 0. On error, read returns -1 and sets the global variable errno to one of the
following values:
EACCES Permission denied
EBADF Bad file number

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

readdir, wreaddir
See also Example Portability

Syntax
#include <dirent.h>
struct dirent *readdir(DIR *dirp);
struct wdirent *wreaddir(wDIR *dirp)
Description
Reads the current entry from a directory stream.
readdir is available on POSIX-compliant UNIX systems.
The readdir function reads the current directory entry in the directory stream pointed to by dirp. The
directory stream is advanced to the next entry.
The readdir function returns a pointer to a dirent structure that is overwritten by each call to the function
on the same directory stream. The structure is not overwritten by a readdir call on a different directory
stream.
The dirent structure corresponds to a single directory entry. It is defined in dirent.h and contains (in
addition to other non-accessible members) the following member:
 char d_name[];
where d_name is an array of characters containing the null-terminated file name for the current directory
entry. The size of the array is indeterminate; use strlen to determine the length of the file name.
All valid directory entries are returned, including subdirectories, "." and ".." entries, system files, hidden
files, and volume labels. Unused or deleted directory entries are skipped.
A directory entry can be created or deleted while a directory stream is being read, but readdir might or
might not return the affected directory entry. Rewinding the directory with rewinddir or reopening it with
opendir ensures that readdir will reflect the current state of the directory.
The wreaddir function is the Unicode version of readdir. It uses the wdirent structure but otherwise is
similar to readdir.

Return Value
On success, readdir returns a pointer to the current directory entry for the directory stream.
If the end of the directory has been reached, or dirp does not refer to an open directory stream, readdir
returns NULL.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

realloc
See also Example Portability

Syntax
#include <stdlib.h>
void *realloc(void *block, size_t size);
Description
Reallocates main memory.
realloc attempts to shrink or expand the previously allocated block to size bytes. If size is zero, the
memory block is freed and NULL is returned. The block argument points to a memory block previously
obtained by calling malloc, calloc, or realloc. If block is a NULL pointer, realloc works just like malloc.
realloc adjusts the size of the allocated block to size, copying the contents to a new location if
necessary.

Return Value
realloc returns the address of the reallocated block, which can be different than the address of the
original block.
If the block cannot be reallocated, realloc returns NULL.
If the value of size is 0, the memory block is freed and realloc returns NULL.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

remove, _wremove
See also Example Portability

Syntax
#include <stdio.h>
int remove(const char *filename);
int _wremove(const wchar_t *filename);
Description
Removes a file.
remove deletes the file specified by filename. It is a macro that simply translates its call to a call to
unlink. If your file is open, be sure to close it before removing it.
The filename string can include a full path.

Return Value
On successful completion, remove returns 0. On error, it returns -1, and the global variable errno is set
to one of the following values:
EACCES Permission denied
ENOENT No such file or directory

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

rename, _wrename
Example Portability

Syntax
#include <stdio.h>
int rename(const char *oldname, const char *newname);
int _wrename(const wchar_t *oldname, const wchar_t *newname);
Description
Renames a file.
rename changes the name of a file from oldname to newname. If a drive specifier is given in newname,
the specifier must be the same as that given in oldname.
Directories in oldname and newname need not be the same, so rename can be used to move a file from
one directory to another. Wildcards are not allowed.
This function will fail (EEXIST) if either file is currently open in any process.

Return Value
On success, rename returns 0.
On error (if the file cannot be renamed), it returns -1 and the global variable errno is set to one of the
following values:
EEXIST Permission denied: file already exists.
ENOENT No such file or directory
ENOTSAM Not same device

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + +

rewind
See also Example Portability

Syntax
#include <stdio.h>
void rewind(FILE *stream);
Description
Repositions a file pointer to the beginning of a stream.
rewind(stream) is equivalent to fseek(stream, 0L, SEEK_SET), except that rewind clears the end-of-file
and error indicators, while fseek clears the end-of-file indicator only.
After rewind, the next operation on an update file can be either input or output.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

rewinddir, wrewinddir
See also Example Portability

Syntax
#include <dirent.h>
void rewinddir(DIR *dirp);
void wrewinddir(wDIR *dirp);
Description
Resets a directory stream to the first entry.
rewinddir is available on POSIX-compliant UNIX systems.
The rewinddir function repositions the directory stream dirp at the first entry in the directory. It also
ensures that the directory stream accurately reflects any directory entries that might have been created
or deleted since the last opendir or rewinddir on that directory stream.
wrewinddir is the Unicode version of rewinddir.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

_rmdir, _wrmdir
See also Example Portability

Syntax
#include <dir.h>
int _rmdir(const char *path);
int _wrmdir(const wchar_t *path);
Description
Removes a directory.
_rmdir deletes the directory whose path is given by path. The directory named by path

must be empty
must not be the current working directory
must not be the root directory

Return Value
_rmdir returns 0 if the directory is successfully deleted. A return value of -1 indicates an error, and the
global variable errno is set to one of the following values:
EACCES Permission denied
ENOENT Path or file function not found

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

rmtmp
See also Example Portability

Syntax
#include <stdio.h>
int rmtmp(void);
Description
Removes temporary files.
The rmtmp function closes and deletes all open temporary file streams, which were previously created
with tmpfile. The current directory must the same as when the files were created, or the files will not be
deleted.

Return Value
rmtmp returns the total number of temporary files it closed and deleted.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

_rotl, _rotr
See also Example Portability

Syntax
#include <stdlib.h>
unsigned short _rotl(unsigned short value, int count);
unsigned short _rotr(unsigned short value, int count);
Description
 Bit-rotates an unsigned short integer value to the left or right.
_rotl rotates the given value to the left count bits.
_rotr rotates the given value to the right count bits.

Return Value
_rotl, and _rotr return the rotated integer:

_rotl returns the value of value left-rotated count bits.
_rotr returns the value of value right-rotated count bits.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

_rtl_chmod, _wrtl_chmod
See also Example Portability

Syntax
#include <io.h>
int _rtl_chmod(const char *path, int func [, int attrib]);
int _wrtl_chmod(const wchar_t *path, int func, ...);
Description
Gets or sets file attributes.
Note: The _rtl_chmod function replaces _chmod which is obsolete
_rtl_chmod can either fetch or set file attributes. If func is 0, _rtl_chmod returns the current attributes for
the file. If func is 1, the attribute is set to attrib.
attrib can be one of the following symbolic constants (defined in dos.h):
FA_RDONLY Read-only attribute
FA_HIDDEN Hidden file
FA_SYSTEM System file
FA_LABEL Volume label
FA_DIREC Directory
FA_ARCH Archive

Return Value
On success, _rtl_chmod returns the file attribute word.
On error, it returns a value of -1 and sets the global variable errno to one of the following values:
ENOENT Path or filename not found
EACCES Permission denied

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

_rtl_close
See also Example Portability

Syntax
#include <io.h>
int _rtl_close(int handle);
Description
Closes a file.
Note: This function replaces _close which is obsolete
The _rtl_close function closes the file associated with handle, a file handle obtained from a call to creat,
creatnew, creattemp, dup, dup2, open, _rtl_creat, or _rtl_open.
It does not write a Ctrl-Z character at the end of the file. If you want to terminate the file with a Ctrl-Z, you
must explicitly output one.

Return Value
On success, _rtl_close returns 0.
On error (if it fails because handle is not the handle of a valid, open file), _rtl_close returns a value of -1
and the global variable errno is set to
EBADF Bad file number

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

_rtl_creat, _wrtl_creat
See also Example Portability

Syntax
#include <io.h>
int _rtl_creat(const char *path, int attrib);
int _wrtl_creat(const wchar_t *path, int attrib);
Description
Creates a new file or overwrites an existing one.
Note: The _rtl_creat function replaces _creat which is obsolete
_rtl_creat opens the file specified by path. The file is always opened in binary mode. Upon successful
file creation, the file pointer is set to the beginning of the file. The file is opened for both reading and
writing.
If the file already exists its size is reset to 0. (This is essentially the same as deleting the file and
creating a new file with the same name.)
The attrib argument is an ORed combination of one or more of the following constants (defined in
dos.h):
FA_RDONLY Read-only attribute
FA_HIDDEN Hidden file
FA_SYSTEM System file

Return Value
On success, _rtl_creat returns the new file handle (a non-negative integer).
On error, it returns -1 and sets the global variable errno to one of the following values:
EACCES Permission denied
EMFILE Too many open files
ENOENT Path or file name not found

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

_rtl_heapwalk
See also Example Portability

Syntax
#include <malloc.h>
int _rtl_heapwalk(_HEAPINFO *hi);
Description
Inspects the heap node by node.
Note: This function replaces _heapwalk which is obsolete.
_rtl_heapwalk assumes the heap is correct. Use _heapchk to verify the heap before using
_rtl_heapwalk. _HEAPOK is returned with the last block on the heap. _HEAPEND will be returned on
the next call to _rtl_heapwalk.
_rtl_heapwalk receives a pointer to a structure of type _HEAPINFO (declared in malloc.h).
For the first call to _rtl_heapwalk, set the hi._pentry field to NULL. _rtl_heapwalk returns with hi._pentry
containing the address of the first block.
hi._size holds the size of the block in bytes.
hi._useflag is a flag that is set to _USEDENTRY if the block is currently in use. If the block is free,

hi._useflag is set to _FREEENTRY.

Return Value
This function returns one of the following values:
_HEAPBADNODE A corrupted heap block has been found
_HEAPBADPTR The _pentry field does not point to a valid heap block
_HEAPEMPTY No heap exists
_HEAPEND The end of the heap has been reached
_HEAPOK The _heapinfo block contains valid information about the next heap block

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

 + +

_rtl_open, _wrtl_open
See also Example Portability

Syntax
#include <io.h>
int _rtl_open(const char *filename, int oflags);
int _wrtl_open(const wchar_t *path, int oflags);
Description
Opens a file for reading or writing.
Note: The _rtl_open function replaces _open which is obsolete.
_rtl_open opens the file specified by filename, then prepares it for reading or writing, as determined by
the value of oflags. The file is always opened in binary mode.
oflags uses the flags from the following two lists. Only one flag from List 1 can be used (and one must
be used) and the flags in List 2 can be used in any logical combination.

List 1: Read/write flags
O_RDONLY Open for reading.
O_WRONLY Open for writing.
O_RDWR Open for reading and writing.

The following additional values can be included in oflags (using an OR operation):

List 2: Other access flags
O_NOINHERIT The file is not passed to child programs.
SH_COMPAT Allow other opens with SH_COMPAT. All other openings of a file with the

SH_COMPAT flag must be opened using SH_COMPAT flag. You can request a
file open that uses SH_COMPAT logically OR’ed with some other flag (for
example, SH_COMPAT | SH_DENWR is allowed). The call will fail if the file has
already been opened in any other shared mode.

SH_DENYRW Only the current handle can have access to the file.
SH_DENWR Allow only reads from any other open to the file.
SH_DENYRD Allow only writes from any other open to the file.
SH_DENYNO Allow other shared opens to the file, but not other SH_COMPAT opens.

Note: These symbolic constants are defined in fcntl.h and share.h.
Only one of the SH_DENYxx values can be included in a single _rtl_open routine. These file-sharing
attributes are in addition to any locking performed on the files.
The maximum number of simultaneously open files is defined by HANDLE_MAX.

Return Value
On success:_rtl_open returns a non-negative integer (the file handle). The file pointer, which marks the
current position in the file, is set to the beginning of the file.
On error, it returns -1 and sets the global variable errno to one of the following values:
EACCES Permission denied
EINVACC Invalid access code
EMFILE Too many open files
ENOENT Path or file not found

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

_rtl_read
See also Example Portability

Syntax
#include <dos.h>
int _rtl_read(int handle, void *buf, unsigned len);
Description
Reads from file.
Note: This function replaces _read which is obsolete.
This function reads len bytes from the file associated with handle into the buffer pointed to by buf. When
a file is opened in text mode, _rtl_read does not remove carriage returns.
The argument handle is a file handle obtained from a creat, open, dup, or dup2 call.
On disk files, _rtl_read begins reading at the current file pointer. When the reading is complete, it
increments the file pointer by the number of bytes read. On devices, the bytes are read directly from the
device.
The maximum number of bytes it can read is UINT_MAX -1 (because UINT_MAX is the same as -1, the
error return indicator). UINT_MAX is defined in limits.h.

Return Value
On success, _rtl_read returns either

a positive integer, indicating the number of bytes placed in the buffer
zero, indicating end-of-file

On error, it returns -1 and sets the global variable errno to one of the following values:
EACCES Permission denied
EBADF Bad file number

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

_rtl_write
See also Example Portability

Syntax
#include <io.h>
int _rtl_write(int handle void *buf unsigned len);
Description
Writes to a file.
Note: This function replaces _write which is obsolete.
_rtl_write attempts to write len bytes from the buffer pointed to by buf to the file associated with handle.
The maximum number of bytes that _rtl_write can write is UINT_MAX -1 (because UINT_MAX is the
same as -1), which is the error return indicator for _rtl_write. UINT_MAX is defined in limits.h. _rtl_write
does not translate a linefeed character (LF) to a CR/LF pair because all its files are binary files.
If the number of bytes actually written is less than that requested the condition should be considered an
error and probably indicates a full disk.
For disk files, writing always proceeds from the current file pointer. On devices, bytes are directly sent to
the device.
For files opened with the O_APPEND option, the file pointer is not positioned to EOF before writing the
data.

Return Value
On success, _rtl_write returns number of bytes written.
On error, it returns -1 and sets the global variable errno to one of the following values:
EACCES Permission denied
EBADF Bad file number

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

scanf, wscanf
See also Example Portability

Syntax
#include <stdio.h>
int scanf(const char *format[, address, ...]);
int wscanf(const wchar_t *format[, address, ...]);
Description
Scans and formats input from the stdin stream.
Note: For Win32s or Win32 GUI applications, stdin must be redirected.
The scanf function:

scans a series of input fields one character at a time
formats each field according to a corresponding format specifier passed in the format string

*format.
vsscanf scans and formats input from a string, using an argument list

There must be one format specifier and address for each input field.
scanf might stop scanning a particular field before it reaches the normal end-of-field (whitespace)
character, or it might terminate entirely. For details about why this might happen, see When ...scanf
Stops Scanning.
Warning: scanf often leads to unexpected results if you diverge from an expected pattern. You must

provide information that tells scanf how to synchronize at the end of a line.
The combination of gets or fgets followed by sscanf is safe and easy, and therefore recommended over
scanf.

Return Value
On success, scanf returns the number of input fields successfully scanned, converted, and stored. The
return value does not include scanned fields that were not stored.
On error:

if no fields were stored, scanf returns 0.
if scanf attempts to read at end-of-file or at end-of-string, it returns EOF.

More About scanf
Unicode input format specifiers
Argument-type Modifiers
Assignment Suppression
Format Specifiers
Format Specifier Conventions
Format String
Input Fields
Pointer-size Modifiers
Type Characters
Width Specifiers
When ...scanf Functions Stop Scanning

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + +

The scanf Format String
See also
The format string controls how each ...scanf function scans, converts, and stores its input fields.
The format string is a character string that contains three types of objects:

whitespace characters
non-whitespace characters
format specifiers

Whitespace Characters
The whitespace characters are blank, tab (\t) or newline (\n).

If a ...scanf function encounters a whitespace character in the format string, it reads, but does not store,
all consecutive whitespace characters up to the next non-whitespace character in the input.
Trailing whitespace is left unread (including a newline), unless explicitly matched in the format string.

Non-whitespace Characters
The non-whitespace characters are all other ASCII characters except the percent sign (%).
If a ...scanf function encounters a non-whitespace character in the format string, it will read, but not
store, a matching non-whitespace character.

Format Specifiers
The format specifiers direct the ...scanf functions to read and convert characters from the input field into
specific types of values, then store them in the locations given by the address arguments.
Warning: Each format specifier must have an address argument. If there are more format specs than

addresses, the results are unpredictable and likely disastrous.
Excess address arguments (more than required by the format) are ignored.

scanf Format Specifiers
See also
In ...scanf format strings, format specifiers have the following form:
% [*] [width] [F|N] [h|l|L] type_char
Each format specifier begins with the percent character (%).

After the % come the following, in this order:

Component Optional/Required What It Is/Does
[*] (Optional) Assignment-suppression character. Suppresses

assignment of the next input field.
[width] (Optional) Width specifier. pecifies maximum number of characters

to read; fewer characters might be read if the ...scanf
function encounters a whitespace or unconvertible
character.

[F|N] (Optional) Pointer size modifier. Overrides default size of address
argument:
N = near pointer
F = far pointer

[h|l|L] (Optional) Argument-type modifier. Overrides default type of address
argument:
h = short int
l = long int, if type_char specifies integer

conversion
l = double, if type_char specifies floating-point

conversion
L = long double, (valid only with floating-point

conversion)
type_char (Required) Type character

Type Characters
See also
The information in this table is based on the assumption that no optional characters, specifiers, or
modifiers (*, width, or size) were included in the format specifier.
Note: Certain conventions accompany some of these format specifiers.

Type Expected input Type of argument
Numerics
d Decimal integer Pointer to int (int *arg)
D Decimal integer Pointer to long (long *arg)
e,E Floating point Pointer to float (float *arg)
f Floating point Pointer to float (float *arg)
g,G Floating point Pointer to float (float *arg)
o Octal integer Pointer to int (int *arg)
O Octal integer Pointer to long (long *arg)
i Decimal, octal, or Pointer to int (int *arg)

hexadecimal integer
I Decimal, octal, or Pointer to long (long *arg)

hexadecimal integer
u Unsigned decimal integer Pointer to unsigned int (unsigned int *arg)
U Unsigned decimal integer Pointer to unsigned long (unsigned long *arg)
x Hexadecimal integer Pointer to int (int *arg)
X Hexadecimal integer Pointer to int (int *arg)
Characters
s Character string Pointer to array of chars (char arg[])
c Character Pointer to char (char *arg) if a field width is given

along with the c-type character (such as %5c)
 Pointer to array of W chars (char arg[W])
% % character No conversion done; the % is stored

Pointers
n Pointer to int (int *arg). The number of characters read successfully up to

%n is stored in this int.
p Hexadecimal form Pointer to an object (far* or near*)

YYYY:ZZZZ or ZZZZ %p conversions default to the pointer size native to the
memory model

Input Fields for Scanf Functions
See also
In a ...scanf function, any one of the following is an input field:

all characters up to (but not including) the next whitespace character
all characters up to the first one that can't be converted under the current format specifier (such

as an 8 or 9 under octal format)
up to n characters, where n is the specified field width

Assignment-suppression Character
See also
The assignment-suppression character is an asterisk (*), not to be confused with the C indirection
(pointer) operator.
If the asterisk follows the percent sign (%) in a format specifier, the next input field will be scanned but it
won't be assigned to the next address argument.
The suppressed input data is assumed to be of the type specified by the type character that follows the
asterisk character.

Width Specifiers
See also
The width specifier (n), a decimal integer, controls the maximum number of characters to be read from
the current input field.
Up to n characters are read, converted, and stored in the current address argument.
If the input field contains fewer than n characters, the ...scanf function reads all the characters in the
field, then proceeds with the next field and format specifier.
The success of literal matches and suppressed assignments is not directly determinable.
If the ...scanf function encounters a whitespace or non-convertible character before it reads "width"
characters, it:

reads, converts, and stores the characters read so far, then
attends to the next format specifier.

A non-convertible character is one that can't be converted according to the given format (8 or 9 when the
format is octal, J or K when the format is hexadecimal or decimal, etc.).

Pointer-size and Argument-type Modifiers
See also
These modifiers affect how ...scanf functions interpret the corresponding address argument arg[f].

Pointer-size Modifiers
Pointer-size modifiers override the default or declared size of arg.
Modifier arg Interpreted As...

F Far pointer
N Near pointer (Can't be used with any conversion in huge model)

Argument-type Modifiers
Argument-type modifiers indicate which type of the following input data is to be used (h = short, l =
long, L = long double).
The input data is converted to the specified version, and the arg for that input data should point to an
object of corresponding size.
Modifier For This Type Convert Input to...

h d i o u x short int; store in short object
D I O U X (No effect)
e f c s n p (No effect)

l d i o u x long int; store in long object
e f g double; store in double object
D I O U X (No effect)
c s n p (No effect)

L e f g long double; store in long double object
(all others) (No effect)

Format Specifier Conventions
See also
Certain conventions accompany some of the ...scanf format specifiers for the following conversions:
single character (%c)
character array (%[W]c)
string (%s)
floating-point (%e, %E, %f, %g, and %G)
unsigned (%d, %i, %o, %x, %D, %I, %O, %X, %c, %n)
search sets(%[...], %[^...])

Single Character Conversion (%c)
See also
This specification reads the next character, including a whitespace character.
To skip one whitespace character and read the next non-whitespace character, use %1s.

Character Array Conversion (%[W]c)
[W] = width specification

The address argument is a pointer to an array of characters (char arg[W]).

The array consists of W elements.

String Conversion (%s)
See also
The address argument is a pointer to an array of characters (char arg[]).

The array size must be at least (n+1) bytes, where n = the length of string s (in characters).
A space or newline character terminates the input field.
A null terminator is automatically appended to the string and stored as the last element in the array.

Floating-point Conversions (%e, %E, %f, %g, and %G)
See also
Floating-point numbers in the input field must conform to the following generic format:
[+/-] ddddddddd [.] dddd [E|e] [+/-] ddd
where [item] indicates that item is optional, and ddd represents digits (decimal, octal, or
hexadecimal).
In addition, +INF, -INF, +NAN, and -NAN are recognized as floating-point numbers. The sign (+ or -) and
capitalization are required.

Unsigned Conversions (%d, %i, %o, %x, %D, %I, %O, %X, %c, and %n)
See also
A pointer to unsigned character, unsigned integer, or unsigned long can be used in any conversion
where a pointer to a character, integer, or long is allowed.

Search Set Conversion (%[search_set])
See also Examples
The set of characters surrounded by brackets can be substituted for the s-type character.
The address argument is a pointer to an array of characters (char arg[]).

These brackets surround a set of characters that define a search set of possible characters making up
the string (the input field).
If the first character in the brackets is a caret (^), the search set is inverted to include all ASCII
characters except those between the brackets.
(Normally, a caret will be included in the inverted search set unless explicitly listed somewhere after the
first caret.)
The input field is a string not delimited by whitespace. ...scanf reads the corresponding input field up to
the first character it reaches that does not appear in the search set (or in the inverted search set).

Rules covering search set ranges
1. The character prior to the hyphen (-) must be lexically less than the one after it.
2. The hyphen must not be the first or last character in the set. (If it is first or last, it is considered to just

be the hyphen character, not a range definer.)
3. The characters on either side of the hyphen must be the ends of the range and not part of some other

range.

Examples
%[abcd] Searches the input field for any of the characters a, b, c, and d

%[^abcd] Searches the input field for any characters except a, b, c, and d

You can also use a range facility shortcut [<first>-<last>] to define a range of letters or numerals
in the search set.

Examples
To catch all decimal digits, you could define the search set with the explicit search set:
%[0123456789] or with the range shortcut: %[0-9]
To catch alphanumeric characters, you could use the following shortcuts:
%[A-Z] Catches all uppercase letters

%[0-9A-Za-z] Catches all decimal digits and all letters

%[A-FT-Z] Catches all uppercase letters from A through F and from T through Z.

When ...scanf Functions Stop Scanning
See also
A ...scanf function might stop scanning a particular input field before reaching the normal field-end
character (whitespace), or it might terminate entirely.

Stop and Skip to Next Input Field
...scanf functions stop scanning and storing the current input field and proceed to the next one if any of
the following occurs:

An assignment-suppression character (*) appears after the % in the format specifier. The current
input field is scanned but not stored.

width characters have been read.
The next character read can't be converted under the current format (for example, an A when the

format is decimal).
The next character in the input field does not appear in the search set (or does appear in an

inverted search set).
When scanf stops scanning the current input field for one of these reasons, it assumes that the next
character is unread and is either

the first character of the following input field, or
the first character in a subsequent read operation on the input.

Terminate
...scanf functions will terminate under the following circumstances:
1. The next character in the input field conflicts with a corresponding non-whitespace character in the

format string.
2. The next character in the input field is EOF.
3. The format string has been exhausted.
If a character sequence that is not part of a format specifier occurs in the format string, it must match the
current sequence of characters in the input field.
...scanf functions will scan but not store the matched characters.
When a conflicting character occurs, it remains in the input field as if the ...scanf function never read it.

...scanf functions
The ..scanf functions include
fscanf scans and formats input from a stream
scanf scans and formats input from stdin
sscanf scans and formats input from a string
vfscanf scans and formats input from a stream, using an argument list
vscanf scans and formats input from stdin using an argument list
vsscanf scans and formats input from a string, using an argument list

_searchenv, _wsearchenv
See also Example Portability

Syntax
#include <stdlib.h>
void _searchenv(const char *file, const char *varname, char *buf);
void _wsearchenv(const wchar_t *file, const wchar_t *varname, wchar_t *buf);
Description
Searches an environment path for a file.
_searchenv attempts to locate file, searching along the path specified by the operating system
environment variable varname. Typical environment variables that contain paths are PATH, LIB, and
INCLUDE.
_searchenv searches for the file in the current directory of the current drive first. If the file is not found
there, the environment variable varname is fetched, and each directory in the path it specifies is
searched in turn until the file is found, or the path is exhausted.
When the file is located, the full path name is stored in the buffer pointed to by buf. This string can be
used in a call to access the file (for example, with fopen or exec...). The buffer is assumed to be large
enough to store any possible file name. If the file cannot be successfully located, an empty string
(consisting of only a null character) will be stored at buf.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

searchpath, wsearchpath
See also Example Portability

Syntax
#include <dir.h>
char *searchpath(const char *file);
wchar_t *wsearchpath(const wchar_t *file);

Description
Searches the operating system path for a file.
searchpath attempts to locate file, searching along the operating system path, which is the PATH=...
string in the environment. A pointer to the complete path-name string is returned as the function value.
searchpath searches for the file in the current directory of the current drive first. If the file is not found
there, the PATH environment variable is fetched, and each directory in the path is searched in turn until
the file is found, or the path is exhausted.
When the file is located, a string is returned containing the full path name. This string can be used in a
call to access the file (for example, with fopen or exec...).
The string returned is located in a static buffer and is overwritten on each subsequent call to searchpath.

Return Value
searchpath returns a pointer to a file name string if the file is successfully located; otherwise, searchpath
returns null.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

_searchstr, _wsearchstr
See also Example Portability

Syntax
#include <stdlib.h>
void _searchstr(const char *file, const char *ipath, char *buf);
void _wsearchstr(const wchar_t *file, const wchar_t *ipath,wchar_t
*pathname);

Description
Searches a list of directories for a file.
_searchstr attempts to locate file, searching along the path specified by the string ipath.
_searchstr searches for the file in the current directory of the current drive first. If the file is not found
there, each directory in ipath is searched in turn until the file is found, or the path is exhausted. The
directories in ipath must be separated by semicolons.
When the file is located, the full path name is stored in the buffer pointed by by buf. This string can be
used in a call to access the file (for example, with fopen or exec...). The buffer is assumed to be large
enough to store any possible file name. The constant _MAX_PATH defined in stdlib.h, is the size of the
largest file name. If the file cannot be successfully located, an empty string (consisting of only a null
character) will be stored at buf.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

segread
See also Example Portability

Syntax
#include <dos.h>
void segread(struct SREGS *segp);
Description
Reads segment registers.
segread places the current values of the segment registers into the structure pointed to by segp.
This call is intended for use with intdosx and int86x.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ +

setbuf
See also Example Portability

Syntax
#include <stdio.h>
void setbuf(FILE *stream, char *buf);
Description
Assigns buffering to a stream.
setbuf causes the buffer buf to be used for I/O buffering instead of an automatically allocated buffer. It is
used after stream has been opened.
If buf is null, I/O will be unbuffered; otherwise, it will be fully buffered. The buffer must be BUFSIZ bytes
long (specified in stdio.h).
stdin and stdout are unbuffered if they are not redirected; otherwise, they are fully buffered. setbuf can
be used to change the buffering style used.
Unbuffered means that characters written to a stream are immediately output to the file or device, while
buffered means that the characters are accumulated and written as a block.
setbuf produces unpredictable results unless it is called immediately after opening stream or after a call
to fseek. Calling setbuf after stream has been unbuffered is legal and will not cause problems.
A common cause for error is to allocate the buffer as an automatic (local) variable and then fail to close
the file before returning from the function where the buffer was declared.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

setcbrk
See also Example Portability

Syntax
#include <dos.h>
int setcbrk(int cbrkvalue);
Description
Sets control-break setting.
setcbrk uses the DOS system call 0x33 to turn control-break checking on or off.
value = 0 Turns checking off (check only during I/O to console, printer, or communications

devices).
value = 1 Turns checking on (check at every system call).

Return Value
setcbrk returns cbrkvalue, the value passed.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ +

_setcursortype
Example Portability

Syntax
#include <conio.h>
void _setcursortype(int cur_t);
Description
Selects cursor appearance.
Sets the cursor type to
_NOCURSOR Turns off the cursor
_NORMALCURSOR Normal underscore cursor
_SOLIDCURSOR Solid block cursor

Note: Do not use this function for Win32s or Win32 GUI applications.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

setdta
See also Example Portability

Syntax
#include <dos.h>
void setdta(char far *dta);
Description
Sets disk-transfer address.
setdta changes the current setting of the DOS disk-transfer address (DTA) to the value given by dta.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ +

setjmp
See also Example Portability

Syntax
#include <setjmp.h>
int setjmp(jmp_buf jmpb);
Description
Sets up for nonlocal goto.
setjmp captures the complete task state in jmpb and returns 0.
A later call to longjmp with jmpb restores the captured task state and returns in such a way that setjmp
appears to have returned with the value val.
A task state includes

Win 16 Win 32
All segment registers No segment registers are saved
CS, DS, ES, SS
Register variables Register variables
DI and SI EBX, EDI, ESI
Stack pointer SP Stack pointer ESP
Frame pointer BP Frame pointer EBP
Flags Flags are not saved

A task state is complete enough that setjmp can be used to implement co-routines.
setjmp must be called before longjmp. The routine that calls setjmp and sets up jmpb must still be active
and cannot have returned before the longjmp is called. If it has returned, the results are unpredictable.
setjmp is useful for dealing with errors and exceptions encountered in a low-level subroutine of a
program.

DOS Users
You cannot use setjmp and longjmp for implementing co-routines if your program is overlaid. Normally,
setjmp and longjmp save and restore all the registers needed for co-routines, but the overlay manager
needs to keep track of stack contents and assumes there is only one stack. When you implement co-
routines there are usually either two stacks or two partitions of one stack, and the overlay manager will
not track them properly.
You can have background tasks that run with their own stacks or sections of stack, but you must ensure
that the background tasks do not invoke any overlaid code, and you must not use the overlay versions
of setjmp or longjmp to switch to and from background. When you avoid using overlay code or support
routines, the existence of the background stacks does not disturb the overlay manager.

Return Value
setjmp returns 0 when it is initially called. If the return is from a call to longjmp, setjmp returns a nonzero
value (as in the example).

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

setlocale, _wsetlocale
See also Example Portability

Syntax
#include <locale.h>
char *setlocale(int category, const char *locale);
wchar_t * _wsetlocale(int category, const wchar_t *locale);
Description
Use the setlocale to select or query a locale.
Borland C++ supports all locales supported in NT 3.5x and Win95/NT 4.0 operating systems. See your
system documentation for details.
The possible values for the category argument are as follows:

Value Affect
LC_ALL Affects all the following categories
LC_COLLATE Affects strcoll and strxfrm
LC_CTYPE Affects single-byte character handling functions. The mbstowcs and mbtowc

functions are not affected.
LC_MONETARY Affects monetary formatting by the localeconv function
LC_NUMERIC Affects the decimal point of non-monetary data formatting. This includes the printf

family of functions, and the information returned by localeconv.
LC_TIME Affects strftime

The locale argument is a pointer to the name of the locale or named locale category. Passing a NULL
pointer returns the current locale in effect. Passing a pointer that points to a null string requests
setlocale to look for environment variables to determine which locale to set. The locale names are not
case sensitive.
When setlocale is unable to honor a locale request, the preexisting locale in effect is unchanged and a
null pointer is returned.
If the locale argument is a NULL pointer, the locale string for the category is returned. If category is
LC_ALL, a complete locale string is returned. The structure of the complete locale string consists of the
names of all the categories in the current locale concatenated and separated by semicolons. This string
can be used as the locale parameter when calling setlocale with any of the LC_xxx values. This will
reinstate all the locale categories that are named in the complete locale string, and allows saving and
restoring of locale states. If the complete locale string is used with a single category, for example,
LC_TIME, only that category will be restored from the locale string.
If an empty string "" is used as the locale parameter an implementation-defined locale is used. This is
the ANSI C specified behavior.
To take advantage of dynamically loadable locales in your application, define _ _USELOCALES_ _ for
each module. If _ _USELOCALES_ _ is not defined, all locale-sensitive functions and macros will work
only with the default C locale.
If a NULL pointer is used as the argument for the locale parameter, setlocale returns a string that
specifies the current locale in effect. If the category parameter specifies a single category, such as
LC_COLLATE, the string pointed to will be the name of that category. If LC_ALL is used as the category
parameter then the string pointed to will be a full locale string that will indicate the name of each
category in effect.
 .
 .
 .
localenameptr = setlocale(LC_COLLATE, NULL);

if (localenameptr)
 printf("%s\n", localenameptr);
 .
 .
 .

The output here will be one of the module names together with the specified code page. For example,
the output could be LC_COLLATE = English_United States.437.
 .
 .
 .
localenameptr = setlocale(LC_ALL, NULL);

if (localenameptr)
 printf("%s\n", localenameptr);
 .
 .
 .

An example of the output here could be the following:
 LC_COLLATE=English_United States.437;
 LC_TIME=English_United States.437;
 LC_CTYPE=English_United States.437;

Each category in this full string is delimited by a semicolon. This string can be copied and saved by an
application and then used again to restore the same locale categories at another time. Each delimited
name corresponds to the locale category constants defined in locale.h. Therefore, the first name is the
name of the LC_COLLATE category, the second is the LC_CTYPE category, and so on. Any other
categories named in the locale.h header file are reserved for future implementation.
To set all default categories for the specified French locale:
 setlocale(LC_ALL, "French_France.850");
To find out which code page is currently being used:
 localenameptr = setlocale(LC_ALL, NULL);
Return value
If selection is successful, setlocale returns a pointer to a string that is associated with the selected
category (or possibly all categories) for the new locale.
If UNICODE is defined, _wsetlocale returns a wchar_t string.
On failure, a NULL pointer is returned and the locale is unchanged. All other possible returns are
discussed in the Remarks section above.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + +

setmem
See also Example Portability

Syntax
#include <mem.h>
void setmem(void *dest, unsigned length, char value);
Description
Assigns a value to a range of memory.
setmem sets a block of length bytes, pointed to by dest, to the byte value.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

setmode
See also Example Portability

Syntax
#include <io.h>
int setmode(int handle, int amode);
Description
Sets mode of an open file.
setmode sets the mode of the open file associated with handle to either binary or text. The argument
amode must have a value of either O_BINARY or O_TEXT, never both. (These symbolic constants are
defined in fcntl.h.)

Return Value
setmode returns the previous translation mode if successful. On error it returns -1 and sets the global
variable errno to
EINVAL Invalid argument

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

setvbuf
See also Example Portability

Syntax
#include <stdio.h>
int setvbuf(FILE *stream, char *buf, int type, size_t size);
Description
Assigns buffering to a stream.
setvbuf causes the buffer buf to be used for I/O buffering instead of an automatically allocated buffer. It
is used after the given stream is opened.
If buf is null, a buffer will be allocated using malloc; the buffer will use size as the amount allocated. The
buffer will be automatically freed on close. The size parameter specifies the buffer size and must be
greater than zero.
The parameter size is limited by the constant UINT_MAX as defined in limits.h.
stdin and stdout are unbuffered if they are not redirected; otherwise, they are fully buffered. Unbuffered
means that characters written to a stream are immediately output to the file or device, while buffered
means that the characters are accumulated and written as a block.
The type parameter is one of the following:
_IOFBF fully buffered file. When a buffer is empty, the next input operation will attempt to fill the

entire buffer. On output, the buffer will be completely filled before any data is written to
the file.

_IOLBF line buffered file. When a buffer is empty, the next input operation will still attempt to fill
the entire buffer. On output, however, the buffer will be flushed whenever a newline
character is written to the file.

_IONBF unbuffered file. The buf and size parameters are ignored. Each input operation will read
directly from the file, and each output operation will immediately write the data to the file.

A common cause for error is to allocate the buffer as an automatic (local) variable and then fail to close
the file before returning from the function where the buffer was declared.

Return Value
On success, setvbuf returns 0.
On error (if an invalid value is given for type or size, or if there is not enough space to allocate a buffer),
it returns nonzero.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

setverify
See also Example Portability

Syntax
#include <dos.h>
void setverify(int value);
Description
Sets the state of the verify flag in the operating system.
setverify sets the current state of the verify flag to value, which can be either 0 (off) or 1 (on).
The verify flag controls output to the disk. When verify is off, writes are not verified; when verify is on, all
disk writes are verified to ensure proper writing of the data.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

signal
See also Example Portability

Syntax
#include <signal.h>
void (_USERENTRY *signal(int sig, void (_USERENTRY *func)
 (int sig[, int subcode])))(int);
Description
Specifies signal-handling actions.
signal determines how receipt of signal number sig will subsequently be treated. You can install a user-
specified handler routine (specified by the argument func) or use one of the two predefined handlers,
SIG_DFL and SIG_IGN, in signal.h. The function func must be used with the _USERENTRY calling
convention.
A routine that catches a signal (such as a floating point) also clears the signal. To continue to receive
signals, a signal handler must be reinstalled by calling signal again.

Function Pointer Description
SIG_DFL Terminates the program
SIG_ERR Indicates an error return from signal
SIG_IGN Ignore this type signal

The following table shows signal types and their defaults:

Signal Type Description
SIGBREAK Keyboard must be in raw mode.
SIGABRT Abnormal termination. Default action is equivalent to calling _exit(3).
SIGFPE Arithmetic error caused by division by 0, invalid operation, and the like. Default

action is equivalent to calling _exit(1).
SIGILL Illegal operation. Default action is equivalent to calling _exit(1).
SIGINT Ctrl-C interrupt. Default action is to do an INT 23h.
SIGSEGV Illegal storage access. Default action is equivalent to calling _exit(1).
SIGTERM Request for program termination. Default action is equivalent to calling _exit(1).

SIGUSR1, SIGUSR2, SIGUSR3
User-defined signals (available only in Win32) can be generated only by calling
raise. Default action is to ignore the signal

signal.h defines a type called sig_atomic_t, the largest integer type the processor can load or store
atomically in the presence of asynchronous interrupts (for the 8086 family, this is a 16-bit word, for
80386 and higher number processors, it is a 32-bit word -- a Borland C++ integer).
When a signal is generated by the raise function or by an external event, the following two things
happen:

If a user-specified handler has been installed for the signal, the action for that signal type is set to
SIG_DFL.

The user-specified function is called with the signal type as the parameter.
User-specified handler functions can terminate by a return or by a call to abort, _exit, exit, or longjmp. If
your handler function is expected to continue to receive and handle more signals, you must have the
handler function call signal again.
Borland C++ implements an extension to ANSI C when the signal type is SIGFPE, SIGSEGV, or SIGILL.
The user-specified handler function is called with one or two extra parameters. If SIGFPE, SIGSEGV, or
SIGILL has been raised as the result of an explicit call to the raise function, the user-specified handler is

called with one extra parameter, an integer specifying that the handler is being explicitly invoked. The
explicit activation values for SIGFPE, SIGSEGV and SIGILL are as follows
Note: Declarations of these types are defined in float.h.

SIGSEGV signal Meaning
SIGFPE FPE_EXPLICITGEN
SIGSEGV SEGV_EXPLICITGEN
SIGILL ILL_EXPLICITGEN

If SIGFPE is raised because of a floating-point exception, the user handler is called with one extra
parameter that specifies the FPE_xxx type of the signal. If SIGSEGV, SIGILL, or the integer-related
variants of SIGFPE signals (FPE_INTOVFLOW or FPE_INTDIV0) are raised as the result of a processor
exception, the user handler is called with two extra parameters:
1. The SIGFPE, SIGSEGV, or SIGILL exception type (see float.h for all these types). This first parameter

is the usual ANSI signal type.
2. An integer pointer into the stack of the interrupt handler that called the user-specified handler. This

pointer points to a list of the processor registers saved when the exception occurred. The registers
are in the same order as the parameters to an interrupt function; that is, BP, DI, SI, DS, ES, DX, CX,
BX, AX, IP, CS, FLAGS. To have a register value changed when the handler returns, change one of
the locations in this list.
For example, to have a new SI value on return, do something like this:
 ((int)list_pointer + 2) = new_SI_value;
In this way, the handler can examine and make any adjustments to the registers that you want.

The following SIGFPE-type signals can occur (or be generated). They correspond to the exceptions that
the 8087 family is capable of detecting, as well as the "INTEGER DIVIDE BY ZERO" and the
"INTERRUPT ON OVERFLOW" on the main CPU. (The declarations for these are in float.h.)

SIGFPE signal Meaning
FPE_INTOVFLOW INTO executed with OF flag set
FPE_INTDIV0 Integer divide by zero
FPE_INVALID Invalid operation
FPE_ZERODIVIDE Division by zero
FPE_OVERFLOW Numeric overflow
FPE_UNDERFLOW Numeric underflow
FPE_INEXACT Precision
FPE_EXPLICITGEN User program executed raise(SIGFPE)
FPE_STACKFAULT Floating-point stack overflow or underflow
FPE_STACKFAULT Stack overflow

The FPE_INTOVFLOW and FPE_INTDIV0 signals are generated by integer operations, and the others
are generated by floating-point operations. Whether the floating-point exceptions are generated
depends on the coprocessor control word, which can be modified with _control87. Denormal exceptions
are handled by Borland C++ and not passed to a signal handler.
The following SIGSEGV-type signals can occur:
SEGV_BOUND Bound constraint exception
SEGV_EXPLICITGEN raise(SIGSEGV) was executed

The 8088 and 8086 processors don't have a bound instruction. The 186, 286, 386, and NEC V series
processors do have this instruction. So, on the 8088 and 8086 processors, the SEGV_BOUND type of
SIGSEGV signal won't occur. Borland C++ doesn't generate bound instructions, but they can be used in

inline code and separately compiled assembler routines that are linked in.
The following SIGILL-type signals can occur:
ILL_EXECUTION Illegal operation attempted
ILL_EXPLICITGEN raise(SIGILL) was executed

The 8088, 8086, NEC V20, and NEC V30 processors do not have an illegal operation exception. The
186, 286, 386, NEC V40, and NEC V50 processors do have this exception type. On 8088, 8086, NEC
V20, and NEC V30 processors, the ILL_EXECUTION type of SIGILL won't occur.
When the signal type is SIGFPE, SIGSEGV, or SIGILL, a return from a signal handler is generally not
advisable if the state of the 8087 is corrupt, the results of an integer division are wrong, an operation
that shouldn't have overflowed did, a bound instruction failed, or an illegal operation was attempted. The
only time a return is reasonable is when the handler alters the registers so that a reasonable return
context exists or the signal type indicates that the signal was generated explicitly (for example,
FPE_EXPLICITGEN, SEGV_EXPLICITGEN, or ILL_EXPLICITGEN). Generally in this case you would
print an error message and terminate the program using _exit, exit, or abort. If a return is executed
under any other conditions, the program's action will probably be unpredictable.
Note: Take special care when using the signal function in a multithread program. The SIGINT,

SIGTERM, and SIGBREAK signals can be used only by the main thread (thread one) in a non-
Win32 application. When one of these signals occurs, the currently executing thread is
suspended, and control transfers to the signal handler (if any) set up by thread one. Other signals
can be handled by any thread.
A signal handler should not use C++ run-time library functions, because a semaphore deadlock
might occur. Instead, the handler should simply set a flag or post a semaphore, and return
immediately.

Return Value
On success, signal returns a pointer to the previous handler routine for the specified signal type.
On error, signal returns SIG_ERR, and the external variable errno is set to EINVAL.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

sin, sinl
See also Example Portability

Syntax
#include <math.h>
double sin(double x);
long double sinl(long double x);
Description
Calculates sine.
sin computes the sine of the input value. Angles are specified in radians.
sinl is the long double version; it takes a long double argument and returns a long double result.
Error handling for these functions can be modified through the functions _matherr and _matherrl.
This function can be used with bcd and complex types.

Return Value
sin and sinl return the sine of the input value.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

sin + + + + + +
sinl + + + +

sinh, sinhl
See also Example Portability

Syntax
#include <math.h>
double sinh(double x);
long double sinhl(long double x);
Description
Calculates hyperbolic sine.

sinh computes the hyperbolic sine, .
sinl is the long double version; it takes a long double argument and returns a long double result. Error
handling for sinh and sinhl can be modified through the functions _matherr and _matherrl.
This function can be used with bcd and complex types.

Return Value
sinh and sinhl return the hyperbolic sine of x.
When the correct value overflows, these functions return the value HUGE_VAL (sinh) or _LHUGE_VAL
(sinhl) of appropriate sign. Also, the global variable errno is set to ERANGE.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

sinh + + + + + +
sinhl + + + +

sleep
Example Portability

Syntax
#include <dos.h>
void sleep(unsigned seconds);
Description
Suspends execution for an interval (seconds).
With a call to sleep, the current program is suspended from execution for the number of seconds
specified by the argument seconds. The interval is accurate only to the nearest hundredth of a second
or to the accuracy of the operating system clock, whichever is less accurate.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

_sopen, _wsopen
See also Example Portability

Syntax
#include <fcntl.h>
#include <sys\stat.h>
#include <share.h>
#include <io.h>
#include <stdio.h>
int _sopen(char *path, int access, int shflag[, int mode]);
int _wsopen(wchar_t *path, int access, int shflag[, int mode]);
Description
Opens a shared file.
_sopen opens the file given by path and prepares it for shared reading or writing, as determined by
access, shflag, and mode.
_wsopen is the Unicode version of _sopen. The Unicode version accepts a filename that is a wchar_t
character string. Otherwise, the functions perform identically.
For _sopen, access is constructed by ORing flags bitwise from the following lists:

Read/write flags
You can use only one of the following flags:
O_RDONLY Open for reading only.
O_WRONLY Open for writing only.
O_RDWR Open for reading and writing.

Other access flags
You can use any logical combination of the following flags:
O_NDELAY Not used; for UNIX compatibility.
O_APPEND If set, the file pointer is set to the end of the file prior to each write.
O_CREA If the file exists, this flag has no effect. If the file does not exist, the file is created,

and the bits of mode are used to set the file attribute bits as in chmod.
O_TRUNC If the file exists, its length is truncated to 0. The file attributes remain unchanged.
O_EXCL Used only with O_CREAT. If the file already exists, an error is returned.
O_BINARY This flag can be given to explicitly open the file in binary mode.
O_TEXT This flag can be given to explicitly open the file in text mode.
O_NOINHERIT The file is not passed to child programs.

Note: These O_... symbolic constants are defined in fcntl.h.
If neither O_BINARY nor O_TEXT is given, the file is opened in the translation mode set by the global
variable _fmode.
If the O_CREAT flag is used in constructing access, you need to supply the mode argument to _sopen
from the following symbolic constants defined in sys\stat.h.

Value of mode Access permission
S_IWRITE Permission to write
S_IREAD Permission to read
S_IREAD|S_IWRITE Permission to read/write

shflag specifies the type of file-sharing allowed on the file path. Symbolic constants for shflag are

defined in share.h.

Value of shflagWhat it does
SH_COMPAT Sets compatibility mode.
SH_DENYRW Denies read/write access
SH_DENYWR Denies write access
SH_DENYRD Denies read access
SH_DENYNONE Permits read/write access
SH_DENYNO Permits read/write access

Return Value
On success, _sopen returns a nonnegative integer (the file handle), and the file pointer (that marks the
current position in the file) is set to the beginning of the file.
On error, it returns -1, and the global variable errno is set to
EACCES ermission denied
EINVACC nvalid access code
EMFILE oo many open files
ENOENT Path or file function not found

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

spawnl, spawnle, spawnlp, spawnlpe, spawnv, spawnve, spawnvp, spawnvpe
See also Examples Portability

Syntax
#include <process.h>
#include <stdio.h>
int spawnl(int mode, char *path, char *arg0, arg1, ..., argn, NULL);
int _wspawnl(int mode, wchar_t *path, wchar_t *arg0, arg1, ..., argn, NULL);
int spawnle(int mode, char *path, char *arg0, arg1, ..., argn, NULL, char
*envp[]);

int _wspawnle(int mode, wchar_t *path, wchar_t *arg0, arg1, ..., argn, NULL,
wchar_t *envp[]);

int spawnlp(int mode, char *path, char *arg0, arg1, ..., argn, NULL);
int _wspawnlp(int mode, wchar_t *path, wchar_t *arg0, arg1, ..., argn,
NULL);

int spawnlpe(int mode, char *path, char *arg0, arg1, ..., argn, NULL, char
*envp[]);

int _wspawnlpe(int mode, wchar_t *path, wchar_t *arg0, arg1, ..., argn,
NULL, wchar_t *envp[]);

int spawnv(int mode, char *path, char *argv[]);
int _wspawnv(int mode, wchar_t *path, wchar_t *argv[]);
int spawnve(int mode, char *path, char *argv[], char *envp[]);
int _wspawnve(int mode, wchar_t *path, wchar_t *argv[], wchar_t *envp[]);
int spawnvp(int mode, char *path, char *argv[]);
int _wspawnvp(int mode, wchar_t *path, wchar_t *argv[]);
int spawnvpe(int mode, char *path, char *argv[], char *envp[]);
int _wspawnvpe(int mode, wchar_t *path, wchar_t *argv[], wchar_t *envp[]);

Note: In spawnle, spawnlpe, spawnv, spawnve, spawnvp, and spawnvpe, the last string must be NULL.

Description
The functions in the spawn... family create and run (execute) other files, known as child processes.
There must be sufficient memory available for loading and executing a child process.
The value of mode determines what action the calling function (the parent process) takes after the
spawn... call. The possible values of mode are
P_WAIT Puts parent process on hold until child process completes execution.
P_NOWAIT Continues to run parent process while child process runs. The child process ID is

returned, so that the parent can wait for completion using cwait or wait. This mode is
currently not available for 16-bit Windows or 16-bit DOS; using it generates an error
value.

P_NOWAITO Identical to P_NOWAIT except that the child process ID isn't saved by the operating
system, so the parent process can't wait for it using cwait or wait.

P_DETACH Identical to P_NOWAITO, except that the child process is executed in the
background with no access to the keyboard or the display.

P_OVERLAY Overlays child process in memory location formerly occupied by parent. Same as an
exec... call.

path is the file name of the called child process. The spawn... function calls search for path using the
standard operating system search algorithm:

If there is no extension or no period, they search for an exact file name. If the file is not found,
they search for files first with the extension EXE, then COM, and finally BAT.

If an extension is given, they search only for the exact file name.
If only a period is given, they search only for the file name with no extension.
If path does not contain an explicit directory, spawn... functions that have the p suffix search the

current directory, then the directories set with the operating system PATH environment variable.
The suffixes p, l, and v, and e added to the spawn... "family name" specify that the named function
operates with certain capabilities.
p The function searches for the file in those directories specified by the PATH environment variable.

Without the p suffix, the function searches only the current working directory.
l The argument pointers arg0, arg1, ..., argn are passed as separate arguments. Typically, the l suffix

is used when you know in advance the number of arguments to be passed.
v The argument pointers argv[0], ..., arg[n] are passed as an array of pointers. Typically, the v suffix is

used when a variable number of arguments is to be passed.
e The argument envp can be passed to the child process, letting you alter the environment for the

child process. Without the e suffix, child processes inherit the environment of the parent process.
Each function in the spawn... family must have one of the two argument-specifying suffixes (either l or
v). The path search and environment inheritance suffixes (p and e) are optional.
For example:

spawnl takes separate arguments, searches only the current directory for the child, and passes
on the parent's environment to the child.

spawnvpe takes an array of argument pointers, incorporates PATH in its search for the child
process, and accepts the envp argument for altering the child's environment.
The spawn... functions must pass at least one argument to the child process (arg0 or argv[0]). This
argument is, by convention, a copy of path. (Using a different value for this 0 argument won't produce
an error.) If you want to pass an empty argument list to the child process, then arg0 or argv[0] must be
NULL.
Under DOS 3.x, path is available for the child process; under earlier versions, the child process cannot
use the passed value of the 0 argument (arg0 or argv[0]).
When the l suffix is used, arg0 usually points to path, and arg1,, argn point to character strings that
form the new list of arguments. A mandatory null following argn marks the end of the list.
When the e suffix is used, you pass a list of new environment settings through the argument envp. This
environment argument is an array of character pointers. Each element points to a null-terminated
character string of the form
envvar = value
where envvar is the name of an environment variable, and value is the string value to which envvar is
set. The last element in envp[] is null. When envp is null, the child inherits the parents' environment
settings.
The combined length of arg0 + arg1 + ... + argn (or of argv[0] + argv[1] + ... + argv[n]), including space
characters that separate the arguments, must be less than 260 bytes for Windows (128 for DOS). Null-
terminators are not counted.
When a spawn... function call is made, any open files remain open in the child process.

Return Value
When successful, the spawn... functions, where mode is P_WAIT, return the child process' exit status (0
for a normal termination). If the child specifically calls exit with a nonzero argument, its exit status can be
set to a nonzero value.
If mode is P_NOWAIT or P_NOWAITO, the spawn functions return the process ID of the child process.
The ID obtained when using P_NOWAIT can be passed to cwait.
On error, the spawn... functions return -1, and the global variable errno is set to one of the following
values:
E2BIG Arg list too long
EINVAL Invalid argument
ENOENT Path or file name not found

ENOEXEC Exec format error
ENOMEM Not enough memory

Examples
spawnl
spawnle
spawnlp
spawnlpe
spawnv
spawnve
spawnvp
spawnvpe

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

_splitpath, _wsplitpath
See also Example Portability

Syntax
#include <stdlib.h>
void _splitpath(const char *path, char *drive, char *dir, char *name, char
*ext);

void _wsplitpath(const wchar_t *path, wchar_t *drive, wchar_t *dir, wchar_t
*name, wchar_t *ext);

Description
Splits a full path name into its components.
_splitpath takes a file's full path name (path) as a string in the form
 X:\DIR\SUBDIR\NAME.EXT
and splits path into its four components. It then stores those components in the strings pointed to by
drive, dir, name, and ext. (All five components must be passed, but any of them can be a null, which
means the corresponding component will be parsed but not stored.) The maximum sizes for these
strings are given by the constants _MAX_DRIVE, _MAX_DIR, _MAX_PATH, _MAX_FNAME, and
_MAX_EXT (defined in stdlib.h), and each size includes space for the null-terminator. These constants
are defined in stdlib.h.

Constant String
_MAX_PATH path
_MAX_DRIVE drive; includes colon (:)
_MAX_DIR dir; includes leading and trailing backslashes (\)
_MAX_FNAME name
_MAX_EXT ext; includes leading dot (.)

_splitpath assumes that there is enough space to store each non-null component.
When _splitpath splits path, it treats the punctuation as follows:

drive includes the colon (C:, A:, and so on).
dir includes the leading and trailing backslashes (\BC\include\, \source\, and so on).
name includes the file name.
ext includes the dot preceding the extension (.C, .EXE, and so on).

_makepath and _splitpath are invertible; if you split a given path with _splitpath, then merge the
resultant components with _makepath, you end up with path.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

sprintf, swprintf
See also Example Portability

Syntax
#include <stdio.h>
int sprintf(char *buffer, const char *format[, argument, ...]);
int swprintf(wchar_t *buffer, const wchar_t *format[, argument, ...]);
Description
Writes formatted output to a string.
Note: For details on format specifiers, see printf.
sprintf accepts a series of arguments, applies to each a format specifier contained in the format string
pointed to by format, and outputs the formatted data to a string.
sprintf applies the first format specifier to the first argument, the second to the second, and so on. There
must be the same number of format specifiers as arguments.

Return Value
On success, sprintf returns the number of bytes output. The return value does not include the
terminating null byte in the count.
On error, sprintf returns EOF.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

sqrt, sqrtl
See also Example Portability

Syntax
#include <math.h>
double sqrt(double x);
long double sqrtl(long double x);
Description
Calculates the positive square root.
sqrt calculates the positive square root of the argument x.
sqrtl is the long double version; it takes a long double argument and returns a long double result.
Error handling for these functions can be modified through the functions _matherr and _matherrl.
This function can be used with bcd and complex types.

Return Value
On success, sqrt and sqrtl return the value calculated, the square root of x. If x is real and positive, the
result is positive. If x is real and negative, the global variable errno is set to
EDOM Domain error

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

sqrt + + + + + +
sqrtl + + + +

srand
See also Example Portability

Syntax
#include <stdlib.h>
void srand(unsigned seed);
Description
Initializes random number generator.
The random number generator is reinitialized by calling srand with an argument value of 1. It can be set
to a new starting point by calling srand with a given seed number.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

sscanf, swscanf
See also Example Portability

Syntax
#include <stdio.h>
int sscanf(const char *buffer, const char *format[, address, ...]);
int swscanf(const wchar_t *buffer, const wchar_t *format[, address, ...]);
Description
Scans and formats input from a string.
Note: For details on format specifiers, see scanf.
sscanf scans a series of input fields, one character at a time, reading from a string. Then each field is
formatted according to a format specifier passed to sscanf in the format string pointed to by format.
Finally, sscanf stores the formatted input at an address passed to it as an argument following format.
There must be the same number of format specifiers and addresses as there are input fields.
sscanf might stop scanning a particular field before it reaches the normal end-of-field (whitespace)
character, or it might terminate entirely, for a number of reasons. See scanf for a discussion of possible
causes.

Return Value
On success, sscanf returns the number of input fields successfully scanned, converted, and stored; the
return value does not include scanned fields that were not stored.
If sscanf attempts to read at end-of-string, it returns EOF.
On error (If no fields were stored), it returns 0.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

stackavail
See also Example Portability

Syntax
#include <malloc.h>
size_t stackavail(void);
Description
Gets the amount of available stack memory.
stackavail returns the number of bytes available on the stack. This is the amount of dynamic memory
that alloca can access.

Return Value
stackavail returns a size_t value indicating the number of bytes available.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

_status87
Example Portability

Syntax
#include <float.h>
unsigned int _status87(void);
Description
Gets floating-point status.
_status87 gets the floating-point status word, which is a combination of the 80x87 status word and other
conditions detected by the 80x87 exception handler.

Return Value
The bits in the return value give the floating-point status. See float.h for a complete definition of the bits
returned by _status87.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

stime
See also Example Portability

Syntax
#include <time.h>
int stime(time_t *tp);
Description
Sets system date and time.
stime sets the system time and date. tp points to the value of the time as measured in seconds from
00:00:00 GMT, January 1, 1970.

Return Value
stime returns a value of 0.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

_stpcpy, _wcspcpy
See also Example Portability

Syntax
#include <string.h>
char *stpcpy(char *dest, const char *src);
wchar * _wcspcpy(wchar *dest, const wchar *src);
Description
Copies one string into another.
_stpcpy copies the string src to dest, stopping after the terminating null character of src has been
reached.

Return Value
stpcpy returns a pointer to the terminating null character of dest.
If UNICODE is defined, _wcspcpy returns a pointer to the terminating null character of the wchar_t dest
string.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

strcat, _fstrcat, _mbscat, wcscat
Example Portability

Syntax
#include <string.h>
char *strcat(char *dest, const char *src);
wchar_t *wcscat(wchar_t *dest, const wchar_t *src);
char __far * _fstrcat(char __far *dest, const char __far *src);

#include <mbstring.h>
unsigned char *_mbscat(unsigned char *dest, const unsigned char *src);
Description
Appends one string to another.
strcat appends a copy of src to the end of dest. The length of the resulting string is strlen(dest) +
strlen(src).

Return Value
strcat returns a pointer to the concatenated strings.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

strcat + + + + + + +
_fstrcat + +

strchr, _fstrchr, _mbschr, wcschr
See also Example Portability

Syntax
#include <string.h>
char *strchr(const char *s, int c); /* C only */
char far * far _fstrchr(const char far *s, int c) /* C only */

const char *strchr(const char *s, int c); // C++ only
char *strchr(char *s, int c); // C++ only
wchar_t *wcschr(const wchar_t *s, int c);

const char far * far _fstrchr(const char far *s, int c); // C++ only
char far * far _fstrchr(char far *s, int c); // C++ only
#include <mbstring.h>
unsigned char * _mbschr(const unsigned char *s, unsigned int c);

Description
Scans a string for the first occurrence of a given character.
strchr scans a string in the forward direction, looking for a specific character. strchr finds the first
occurrence of the character c in the string s. The null-terminator is considered to be part of the string.
For example:
strchr(strs,0)
returns a pointer to the terminating null character of the string strs.

Return Value
strchr returns a pointer to the first occurrence of the character c in s; if c does not occur in s, strchr
returns null.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

strchr + + + + + + +
_fstrchr + +

strcmp, _fstrcmp, _mbscmp, wcscmp
See also Example Portability

Syntax
#include <string.h>
int strcmp(const char *s1, const char *s2);
int _fstrcmp(const far char *s1, const far char *s2);
int wcscmp(const wchar_t *s1, const wchar_t *s2);

#include <mbstring.h>
int _mbscmp(const unsigned char *s1, const unsigned char *s2);
Description
Compares one string to another.
strcmp performs an unsigned comparison of s1 to s2, starting with the first character in each string and
continuing with subsequent characters until the corresponding characters differ or until the end of the
strings is reached.

Return Value
If s1 is... return value is...
less than s2 < 0
the same as s2 == 0
greater than s2 > 0

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

strcmpi
See also Example Portability

Syntax
#include <string.h>
int strcmpi(const char *s1, const char *s2);
Description
Compares one string to another, without case sensitivity.
strcmpi performs an unsigned comparison of s1 to s2, without case sensitivity (same as stricmp--
implemented as a macro).
It returns a value (< 0, 0, or > 0) based on the result of comparing s1 (or part of it) to s2 (or part of it).
The routine strcmpi is the same as stricmp. strcmpi is implemented through a macro in string.h and
translates calls from strcmpi to stricmp. Therefore, in order to use strcmpi, you must include the header
file string.h for the macro to be available. This macro is provided for compatibility with other C compilers.

Return Value
If s1 is... strcmpi returns a value that is...
less than s2 < 0
the same as s2 == 0
greater than s2 > 0

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

strcoll, _stricoll, _mbscoll, _mbsicoll, wcscoll, _wcsicoll
See also Example Portability

Syntax
#include <string.h>
int strcoll(const char *s1, const char *s2);
int wcscoll(const wchar_t *s1, const wchar_t *s2);

int _stricoll(const char *s1, const char *s2);
int _wcsicoll(const wchar_t *s1, wconst_t char *s2);

#include <mbstring.h>
int _mbscoll(const unsigned char *s1, const unsigned char *s2);
int _mbsicoll(const unsigned char *s1, const unsigned char *s2);
Description
Compares two strings.
strcoll compares the string pointed to by s1 to the string pointed to by s2, according to the current
locale's LC_COLLATE category.
_stricoll performs like strcoll but is not case sensitive.

Return Value
If s1 is... functions return a value that is...
less than s2 < 0
the same as s2 == 0
greater than s2 > 0

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + +

strcpy, _mbscpy, wcscpy
See also Example Portability

Syntax
#include <string.h>
char *strcpy(char *dest, const char *src);
wchar_t *wcscpy(wchar_t *dest, const wchar_t *src);

#include <mbstring.h>
unsigned char *_mbscpy(unsigned char *dest, const unsigned char *src);
Description
Copies one string into another.
Copies string src to dest, stopping after the terminating null character has been moved.

Return Value
strcpy returns dest.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

strcspn, _fstrcspn, _mbscspn, wcscspn
See also Example Portability

Syntax
#include <string.h>
size_t strcspn(const char *s1, const char *s2);
size_t wcscspn(const wchar_t *s1, const wchar_t *s2);
size_t far *far _fstrcspn(const char far *s1, const char far *s2)

#include <mbstring.h>
size_t _mbscspn(const unsigned char *s1, const unsigned char *s2);
Description
Scans a string for the initial segment not containing any subset of a given set of characters.
The strcspn functions search s1 until any one of the characters contained in s2 is found. The number of
characters which were read in s1 is the return value. The string termination character is not counted.
Neither string is altered during the search.

Return Value
strcspn returns the length of the initial segment of string s1 that consists entirely of characters not from
string s2.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

strcspn + + + + + + +
_fstrcspn + +

_strdate, _wstrdate
See also Example Portability

Syntax
#include <time.h>
char *_strdate(char *buf);
wchar_t *_wstrdate(wchar_t *buf);
Description
Converts current date to string.
_strdate converts the current date to a string, storing the string in the buffer buf. The buffer must be at
least 9 characters long.
The string has the form MM/DD/YY where MM, DD, and YY are all two-digit numbers representing the
month, day, and year. The string is terminated by a null character.

Return Value
_strdate returns buf, the address of the date string.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

strdup, _fstrdup, _mbsdup, _wcsdup
See also Example Portability

Syntax
#include <string.h>
char *strdup(const char *s);
wchar_t *_wcsdup(const wchar_t *s);
char far *_fstrdup(const char far *s)

#include <mbstring.h>
unsigned char *_mbsdup(const wchar_t *s);
Description
Copies a string into a newly created location.
strdup makes a duplicate of string s, obtaining space with a call to malloc. The allocated space is
(strlen(s) + 1) bytes long. The user is responsible for freeing the space allocated by strdup when it is no
longer needed.

Return Value
strdup returns a pointer to the storage location containing the duplicated string, or returns null if space
could not be allocated.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

strdup + + + + +
_fstrdup + +

_strerror
See also Example Portability

Syntax
#include <string.h>
char *_strerror(const char *s);
Description
Builds a customized error message.
_strerror lets you generate customized error messages; it returns a pointer to a null-terminated string
containing an error message.

If s is null, the return value points to the most recent error message.
If s is not null, the return value contains s (your customized error message), a colon, a space, the

most-recently generated system error message, and a new line. s should be 94 characters or less.

Return Value
_strerror returns a pointer to a constructed error string. The error message string is constructed in a
static buffer that is overwritten with each call to _strerror.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

strerror
See also Example Portability

Syntax
#include <string.h>
char *strerror(int errnum);
Description
Returns a pointer to an error message string.
strerror takes an int parameter errnum, an error number, and returns a pointer to an error message
string associated with errnum.

Return Value
strerror returns a pointer to a constructed error string. The error message string is constructed in a static
buffer that is overwritten with each call to strerror.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + +

strftime, wcsftime
See also Example Portability

Syntax
#include <time.h>
size_t strftime(char *s, size_t maxsize, const char *fmt, const struct tm
*t);

size_t wcsftime(wchar_t *s, size_t maxsize, const wchar_t *fmt, const struct
tm *t);

Description
Formats time for output.
strftime formats the time in the argument t into the array pointed to by the argument s according to the
fmt specifications. All ordinary characters are copied unchanged. No more than maxsize characters are
placed in s.
The time is formatted according to the current locale's LC_TIME category.

Return Value
On success, strftime returns the number of characters placed into s.
On error (if the number of characters required is greater than maxsize), strftime returns 0.

More about strftime
ANSI-defined format specifiers
POSIX-defined Format Specifiers
POSIX-defined Format Specifier Modifiers

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + +

strftime Format String
Consists of zero or more directives and ordinary characters. A directive consists of the % character
followed by a character that determines the substitution that is to take place.

ANSI-defined Format Specifiers for strftime
See also
The following table describes the ANSI-defined specifiers for the format string used with strftime.

Format specifier Substitutes
%% Character %
%a Abbreviated weekday name
%A Full weekday name
%b Abbreviated month name
%B Full month name
%c Date and time
%d Two-digit day of month (01 - 31)
%H Two-digit hour (00 - 23)
%I Two-digit hour (01 - 12)
%j Three-digit day of year (001 - 366)
%m Two-digit month as a decimal number (1 - 12)
%M 2-digit minute (00 - 59)
%p AM or PM
%S Two-digit second (00 - 59)
%U Two-digit week number where Sunday is the first day of the week (00 - 53)
%w Weekday where 0 is Sunday (0 - 6)
%W Two-digit week number where Monday is the first day of week the week (00 - 53)
%x Date
%X Time
%y Two-digit year without century (00 to 99)
%Y Year with century
%Z Time zone name, or no characters if no time zone

POSIX-defined Format Specifiers for strftime
See also
The following table describes the POSIX-defined specifiers for the format string used with strftime.
Note: You must define __USELOCALES__ in order to use these descriptors.

Format specifier Substitution
%C Century as a decimal number (00 - 99). For example, 1992 => 19
%D Date in the format mm/dd/yy
%e Day of the month as a decimal number in a two-digit field with leading space (1

-31)
%h A synonym for %b
%n Newline character
%r 12-hour time (01 - 12) format with am/pm string i.e. "%I:%M:%S %p"
%t Tab character
%T 24-hour time (00 - 23) in the format "HH:MM:SS"
%u Weekday as a decimal number (1 Monday - 7 Sunday)

Modifiers
strftime also supports POSIX-defined modifiers for certain specifiers. See POSIX-defined Format
Specifier Modifiers.

POSIX-defined Format Specifier Modifiers for strftime
See also
The following table describes the POSIX-defined modifiers for the following format string specifiers used
with strftime.
Note: You must define __USELOCALES__ in order to use these descriptors.

Descriptor modifier Substitutes
%Od Day of the month using alternate numeric symbols
%Oe Day of the month using alternate numeric symbols
%OH Hour (24 hour) using alternate numeric symbols
%OI Hour (12 hour) using alternate numeric symbols
%Om Month using alternate numeric symbols
%OM Minutes using alternate numeric symbols
%OS Seconds using alternate numeric symbols
%Ou Weekday as a number using alternate numeric symbols
%OU Week number of the year using alternate numeric symbols
%Ow Weekday as number using alternate numeric symbols
%OW Week number of the year using alternate numeric symbols
%Oy Year (offset from %C) using alternate numeric symbols

%O modifier
When the %O modifier is used before any of the above supported numeric format descriptors (for
example, %Od), the numeric value is converted to the corresponding ordinal string, if it exists. If an
ordinal string does not exist, the basic format descriptor is used unmodified.
For example, on 4/20/94:

%d produces 20
%Od produces 20th

stricmp, _fstricmp, _mbsicmp, _wcsicmp
See also Example Portability

Syntax
#include <string.h>
int stricmp(const char *s1, const char *s2);
int _wcsicmp(const wchar_t *s1, const wchar_t *s2);
int far _fstricmp(const char far *s1, const char far *s2)

#include <mbstring.h>
int _mbsicmp(const unsigned char *s1, const unsigned char *s2);
Description
Compares one string to another, without case sensitivity.
stricmp performs an unsigned comparison of s1 to s2, starting with the first character in each string and
continuing with subsequent characters until the corresponding characters differ or until the end of the
strings is reached. The comparison is not case sensitive.
It returns a value (< 0, 0, or > 0) based on the result of comparing s1 (or part of it) to s2 (or part of it).
The routines stricmp and strcmpi are the same; strcmpi is implemented through a macro in string.h that
translates calls from strcmpi to stricmp. Therefore, in order to use stricmp, you must include the header
file string.h for the macro to be available.

Return Value
If s1 is... return value is...
less than s2 < 0
the same as s2 == 0
greater than s2 > 0

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

stricmp + + + + + + +
_fstricmp + +

strlen, _fstrlen, _mbslen, wcslen, _mbstrlen
Example Portability

Syntax
#include <string.h>
size_t strlen(const char *s);
size_t wcslen(const wchar_t *s);
size_t far _fstrlen(const char far *s)

#include <mbstring.h>
size_t _mbslen(const unsigned char *s);

#include <stdlib.h>
size_t _mbstrlen(const char *s)
Description
Calculates the length of a string.
strlen calculates the length of s.
_mbslen and _mbstrlen test the string argument to determine the number of multibyte characters they
contain.
_mbstrlen is affected by the LC_CTYPE category setting as determined by the setlocale function. The
function tests to determine whether the string argument is a valid multibyte string.
_mbslen is affected by the code page that is in use. This function doesn’t test for multibyte validity.

Return Value
strlen returns the number of characters in s, not counting the null-terminating character.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

strlen + + + + + + +
_fstrlen + +

strlwr, _fstrlwr, _mbslwr, _wcslwr
See also Example Portability

Syntax
#include <string.h>
char *strlwr(char *s);
wchar_t *_wcslwr(wchar_t *s);
char far *_fstrlwr(char far *s)

#include <mbstring.h>
unsigned char *_mbslwr(unsigned char *s);
Description
Converts uppercase letters in a string to lowercase.
strlwr converts uppercase letters in string s to lowercase according to the current locale's LC_CTYPE
category. For the C locale, the conversion is from uppercase letters (A to Z) to lowercase letters (a to z).
No other characters are changed.

Return Value
strlwr returns a pointer to the string s.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

strlwr + + + + + + +
_fstrlwr + +

strncat, _fstrncat, _mbsncat, wcsncat
Example Portability

Syntax
#include <string.h>
char *strncat(char *dest, const char *src, size_t maxlen);
wchar_t *wcsncat(wchar_t *dest, const wchar_t *src, size_t maxlen);
char far *_fstrncat(char far *dest, const char far *src, size_t maxlen);

#include <mbstring.h>
unsigned char *_mbsncat(unsigned char *dest, const unsigned char *src,
size_t maxlen);

Description
Appends a portion of one string to another.
strncat copies at most maxlen characters of src to the end of dest and then appends a null character.
The maximum length of the resulting string is strlen(dest) + maxlen.
These three functions behave identically and differ only with respect to the type of arguments and return
types.

Return Value
strncat returns dest.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

strncat + + + + + + +
_fstrncat + +

strncmp, _fstrncmp, _mbsncmp, wcsncmp
See also Example Portability

Syntax
#include <string.h>
int strncmp(const char *s1, const char *s2, size_t maxlen);
int wcsncmp(const wchar_t *s1, const wchar_t *s2, size_t maxlen);
int far _fstrncmp(const char far *s1, const char far *s2, size_t maxlen)

#include <mbstring.h>
int _mbsncmp(const unsigned char *s1, const unsigned char *s2, size_t
maxlen);

Description
Compares a portion of one string to a portion of another.
strncmp makes the same unsigned comparison as strcmp, but looks at no more than maxlen characters.
It starts with the first character in each string and continues with subsequent characters until the
corresponding characters differ or until it has examined maxlen characters.

Return Value
These string comparison functions return an int value based on the result of comparing s1 (or part of it)

to s2 (or part of it):
< 0 if s1 is less than s2
== 0 if s1 is the same as s2
> 0 if s1 is greater than s2

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

strncmp + + + + + + +
_fstrncmp + +

strncmpi, wcsncmpi
Example Portability

Syntax
#include <string.h>
int strncmpi(const char *s1, const char *s2, size_t n);
int wcsncmpi(const wchar_t *s1, const wchar_t *s2, size_t n);
Description
Compares a portion of one string to a portion of another, without case sensitivity.
strncmpi performs a signed comparison of s1 to s2, for a maximum length of n bytes, starting with the
first character in each string and continuing with subsequent characters until the corresponding
characters differ or until n characters have been examined. The comparison is not case sensitive.
(strncmpi is the same as strnicmp--implemented as a macro). It returns a value (< 0, 0, or > 0) based on
the result of comparing s1 (or part of it) to s2 (or part of it).
The routines strnicmp and strncmpi are the same; strncmpi is implemented through a macro in string.h
that translates calls from strncmpi to strnicmp. Therefore, in order to use strncmpi, you must include the
header file string.h for the macro to be available. This macro is provided for compatibility with other C
compilers.

Return Value
If s1 is... return value is...
less than s2 < 0
the same as s2 == 0
greater than s2 > 0

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

strncpy, _fstrncpy, _mbsncpy, wcsncpy
Example Portability

Syntax
#include <stdio.h>
char *strncpy(char *dest, const char *src, size_t maxlen);
wchar_t *wcsncpy(wchar_t *dest, const wchar_t *src, size_t maxlen);
char far * far _fstrncpy(char far *dest, const char far *src, size_t maxlen)

#include <mbstring.h>
unsigned char *_mbsncpy(unsigned char *dest, const unsigned char *src,
size_t maxlen);

Description
Copies a given number of bytes from one string into another, truncating or padding as necessary.
strncpy copies up to maxlen characters from src into dest, truncating or null-padding dest. The target
string, dest, might not be null-terminated if the length of src is maxlen or more.

Return Value
strncpy returns dest.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

strncpy + + + + + + +
_fstrncpy + +

_strnextc, _mbsnextc, _wcsnextc
Example

Syntax
#include <tchar.h>
unsigned int _strnextc(const char *str);

#include <mbstring.h>
unsigned int _mbsnextc (const unsigned char *str);
Description
These routines should be accessed by using the portable _tcsnextc function. The functions inspect the
current character in str. The pointer to str is not advanced.

Return Value
The functions return the integer value of the character pointed to by str.

strnicmp, _fstrnicmp, _mbsnicmp, _wcsnicmp
Example Portability

Syntax
#include <string.h>
int strnicmp(const char *s1, const char *s2, size_t maxlen);
int _wcsnicmp(const wchar_t *s1, const wchar_t *s2, size_t maxlen);

#include <mbstring.h>
int _mbsnicmp(const unsigned char *s1, const unsigned char *s2, size_t
maxlen);

int far _fstrnicmp(const char far *s1, const char far *s2, size_t maxlen)
Description
Compares a portion of one string to a portion of another, without case sensitivity.
strnicmp performs a signed comparison of s1 to s2, for a maximum length of maxlen bytes, starting with
the first character in each string and continuing with subsequent characters until the corresponding
characters differ or until the end of the strings is reached. The comparison is not case sensitive.
It returns a value (< 0, 0, or > 0) based on the result of comparing s1 (or part of it) to s2 (or part of it).

Return Value
If s1 is... return value is...
less than s2 < 0
the same as s2 == 0
greater than s2 > 0

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

strnicmp + + + +
_fstrnicmp + +

strnset, _fstrnset, _mbsnset, _wcsnset
Example Portability

Syntax
#include <string.h>
char *strnset(char *s, int ch, size_t n);
wchar_t *_wcsnset(wchar_t *s, wchar_t ch, size_t n);
char far * far _fstrnset(char far *s, int ch, size_t n)

#include <mbstring.h>
unsigned char *_mbsnset(unsigned char *s, unsigned int ch, size_t n);
Description
Sets a specified number of characters in a string to a given character.
strnset copies the character ch into the first n bytes of the string s. If n > strlen(s), then strlen(s) replaces
n. It stops when n characters have been set, or when a null character is found.

Return Value
Each of these functions return s.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

strnset + + + +
_fstrnset + +

strpbrk, _fstrpbrk, _mbspbrk, wcspbrk
Example Portability

Syntax
#include <string.h>
char *strpbrk(const char *s1, const char *s2); /* C only */
char far *far _fstrpbrk(const char far *s1,
const char far*s2) /* C only */

const char *strpbrk(const char *s1, const char *s2); // C++ only
char *strpbrk(char *s1, const char *s2); // C++ only
const char far *far _fstrpbrk(const char far *s1,
const char far *s2); // C++ only

char far * far _fstrpbrk(char far *s1,
 const char far *s2); // C++ only
wchar_t * wcspbrk(const wchar_t *s1, const wchar_t *s2);

#include <mbstring.h>
unsigned char *_mbspbrk(const unsigned char *s1, const unsigned char *s2);
Description
Scans a string for the first occurrence of any character from a given set.
strpbrk scans a string, s1, for the first occurrence of any character appearing in s2.

Return Value
strpbrk returns a pointer to the first occurrence of any of the characters in s2. If none of the s2
characters occur in s1, strpbrk returns null.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

strpbrk + + + + + + +
_fstrpbrk + +

strrchr, _fstrrchr, _mbsrchr, wcsrchr
See also Example Portability

Syntax
char *strrchr(const char *s, int c); /* C only */
char far * far _fstrrchr(const char far *s, int c) /* C only */

const char *strrchr(const char *s, int c); // C++ only
char *strrchr(char *s, int c); // C++ only
const char *_fstrrchr(const char far *s, int c); // C++ only
char *_fstrrchr(char far *s, int c); // C++ only
wchar_t *wcsrchr(const wchar_t *s, wchar_t c);

#include <mbstring.h>
unsigned char * _mbsrchr(const unsigned char *s, unsigned int c);

Description
Scans a string for the last occurrence of a given character.
strrchr scans a string in the reverse direction, looking for a specific character. strrchr finds the last
occurrence of the character c in the string s. The null-terminator is considered to be part of the string.

Return Value
Each of the functions return a pointer to the last occurrence of the character c. If c does not occur in s,
the functions return null.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

strrchr + + + + + + +
_fstrrchr + +

strrev, _fstrrev, _mbsrev, _wcsrev
Example Portability

Syntax
#include <string.h>
char *strrev(char *s);
wchar_t *_wcsrev(wchar_t *s);
char far * far _fstrrev(char far *s)

#include <mbstring.h>
unsigned char *_mbsrev(unsigned char *s);
Description
Reverses a string.
strrev changes all characters in a string to reverse order, except the terminating null character. (For
example, it would change string\0 to gnirts\0.)

Return Value
These functions return a pointer to the reversed string.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

strrev + + + +
_fstrrev + +

strset, _fstrset, _mbsset, _wcsset
See also Example Portability

Syntax
#include <string.h>
char *strset(char *s, int ch);
wchar_t *_wcsset(wchar_t *s, wchar_t ch);
char far * far _fstrset(char far *s, int ch)

#include <mbstring.h>
unsigned char *_mbsset(unsigned char *s, unsigned int ch);
Description
Sets all characters in a string to a given character.
strset sets all characters in the string s to the character ch. It quits when the terminating null character is
found.

Return Value
Each of these functions return s.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

strset + + + +
_fstrset + +

strspn, _fstrspn, _mbsspn, wcsspn
See also Example Portability

Syntax
#include <string.h>
size_t strspn(const char *s1, const char *s2);
size_t wcsspn(const wchar_t *s1, const wchar_t *s2);
size_t far _fstrspn(const char far *s1, const char far *s2)

#include <mbstring.h>
size_t _mbsspn(const unsigned char *s1, const unsigned char *s2);
Description
Scans a string for the first segment that is a subset of a given set of characters.
strspn finds the initial segment of string s1 that consists entirely of characters from string s2.

Return Value
Each of these functions return the length of the initial segment of s1 that consists entirely of characters
from s2.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

strspn + + + + + + +
_fstrspn + +

strstr, _fstrstr, _mbsstr, wcsstr
Example Portability

Syntax
#include <string.h>
char *strstr(const char *s1, const char *s2); /* C only */
char far * far _fstrstr(const char far *s1,
const char far*s2); /* C only */

const char *strstr(const char *s1, const char *s2); // C++ only
char *strstr(char *s1, const char *s2); // C++ only
wchar_t * wcsstr(const wchar_t *s1, const wchar_t *s2);
const char far *far _fstrstr(const char far *s1,const char far *s2);
// C++ only

char far * far _fstrstr(char far *s1, const char far *s2); // C++ only
#include <mbstring.h>
unsigned char * _mbsstr(const unsigned char *s1, const unsigned char *s2);

Description
Scans a string for the occurrence of a given substring.
strstr scans s1 for the first occurrence of the substring s2.

Return Value
strstr returns a pointer to the element in s1, where s2 begins (points to s2 in s1). If s2 does not occur in
s1, strstr returns null.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

strstr + + + + + + +
_fstrstr + +

_strtime, _wstrtime
See also Example Portability

Syntax
#include <time.h>
char *_strtime(char *buf);
wchar_t *_wstrtime(wchar_t *buf);
Description
Converts current time to string.
_strtime converts the current time to a string, storing the string in the buffer buf. The buffer must be at
least 9 characters long.
The string has the following form:
 HH:MM:SS
where HH, MM, and SS are all two-digit numbers representing the hour, minute, and second,
respectively. The string is terminated by a null character.

Return Value
_strtime returns buf, the address of the time string.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

strtod, _strtold, wcstod, _wcstold
See also Example Portability

Syntax
#include <stdlib.h>
double strtod(const char *s, char **endptr);
double wcstod(const wchar_t *s, wchar_t **endptr);
long double _strtold(const char *s, char **endptr);
long double _wcstold(const wchar_t *s, wchar_t **endptr);
Description
Convert a string to a double or long double value.
strtod converts a character string, s, to a double value. s is a sequence of characters that can be
interpreted as a double value; the characters must match this generic format:
 [ws] [sn] [ddd] [.] [ddd] [fmt[sn]ddd]
where:

[ws] = optional whitespace
[sn] = optional sign (+ or -)
[ddd] = optional digits
[fmt] = optional e or E
[.] = optional decimal point

strtod also recognizes +INF and -INF for plus and minus infinity, and +NAN and -NAN for Not-a-Number.
For example, here are some character strings that strtod can convert to double:
 + 1231.1981 e-1
 502.85E2
 + 2010.952
strtod stops reading the string at the first character that cannot be interpreted as an appropriate part of a
double value.
If endptr is not null, strtod sets *endptr to point to the character that stopped the scan (*endptr =
&stopper). endptr is useful for error detection.
_strtold is the long double version; it converts a string to a long double value.

Return Value
These functions return the value of s as a double (strtod) or a long double (_strtold). In case of
overflow, they return plus or minus HUGE_VAL (strtod) or _LHUGE_VAL (_strtold).

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

strtod + + + + + + +
_strtold + + + +

strtok, _fstrtok, _mbstok, wcstok
Example Portability

Syntax
#include <string.h>
char *strtok(char *s1, const char *s2);
wchar_t *wcstok(wchar_t *s1, const wchar_t *s2);
char far * far _fstrtok(char far *s1, const char far *s2)

#include <mbstring.h>
unsigned char *_mbstok(unsigned char *s1, const unsigned char *s2);
Description
Searches one string for tokens, which are separated by delimiters defined in a second string.
strtok considers the string s1 to consist of a sequence of zero or more text tokens, separated by spans
of one or more characters from the separator string s2.
The first call to strtok returns a pointer to the first character of the first token in s1 and writes a null
character into s1 immediately following the returned token. Subsequent calls with null for the first
argument will work through the string s1 in this way, until no tokens remain.
The separator string, s2, can be different from call to call.
Note: Calls to strtok cannot be nested with a function call that also uses strtok. Doing so will causes an

endless loop.

Return Value
strtok returns a pointer to the token found in s1. A NULL pointer is returned when there are no more
tokens.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

strtok + + + + + + +
_fstrtok + +

strtol, wcstol
See also Example Portability

Syntax
#include <stdlib.h>
long strtol(const char *s, char **endptr, int radix);
long wcstol(const wchar_t *s, wchar_t **endptr, int radix);
Description
Converts a string to a long value.
strtol converts a character string, s, to a long integer value. s is a sequence of characters that can be
interpreted as a long value; the characters must match this generic format:
 [ws] [sn] [0] [x] [ddd]
where:

[ws] = optional whitespace
[sn] = optional sign (+ or -)
[0] = optional zero (0)
[x] = optional x or X
[ddd] = optional digits

strtol stops reading the string at the first character it doesn't recognize.
If radix is between 2 and 36, the long integer is expressed in base radix. If radix is 0, the first few
characters of s determine the base of the value being converted.

First character Second character String interpreted as...
0 1 - 7 Octal
0 x or X Hexadecimal
1 - 9 Decimal

If radix is 1, it is considered to be an invalid value. If radix is less than 0 or greater than 36, it is
considered to be an invalid value.
Any invalid value for radix causes the result to be 0 and sets the next character pointer *endptr to the
starting string pointer.
If the value in s is meant to be interpreted as octal, any character other than 0 to 7 will be unrecognized.
If the value in s is meant to be interpreted as decimal, any character other than 0 to 9 will be
unrecognized.
If the value in s is meant to be interpreted as a number in any other base, then only the numerals and
letters used to represent numbers in that base will be recognized. (For example, if radix equals 5, only 0
to 4 will be recognized; if radix equals 20, only 0 to 9 and A to J will be recognized.)
If endptr is not null, strtol sets *endptr to point to the character that stopped the scan (*endptr =
&stopper).

Return Value
strtol returns the value of the converted string, or 0 on error.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + +

strtoul, wcstoul
See also Example Portability

Syntax
#include <stdlib.h>
unsigned long strtoul(const char *s, char **endptr, int radix);
unsigned long wcstoul(const wchar_t *s, wchar_t **endptr, int radix);
Description
Converts a string to an unsigned long in the given radix.
strtoul operates the same as strtol, except that it converts a string str to an unsigned long value (where
strtol converts to a long). Refer to the entry for strtol for more information.

Return Value
strtoul returns the converted value, an unsigned long, or 0 on error.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + +

strupr, _fstrupr, _mbsupr, _wcsupr
See also Example Portability

Syntax
#include <string.h>
char *strupr(char *s);
wchar_t *_wcsupr(wchar_t *s);
char far * far _fstrupr(char far *s)

#include <mbstring.h>
unsigned char *_mbsupr(unsigned char *s);
Description
Converts lowercase letters in a string to uppercase.
strupr converts lowercase letters in string s to uppercase according to the current locale's LC_CTYPE
category. For the default C locale, the conversion is from lowercase letters (a to z) to uppercase letters
(A to Z). No other characters are changed.

Return Value
strupr returns s.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

strupr + + + +
_fstrupr + +

strxfrm, wcsxfrm
See also Example Portability

Syntax
#include<string.h>
size_t strxfrm(char *target, const char *source, size_t n);
size_t wcsxfrm(wchar_t *target, const wchar_t *source, size_t n);
Description
Transforms a portion of a string to a specified collation.
strxfrm transforms the string pointed to by source into the string target for no more than n characters.
The transformation is such that if the strcmp function is applied to the resulting strings, its return
corresponds with the return values of the strcoll function.
No more than n characters, including the terminating null character, are copied to target.
strxfrm transforms a character string into a special string according to the current locale's LC_COLLATE
category. The special string that is built can be compared with another of the same type, byte for byte, to
achieve a locale-correct collation result. These special strings, which can be thought of as keys or
tokenized strings, are not compatible across the different locales.
The tokens in the tokenized strings are built from the collation weights used by strcoll from the active
locale's collation tables.
Processing stops only after all levels have been processed for the character string or the length of the
tokenized string is equal to the maxlen parameter.
All redundant tokens are removed from each level's set of tokens.
The tokenized string buffer must be large enough to contain the resulting tokenized string. The length of
this buffer depends on the size of the character string, the number of collation levels, the rules for each
level and whether there are any special characters in the character string. Certain special characters
can cause extra character processing of the string resulting in more space requirements. For example,
the French character "oe" will take double the space for itself because in some locales, it expands to
collation weights for each level. Substrings that have substitutions will also cause extra space
requirements.
There is no safe formula to determine the required string buffer size, but at least (levels * string length)
are required.

Return Value
Number of characters copied not including the terminating null character. If the value returned is greater
than or equal to n, the content of target is indeterminate.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + +

swab
Example Portability

Syntax
#include <stdlib.h>
void swab(char *from, char *to, int nbytes);
Description
Swaps bytes.
swab copies nbytes bytes from the from string to the to string. Adjacent even- and odd-byte positions
are swapped. This is useful for moving data from one machine to another machine with a different byte
order. nbytes should be even.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

system, _wsystem
See also Example Portability

Syntax
#include <stdlib.h>
int system(const char *command);
int _wsystem(const wchar_t *command);
Description
Issues an operating system command.
system invokes the operating system command processor to execute an operating system command,
batch file, or other program named by the string command, from inside an executing C program.
To be located and executed, the program must be in the current directory or in one of the directories
listed in the PATH string in the environment.
The COMSPEC environment variable is used to find the command processor program file, so that file
need not be in the current directory.

Return Value
If command is a NULL pointer, system returns nonzero if a command processor is available.
If command is not a NULL pointer, system returns 0 if the command processor was successfully started.
If an error occurred, a -1 is returned and errno is set to one of the following:
ENOENT Path or file function not found
ENOEXEC Exec format error
ENOMEM Not enough memory

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

tan, tanl
See also Example Portability

Syntax
#include <math.h>
double tan(double x);
long double tanl(long double x);
Description
Calculates the tangent.
tan calculates the tangent. Angles are specified in radians.
tanl is the long double version; it takes a long double argument and returns a long double result.
Error handling for these routines can be modified through the functions _matherr and _matherrl.
This function can be used with bcd and complex types.

Return Value
tan and tanl return the tangent of x, sin(x)/cos(x).

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

tan + + + + + + +
tanl + + + +

tanh, tanhl
See also Example Portability

Syntax
#include <math.h>
double tanh(double x);
long double tanhl(long double x);
Description
Calculates the hyperbolic tangent.
tanh computes the hyperbolic tangent, sinh(x)/cosh(x).
tanhl is the long double version; it takes a long double argument and returns a long double result.
Error handling for these functions can be modified through the functions _matherr and _matherrl.
This function can be used with bcd and complex types.

Return Value
tanh and tanhl return the hyperbolic tangent of x.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

tanh + + + + + + +
tanhl + + + +

tell
See also Example Portability

Syntax
#include <io.h>
long tell(int handle);
Description
Gets the current position of a file pointer.
tell gets the current position of the file pointer associated with handle and expresses it as the number of
bytes from the beginning of the file.

Return Value
tell returns the current file pointer position. A return of -1 (long) indicates an error, and the global
variable errno is set to
EBADF Bad file number

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

_tempnam, _wtempnam
See also Example Portability

Syntax
#include <stdio.h>
char *_tempnam(char *dir, char *prefix)
wchar_t *_wtempnam(wchar_t *dir, wchar_t *prefix)
Description
Creates a unique file name in specified directory.
The _tempnam function accepts single-byte or multibyte string arguments.
The _tempnam function creates a unique file name in arbitrary directories. The unique file is not actually
created; _tempnam only verifies that it does not currently exist. It attempts to use the following
directories, in the order shown, when creating the file name:

The directory specified by the TMP environment variable.
The dir argument to _tempnam.
The P_tmpdir definition in stdio.h. If you edit stdio.h and change this definition, _tempnam will not

use the new definition.
The current working directory.

If any of these directories is NULL, or undefined, or does not exist, it is skipped.
The prefix argument specifies the first part of the file name; it cannot be longer than 5 characters, and
cannot contain a period (.). A unique file name is created by concatenating the directory name, the
prefix, and 6 unique characters. Space for the resulting file name is allocated with malloc; when this file
name is no longer needed, the caller should call free to free it.
If you do create a temporary file using the name constructed by _tempnam, it is your responsibility to
delete the file name (for example, with a call to remove). It is not deleted automatically. (tmpfile does
delete the file name.)

Return Value
If _tempnam is successful, it returns a pointer to the unique temporary file name, which the caller can
pass to free when it is no longer needed. Otherwise, if _tempnam cannot create a unique file name, it
returns NULL.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

textattr
See also Example Portability

Syntax
#include <conio.h>
void textattr(int newattr);
Description
Sets text attributes.
Note: Do not use this function for Win32s or Win32 GUI applications.
textattr lets you set both the foreground and background colors in a single call. (Normally, you set the
attributes with textcolor and textbackground.)
This function does not affect any characters currently onscreen; it affects only those characters
displayed by functions (such as cprintf) performing text mode, direct video output after this function is
called.
The color information is encoded in the newattr parameter as follows:

In this 8-bit newattr parameter:
ffff is the 4-bit foreground color (0 to 15).
bbb is the 3-bit background color (0 to 7).
B is the blink-enable bit.

If the blink-enable bit is on, the character blinks. This can be accomplished by adding the constant
BLINK to the attribute.
If you use the symbolic color constants defined in conio.h for creating text attributes with textattr, note

the following limitations on the color you select for the background:
You can select only one of the first eight colors for the background.
You must shift the selected background color left by 4 bits to move it into the correct bit positions.

These symbolic constants are listed in the following table:

Symbolic constant Numeric value Foreground or background
BLACK 0 Both
BLUE 1 Both
GREEN 2 Both
CYAN 3 Both
RED 4 Both
MAGENTA 5 Both
BROWN 6 Both
LIGHTGRAY 7 Both
DARKGRAY 8 Foreground only
LIGHTBLUE 9 Foreground only
LIGHTGREEN 10 Foreground only
LIGHTCYAN 11 Foreground only
LIGHTRED 12 Foreground only
LIGHTMAGENTA 13 Foreground only
YELLOW 14 Foreground only

WHITE 15 Foreground only
BLINK 128 Foreground only

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

textbackground
See also Example Portability

Syntax
#include <conio.h>
void textbackground(int newcolor);
Description
Selects new text background color.
Note: Do not use this function for Win32s or Win32 GUI applications.
textbackground selects the background color. This function works for functions that produce output in
text mode directly to the screen. newcolor selects the new background color. You can set newcolor to an
integer from 0 to 7, or to one of the symbolic constants defined in conio.h. If you use symbolic constants,
you must include conio.h.
Once you have called textbackground, all subsequent functions using direct video output (such as
cprintf) will use newcolor. textbackground does not affect any characters currently onscreen.
The following table lists the symbolic constants and the numeric values of the allowable colors:

Symbolic constant Numeric value
BLACK 0
BLUE 1
GREEN 2
CYAN 3
RED 4
MAGENTA 5
BROWN 6
LIGHTGRAY 7

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

textcolor
See also Example Portability

Syntax
#include <conio.h>
void textcolor(int newcolor);
Description
Selects new character color in text mode.
Note: Do not use this function for Win32s or Win32 GUI applications.
textcolor selects the foreground character color. This function works for the console output functions.
newcolor selects the new foreground color. You can set newcolor to an integer as given in the table
below, or to one of the symbolic constants defined in conio.h. If you use symbolic constants, you must
include conio.h.
Once you have called textcolor, all subsequent functions using direct video output (such as cprintf) will
use newcolor. textcolor does not affect any characters currently onscreen.
The following table lists the allowable colors (as symbolic constants) and their numeric values:

Symbolic constant Numeric value
BLACK 0
BLUE 1
GREEN 2
CYAN 3
RED 4
MAGENTA 5
BROWN 6
LIGHTGRAY 7
DARKGRAY 8
LIGHTBLUE 9
LIGHTGREEN 10
LIGHTCYAN 11
LIGHTRED 12
LIGHTMAGENTA 13
YELLOW 14
WHITE 15
BLINK 128

You can make the characters blink by adding 128 to the foreground color. The predefined constant
BLINK exists for this purpose.
For example:
 textcolor(CYAN + BLINK);
Note: Some monitors do not recognize the intensity signal used to create the eight "light" colors (8-15).

On such monitors, the light colors are displayed as their "dark" equivalents (0-7). Also, systems
that do not display in color can treat these numbers as shades of one color, special patterns, or
special attributes (such as underlined, bold, italics, and so on). Exactly what you'll see on such
systems depends on your hardware.

Return Value

None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

textmode
See also Example Portability

Syntax
#include <conio.h>
void textmode(int newmode);
Description
Puts screen in text mode.
Note: Do not use this function for Win32s or Win32 GUI applications.
textmode selects a specific text mode.
You can give the text mode (the argument newmode) by using a symbolic constant from the
enumeration type text_modes (defined in conio.h).
The most commonly used text_modes type constants and the modes they specify are given in the
following table. Some additional values are defined in conio.h.

Symbolic Constant Text Mode
LASTMODE Previous text mode
BW40 Black and white, 40 columns
C40 Color, 40 columns
BW80 Black and white, 80 columns
C80 Color, 80 columns
MONO Monochrome, 80 columns
C4350 EGA 43-line and VGA 50-line modes

When textmode is called, the current window is reset to the entire screen, and the current text attributes
are reset to normal, corresponding to a call to normvideo.
Specifying LASTMODE to textmode causes the most recently selected text mode to be reselected.
textmode should be used only when the screen or window is in text mode (presumably to change to a
different text mode). This is the only context in which textmode should be used. When the screen is in
graphics mode, use restorecrtmode instead to escape temporarily to text mode.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

time
See also Example Portability

Syntax
#include <time.h>
time_t time(time_t *timer);
Description
Gets time of day.
time gives the current time, in seconds, elapsed since 00:00:00 GMT, January 1, 1970, and stores that
value in the location pointed to by timer, provided that timer is not a NULL pointer.

Return Value
time returns the elapsed time in seconds.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

tmpfile
See also Example Portability

Syntax
#include <stdio.h>
FILE *tmpfile(void);
Description
Opens a "scratch" file in binary mode.
tmpfile creates a temporary binary file and opens it for update (w + b). If you do not change the directory
after creating the temporary file, the file is automatically removed when it's closed or when your program
terminates.

Return Value
tmpfile returns a pointer to the stream of the temporary file created. If the file can't be created, tmpfile
returns NULL.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

tmpnam, _wtmpnam
See also Example Portability

Syntax
#include <stdio.h>
char *tmpnam(char *s);
wchar_t *_wtmpnam(wchar_t *s);
Description
Creates a unique file name.
tmpnam creates a unique file name, which can safely be used as the name of a temporary file. tmpnam
generates a different string each time you call it, up to TMP_MAX times. TMP_MAX is defined in stdio.h
as 65,535.
The parameter to tmpnam, s, is either null or a pointer to an array of at least L_tmpnam characters.
L_tmpnam is defined in stdio.h. If s is NULL, tmpnam leaves the generated temporary file name in an
internal static object and returns a pointer to that object. If s is not NULL, tmpnam overwrites the internal
static object and places its result in the pointed-to array, which must be at least L_tmpnam characters
long, and returns s.
If you do create such a temporary file with tmpnam, it is your responsibility to delete the file name (for
example, with a call to remove). It is not deleted automatically. (tmpfile does delete the file name.)

Return Value
If s is null, tmpnam returns a pointer to an internal static object. Otherwise, tmpnam returns s.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

toascii
Example Portability

Syntax
#include <ctype.h>
int toascii(int c);
Description
Translates characters to ASCII format.
toascii is a macro that converts the integer c to ASCII by clearing all but the lower 7 bits; this gives a
value in the range 0 to 127.

Return Value
toascii returns the converted value of c.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

_tolower
Example Portability

Syntax
#include <ctype.h>
int _tolower(int ch);
Description
_tolower is a macro that does the same conversion as tolower, except that it should be used only when
ch is known to be uppercase (AZ).
To use _tolower, you must include ctype.h.

Return Value
_tolower returns the converted value of ch if it is uppercase; otherwise, the result is undefined.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

tolower, _mbctolower, towlower
Example Portability

Syntax
#include <ctype.h>
int tolower(int ch);
int towlower(wint_t ch); // Unicode version

#include <mbstring.h>
unsigned int _mbctolower(unsigned int c);
Description
Translates characters to lowercase.
tolower is a function that converts an integer ch (in the range EOF to 255) to its lowercase value (a to z;
if it was uppercase, A to Z). All others are left unchanged.

Return Value
tolower returns the converted value of ch if it is uppercase; it returns all others unchanged.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

_toupper
Example Portability

Syntax
#include <ctype.h>
int _toupper(int ch);
Description
Translates characters to uppercase.
_toupper is a macro that does the same conversion as toupper, except that it should be used only when
ch is known to be lowercase (a to z).
To use _toupper, you must include ctype.h.

Return Value
_toupper returns the converted value of ch if it is lowercase; otherwise, the result is undefined.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

toupper, _mbctoupper, towupper
Example Portability

Syntax
#include <ctype.h>
int toupper(int ch);
int towupper(wint_t ch); // Unicode version

#include <mbstring.h>
unsigned int _mbctoupper(unsigned int c);
Description
Translates characters to uppercase.
toupper is a function that converts an integer ch (in the range EOF to 255) to its uppercase value (A to
Z; if it was lowercase, a to z). All others are left unchanged.
towupper is the Unicode version of toupper. It is available when Unicode is defined.

Return Value
toupper returns the converted value of ch if it is lowercase; it returns all others unchanged.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

_tzset, _wtzset
See also Example Portability

Syntax
#include <time.h>
void _tzset(void)
void _wtzset(void)
Description
Sets value of global variables _daylight, _timezone, and _tzname.
_tzset is available on XENIX systems.
_tzset sets the _daylight, _timezone, and _tzname global variables based on the environment variable
TZ. _wtzset sets the _daylight, _timezone, and _wtzname global variables. The library functions ftime
and localtime use these global variables to adjust Greenwich Mean Time (GMT) to the local time zone.
The format of the TZ environment string is:
 TZ = zzz[+/-]d[d][lll]
where zzz is a three-character string representing the name of the current time zone. All three
characters are required. For example, the string "PST" could be used to represent Pacific standard time.
[+/-]d[d] is a required field containing an optionally signed number with 1 or more digits. This number is
the local time zone's difference from GMT in hours. Positive numbers adjust westward from GMT.
Negative numbers adjust eastward from GMT. For example, the number 5 = EST, +8 = PST, and -1 =
continental Europe. This number is used in the calculation of the global variable _timezone. _timezone
is the difference in seconds between GMT and the local time zone.
lll is an optional three-character field that represents the local time zone, daylight saving time. For
example, the string "PDT" could be used to represent pacific daylight saving time. If this field is present,
it causes the global variable _daylight to be set nonzero. If this field is absent, _daylight is set to zero.
If the TZ environment string isn't present or isn't in the preceding form, a default TZ = "EST5EDT" is
presumed for the purposes of assigning values to the global variables _daylight, _timezone, and
_tzname. On a Win32 system, none of these global variables are set if TZ is null.
The global variables _tzname[0] and _wtzname[1] point to a three-character string with the value of the
time-zone name from the TZ environment string. _tzname[1] and _wtzname[1] point to a three-character
string with the value of the daylight saving time-zone name from the TZ environment string. If no daylight
saving name is present, _tzname[1] and _wtzname[1] point to a null string.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

ultoa, _ultow
See also Example Portability

Syntax
#include <stdlib.h>
char *ultoa(unsigned long value, char *string, int radix);
wchar_t *_ultow(unsigned long value, wchar_t *string, int radix);
Description
Converts an unsigned long to a string.
ultoa converts value to a null-terminated string and stores the result in string. value is an unsigned
long.
radix specifies the base to be used in converting value; it must be between 2 and 36, inclusive. ultoa
performs no overflow checking, and if value is negative and radix equals 10, it does not set the minus
sign.
Note: The space allocated for string must be large enough to hold the returned string, including the

terminating null character (\0). ultoa can return up to 33 bytes.

Return Value
ultoa returns string.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

umask
See also Example Portability

Syntax
#include <io.h>
unsigned umask(unsigned mode);
Description
Sets file read/write permission mask.
The umask function sets the access permission mask used by open and creat. Bits that are set in mode
will be cleared in the access permission of files subsequently created by open and creat.
The mode can have one of the following values, defined in sys\stat.h:

Value of mode Access permission
S_IWRITE Permission to write
S_IREAD Permission to read
S_IREAD|S_IWRITE Permission to read and write

Return Value
The previous value of the mask. There is no error return.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

ungetc, ungetwc
See also Example Portability

Syntax
#include <stdio.h>
int ungetc(int c, FILE *stream);
wint_t ungetwc(wint_t c, FILE *stream);
Description
Pushes a character back into input stream.
Note: Do not use this function for Win32s or Win32 GUI applications.
ungetc pushes the character c back onto the named input stream, which must be open for reading. This
character will be returned on the next call to getc or fread for that stream. One character can be pushed
back in all situations. A second call to ungetc without a call to getc will force the previous character to be
forgotten. A call to fflush, fseek, fsetpos, or rewind erases all memory of any pushed-back characters.

Return Value
On success, ungetc returns the character pushed back.
On eror, it returns EOF.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

ungetch
See also Example Portability

Syntax
#include <conio.h>
int ungetch(int ch);
Description
Pushes a character back to the keyboard buffer.
Note: Do not use this function for Win32s or Win32 GUI applications.
ungetch pushes the character ch back to the console, causing ch to be the next character read. The
ungetch function fails if it is called more than once before the next read.

Return Value
On success, ungetch returns the character ch.
On error, it returns EOF.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

unixtodos
See also Example Portability

Syntax
#include <dos.h>
void unixtodos(long time, struct date *d, struct time *t);
Description
Converts date and time from UNIX to DOS format.
unixtodos converts the UNIX-format time given in time to DOS format and fills in the date and time
structures pointed to by d and t.
time must not represent a calendar time earlier than Jan. 1, 1980 00:00:00.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

_unlink, _wunlink
See also Example Portability

Syntax
#include <io.h>
int _unlink(const char *filename);
int _wunlink(const wchar_t *filename);
Description
Deletes a file.
_unlink deletes a file specified by filename. Any drive, path, and file name can be used as a filename.
Wildcards are not allowed.
Read-only files cannot be deleted by this call. To remove read-only files, first use chmod or _rtl_chmod
to change the read-only attribute.
Note: If the file is open, it must be closed before unlinking it.
_wunlink is the Unicode version of _wunlink. The Unicode version accepts a filename that is a wchar_t
character string. Otherwise, the functions perform identically.

Return Value
On success, _unlink returns 0.
On error, it returns -1 and sets the global variable errno to one of the following values:
EACCES Permission denied
ENOENT Path or file name not found

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

unlock
See also Example Portability

Syntax
#include <io.h>
int unlock(int handle, long offset, long length);
Description
Releases file-sharing locks.
unlock provides an interface to the operating system file-sharing mechanism. unlock removes a lock
previously placed with a call to lock. To avoid error, all locks must be removed before a file is closed. A
program must release all locks before completing.

Return Value
On success, unlock returns 0
O error, it returns -1.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

_utime, _wutime
See also Example Portability

Syntax
#include <utime.h>
int _utime(char *path, struct utimbuf *times);
int _wutime(wchar_t *path, struct _utimbuf *times);
Description
Sets file time and date.
_utime sets the modification time for the file path. The modification time is contained in the utimbuf
structure pointed to by times. This structure is defined in utime.h, and has the following format:
 struct utimbuf {
 time_t actime; /* access time */
 time_t modtime; /* modification time */
 };
The FAT (file allocation table) file system supports only a modification time; therefore, on FAT file
systems _utime ignores actime and uses only modtime to set the file's modification time.
If times is NULL, the file's modification time is set to the current time.
_wutime is the Unicode version of _utime. The Unicode version accepts a filename that is a wchar_t
character string. Otherwise, the functions perform identically.

Return Value
On sucess, _utime returns 0.
On error, it returns -1, and sets the global variable errno to one of the following values:
EACCES Permission denied
EMFILE Too many open files
ENOENT Path or file name not found

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

va_arg, va_end, va_start
See also Example Portability

Syntax
#include <stdarg.h>
void va_start(va_list ap, lastfix);
type va_arg(va_list ap, type);
void va_end(va_list ap);
Description
Implement a variable argument list.
Some C functions, such as vfprintf and vprintf, take variable argument lists in addition to taking a
number of fixed (known) parameters. The va_arg, va_end, and va_start macros provide a portable way
to access these argument lists. They are used for stepping through a list of arguments when the called
function does not know the number and types of the arguments being passed.
The header file stdarg.h declares one type (va_list) and three macros (va_start, va_arg, and va_end).

va_list: This array holds information needed by va_arg and va_end. When a called function takes
a variable argument list, it declares a variable ap of type va_list.

va_start: This routine (implemented as a macro) sets ap to point to the first of the variable
arguments being passed to the function. va_start must be used before the first call to va_arg or va_end.

va_start takes two parameters: ap and lastfix. (ap is explained under va_list in the preceding
paragraph; lastfix is the name of the last fixed parameter being passed to the called function.)

va_arg: This routine (also implemented as a macro) expands to an expression that has the same
type and value as the next argument being passed (one of the variable arguments). The variable ap to
va_arg should be the same ap that va_start initialized.

Note: Because of default promotions, you cannot use char, unsigned char, or float types with
va_arg.
The first time va_arg is used, it returns the first argument in the list. Each successive time
va_arg is used, it returns the next argument in the list. It does this by first dereferencing ap,
and then incrementing ap to point to the following item. va_arg uses the type to both perform
the dereference and to locate the following item. Each successive time va_arg is invoked, it
modifies ap to point to the next argument in the list.

va_end: This macro helps the called function perform a normal return. va_end might modify ap in
such a way that it cannot be used unless va_start is recalled. va_end should be called after va_arg has
read all the arguments; failure to do so might cause strange, undefined behavior in your program.

Return Value
va_start and va_end return no values; va_arg returns the current argument in the list (the one that ap is
pointing to).

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

vfprintf, vfwprintf
See also Example Portability

Syntax
#include <stdio.h>
int vfprintf(FILE *stream, const char *format, va_list arglist);
int vfwprintf(FILE *stream, const wchar_t *format, va_list arglist);
Description
Writes formatted output to a stream.
The v...printf functions are known as alternate entry points for the ...printf functions. They behave exactly
like their ...printf counterparts, but they accept a pointer to a list of arguments instead of an argument
list.
For details on format specifiers, see Printf Format Specifiers.
vfprintf accepts a pointer to a series of arguments, applies to each argument a format specifier
contained in the format string pointed to by format, and outputs the formatted data to a stream. There
must be the same number of format specifiers as arguments.

Return Value
On success, vfprintf returns the number of bytes output.
On error, it returns EOF.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

vfscanf
See also Example Portability

Syntax
#include <stdio.h>
int vfscanf(FILE *stream
const char *format
va_list arglist);
Description
Scans and formats input from a stream.
The v...scanf functions are known as alternate entry points for the ...scanf functions. They behave
exactly like their ...scanf counterparts but they accept a pointer to a list of arguments instead of an
argument list.
For details on format specifiers, see Scanf Format Specifiers.
vfscanf scans a series of input fields one character at a time reading from a stream. Then each field is
formatted according to a format specifier passed to vfscanf in the format string pointed to by format.
Finally vfscanf stores the formatted input at an address passed to it as an argument following format.
There must be the same number of format specifiers and addresses as there are input fields. vfscanf
might stop scanning a particular field before it reaches the normal end-of-field (whitespace) character or
it might terminate entirely for a number of reasons. See scanf for a discussion of possible causes.

Return Value
vfscanf returns the number of input fields successfully scanned converted and stored; the return value
does not include scanned fields that were not stored. If no fields were stored the return value is 0.
If vfscanf attempts to read at end-of-file the return value is EOF.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

vprintf, vfwprintf
See also Example Portability

Syntax
#include <stdarg.h>
int vprintf(const char *format, va_list arglist);
int vwprintf(const wchar_t *format, va_list arglist);
Description
Writes formatted output to stdout.
Note: Do not use this function for Win32s or Win32 GUI applications.
The v...printf functions are known as alternate entry points for the ...printf functions. They behave exactly
like their ...printf counterparts, but they accept a pointer to a list of arguments instead of an argument
list.
For details on format specifiers, see Printf Format Specifiers.
vprintf accepts a pointer to a series of arguments, applies to each a format specifier contained in the
format string pointed to by format, and outputs the formatted data to stdout. There must be the same
number of format specifiers as arguments.
Note: When you use the SS!=DS flag in 16-bit applications, vprintf assumes that the address being

passed is in the SS segment.

Return Value
vprint returns the number of bytes output. In the event of error, vprint returns EOF.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

vscanf
See also Example Portability

Syntax
#include <stdarg.h>
int vscanf(const char *format, va_list arglist);
Description
Scans and formats input from stdin.
Note: Do not use this function for Win32s or Win32 GUI applications.
The v...scanf functions are known as alternate entry points for the ...scanf functions. They behave
exactly like their ...scanf counterparts, but they accept a pointer to a list of arguments instead of an
argument list.
For details on format specifiers, see Scanf Format Specifiers.
vscanf scans a series of input fields, one character at a time, reading from stdin. Then each field is
formatted according to a format specifier passed to vscanf in the format string pointed to by format.
Finally, vscanf stores the formatted input at an address passed to it as an argument following format.
There must be the same number of format specifiers and addresses as there are input fields.
vscanf might stop scanning a particular field before it reaches the normal end-of-field (whitespace)
character, or it might terminate entirely, for a number of reasons. See scanf for a discussion of possible
causes.

Return Value
vscanf returns the number of input fields successfully scanned, converted, and stored; the return value
does not include scanned fields that were not stored. If no fields were stored, the return value is 0.
If vscanf attempts to read at end-of-file, the return value is EOF.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

vsprintf, vswprintf
See also Example Portability

Syntax
#include <stdarg.h>
int vsprintf(char *buffer, const char *format, va_list arglist);
int vswprintf(wchar_t *buffer, const wchar_t *format, va_list arglist);
Description
Writes formatted output to a string.
The v...printf functions are known as alternate entry points for the ...printf functions. They behave exactly
like their ...printf counterparts, but they accept a pointer to a list of arguments instead of an argument
list.
For details on format specifiers, see Printf Format Specifiers.
vsprintf accepts a pointer to a series of arguments, applies to each a format specifier contained in the
format string pointed to by format, and outputs the formatted data to a string. There must be the same
number of format specifiers as arguments.

Return Value
vsprintf returns the number of bytes output. In the event of error, vsprintf returns EOF.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

vsscanf
See also Example Portability

Syntax
#include <stdarg.h>
int vsscanf(const char *buffer, const char *format, va_list arglist);
Description
Scans and formats input from a stream.
The v...scanf functions are known as alternate entry points for the ...scanf functions. They behave
exactly like their ...scanf counterparts, but they accept a pointer to a list of arguments instead of an
argument list.
For details on format specifiers, see Scanf Format Specifiers.
vsscanf scans a series of input fields, one character at a time, reading from a stream. Then each field is
formatted according to a format specifier passed to vsscanf in the format string pointed to by format.
Finally, vsscanf stores the formatted input at an address passed to it as an argument following format.
There must be the same number of format specifiers and addresses as there are input fields.
vsscanf might stop scanning a particular field before it reaches the normal end-of-field (whitespace)
character, or it might terminate entirely, for a number of reasons. See scanf for a discussion of possible
causes.

Return Value
vsscanf returns the number of input fields successfully scanned, converted, and stored; the return value
does not include scanned fields that were not stored. If no fields were stored, the return value is 0.
If vsscanf attempts to read at end-of-string, the return value is EOF.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

wait
See also Portability

Syntax
#include <process.h>
int wait(int *statloc);
Description
Waits for one or more child processes to terminate.
The wait function waits for one or more child processes to terminate. The child processes must be those
created by the calling program; wait cannot wait for grandchildren (processes spawned by child
processes). If statloc is not NULL, it points to location where wait will store the termination status.
If the child process terminated normally (by calling exit, or returning from main), the termination status
word is defined as follows:
Bits 0-7 Zero.
Bits 8-15 The least significant byte of the return code from the child process. This is the value that

is passed to exit, or is returned from main. If the child process simply exited from main
without returning a value, this value will be unpredictable. If the child process terminated
abnormally, the termination status word is defined as follows:

Bits 0-7 Termination information about the child:
 1 Critical error abort.
 2 Execution fault, protection exception.
 3 External termination signal.
Bits 8-15 Zero.

Return Value
When wait returns after a normal child process termination it returns the process ID of the child.
When wait returns after an abnormal child termination it returns -1 to the parent and sets errno to
EINTR.
If wait returns without a child process completion it returns a -1 value and sets errno to
ECHILD No child process exists

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

 + +

wcstombs
Example Portability

Syntax
#include <stdlib.h>
size_t wcstombs(char *s, const wchar_t *pwcs, size_t n);
Description
Converts a wchar_t array into a multibyte string.
wcstombs converts the type wchar_t elements contained in pwcs into a multibyte character string s.
The process terminates if either a null character or an invalid multibyte character is encountered.
No more than n bytes are modified. If n number of bytes are processed before a null character is
reached, the array s is not null terminated.
The behavior of wcstombs is affected by the setting of LC_CTYPE category of the current locale.

Return Value
If an invalid multibyte character is encountered, wcstombs returns (size_t) -1. Otherwise, the function
returns the number of bytes modified, not including the terminating code, if any.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

wctomb
Example Portability

Syntax
#include <stdlib.h>
int wctomb(char *s, wchar_t wc);
Description
Converts wchar_t code to a multibyte character.
If s is not null, wctomb determines the number of bytes needed to represent the multibyte character
corresponding to wc (including any change in shift state). The multibyte character is stored in s. At most
MB_CUR_MAX characters are stored. If the value of wc is zero, wctomb is left in the initial state.
The behavior of wctomb is affected by the setting of LC_CTYPE category of the current locale.

Return Value
If s is a NULL pointer, wctomb returns a nonzero value if multibyte character encodings do have state-
dependent encodings, and a zero value if they do not.
If s is not a NULL pointer, wctomb returns -1 if the wc value does not represent a valid multibyte
character. Otherwise, wctomb returns the number of bytes that are contained in the multibyte character
corresponding to wc. In no case will the return value be greater than the value of MB_CUR_MAX macro.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + + + +

wherex
See also Example Portability

Syntax
#include <conio.h>
int wherex(void);
Description
Gives horizontal cursor position within window.
Note: Do not use this function for Win32s or Win32 GUI applications.
wherex returns the x-coordinate of the current cursor position (within the current text window).

Return Value
wherex returns an integer in the range 1 to the number of columns in the current video mode.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

wherey
See also Example Portability

Syntax
#include <conio.h>
int wherey(void);
Description
Gives vertical cursor position within window.
Note: Do not use this function for Win32s or Win32 GUI applications.
wherey returns the y-coordinate of the current cursor position (within the current text window).

Return Value
wherey returns an integer in the range 1 to the number of rows in the current video mode.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

window
See also Example Portability

Syntax
#include <conio.h>
void window(int left, int top, int right, int bottom);
Description
Defines active text mode window.
Note: Do not use this function for Win32s or Win32 GUI applications.
window defines a text window onscreen. If the coordinates are in any way invalid, the call to window is
ignored.
left and top are the screen coordinates of the upper left corner of the window.
right and bottom are the screen coordinates of the lower right corner.
The minimum size of the text window is one column by one line. The default window is full screen, with
the coordinates:
 1,1,C,R
where C is the number of columns in the current video mode, and R is the number of rows.

Return Value
None.

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + +

See Also
lseek
_rtl_read
write

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + +

write
See also Example Portability

Syntax
#include <io.h>
int write(int handle, void *buf, unsigned len);
Description
Writes to a file.
write writes a buffer of data to the file or device named by the given handle. handle is a file handle
obtained from a creat, open, dup, or dup2 call.
This function attempts to write len bytes from the buffer pointed to by buf to the file associated with
handle. Except when write is used to write to a text file, the number of bytes written to the file will be no
more than the number requested. The maximum number of bytes that write can write is UINT_MAX -1,
because UINT_MAX is the same as -1, which is the error return indicator for write. On text files, when
write sees a linefeed (LF) character, it outputs a CR/LF pair. UINT_MAX is defined in limits.h.
If the number of bytes actually written is less than that requested, the condition should be considered an
error and probably indicates a full disk. For disks or disk files, writing always proceeds from the current
file pointer. For devices, bytes are sent directly to the device. For files opened with the O_APPEND
option, the file pointer is positioned to EOF by write before writing the data.

Return Value
write returns the number of bytes written. A write to a text file does not count generated carriage returns.
In case of error, write returns -1 and sets the global variable errno to one of the following values:
EACCES Permission denied
EBADF Bad file number

Portability
DOS UNIX Win 16 Win 32 ANSI C ANSI C++ OS/2

+ + + + +

/* abs example */
#include <stdio.h>
#include <math.h>

int main(void)
{
 int number = -1234;

 printf("number: %d absolute value: %d\n", number, abs(number));
 return 0;
}

/* cabs example */
#include <stdio.h>
#include <math.h>

#ifdef __cplusplus
 #include <complex.h>
#endif

#ifdef __cplusplus /* if C++, use class complex */

 void print_abs(void)
 {
 complex z(1.0, 2.0);
 double absval;

 absval = abs(z);
 printf("The absolute value of %.2lfi %.2lfj is %.2lf",
 real(z), imag(z), absval);
 }

#else /* below function is for C (and not C++) */

 void print_abs(void)
 {
 struct complex z;
 double absval;

 z.x = 2.0;
 z.y = 1.0;
 absval = cabs(z);

 printf("The absolute value of %.2lfi %.2lfj is %.2lf",
 z.x, z.y, absval);
 }

#endif

int main(void)
{
 print_abs();
 return 0;
}

/* fabs example */
#include <stdio.h>
#include <math.h>

int main(void)
{
 float number = -1234.0;

 printf("number: %f absolute value: %f\n", number, fabs(number));
 return 0;
}

/* labs example */
#include <stdio.h>
#include <math.h>

int main(void)
{
 long result;
 long x = -12345678L;

 result= labs(x);
 printf("number: %ld abs value: %ld\n", x, result);

 return 0;
}

/* acos example */
#include <stdio.h>
#include <math.h>

int main(void)
{
 double result;
 double x = 0.5;

 result = acos(x);
 printf("The arc cosine of %lf is %lf\n", x, result);
 return 0;
}

/* asin example */
#include <stdio.h>
#include <math.h>

int main(void)
{
 double result;
 double x = 0.5;
 result = asin(x);
 printf("The arc sin of %lf is %lf\n", x, result);
 return(0);
}

/* atan example */
#include <stdio.h>
#include <math.h>

int main(void)
{
 double result;
 double x = 0.5;

 result = atan(x);
 printf("The arc tangent of %lf is %lf\n", x, result);
return(0);

}

/* atan2 example */
#include <stdio.h>
#include <math.h>

int main(void)
{
 double result;
 double x = 90.0, y = 45.0;

 result = atan2(y, x);
 printf("The arc tangent ratio of %lf is %lf\n", (y / x), result);
 return 0;
}

/* alloca example */
#include <malloc.h>
#include <stdio.h>
#include <stdlib.h>

void test(int a)
{
 char *newstack;
 int len = a;
 char dummy[1];

dummy[0] = 0; /* force good stack frame */
 printf("SP before calling alloca(0x%X) = 0x%X\n",len,_SP);
 newstack = (char *) alloca(len);
printf("SP after calling alloca = 0x%X\n",_SP);

 if (newstack)
 printf("Alloca(0x%X) returned %p\n",len,newstack);
 else
 printf("Alloca(0x%X) failed\n",len);
}
void main()
{
 test(256);
 test(16384);
}

/* asctime example */
#include <string.h>
#include <time.h>
#include <stdio.h>

int main(void)
{
 struct tm t;
 char str[80];

 /* sample loading of tm structure */

 t.tm_sec = 1; /* Seconds */
 t.tm_min = 30; /* Minutes */
 t.tm_hour = 9; /* Hour */
 t.tm_mday = 22; /* Day of the Month */
 t.tm_mon = 11; /* Month */
 t.tm_year = 56; /* Year - does not include century */
 t.tm_wday = 4; /* Day of the week */
 t.tm_yday = 0; /* Does not show in asctime */
 t.tm_isdst = 0; /* Is Daylight SavTime; does not show in asctime */

 /* converts structure to null terminated string */

 strcpy(str, asctime(&t));
 printf("%s\n", str);

 return 0;
}

/* ctime example */
#include <stdio.h>
#include <time.h>

int main(void)
{
 time_t t;

 time(&t);
 printf("Today's date and time: %s\n", ctime(&t));
 return 0;
}

/* _beginthread example */
#include <stdio.h>
#include <errno.h>
#include <stddef.h> /* _threadid variable */
#include <process.h> /* _beginthread, _endthread */
#include <time.h> /* time, _ctime */

void thread_code(void *threadno)
{
 time_t t;

 time(&t);
 printf("Executing thread number %d, ID = %d, time = %s\n",
 (int)threadno, _threadid, ctime(&t));
 _endthread();
}

void start_thread(int i)
{
 int thread_id;

#if defined(__WIN32__)
 if ((thread_id = _beginthread(thread_code,4096,(void *)i)) == (unsigned
long)-1)

#else
 if ((thread_id = _beginthread(thread_code,4096,(void *)i)) == -1)
#endif
 {
 printf("Unable to create thread %d, errno = %d\n",i,errno);
 return;
 }
 printf("Created thread %d, ID = %ld\n",i,thread_id);
}

int main(void)
{
 int i;

 for (i = 1; i < 20; i++)
 start_thread(i);
 printf("Hit ENTER to exit main thread.\n");
 getchar();
 return 0;
}

/* beginthreadNT example */
#include <windows.h>
#include <process.h>
#include <stdio.h>
#include <conio.h>

/* This function acts as the 'main' function for each new thread.
static void threadMain(void *arg) */
{
 printf("Thread %2d has an ID of %u\n", (int)arg,
GetCurrentThreadId());

 _endthread();
}

int main(void)
{
 #define NTHREADS 25

 HANDLE hThreads[NTHREADS];
 int i;

 // Create NTHREADS inheritable threads that are initially
 // suspended and that will run starting at threadMain().
 // at threadMain().
 for (i = 0; i < NTHREADS; i++)
 {
 SECURITY_ATTRIBUTES sa =
 {
 sizeof(SECURITY_ATTRIBUTES), // structure size
 0, // No security
descriptor

 TRUE, // Thread handle is
inheritable

 };

 DWORD threadId;

 hThreads[i] = (HANDLE)_beginthreadNT(
 threadMain, // Thread
starting address

 4096, // Thread
stack size

 (void *)i, // Thread
start argument

 &sa, // Thread
security

 CREATE_SUSPENDED, // Create
in suspended state

 &threadId); // Thread
ID.

 if (hThreads[i] == INVALID_HANDLE_VALUE)
 {

 MessageBox(0, "Thread Creation Failed", "Error",
MB_OK);

 return 1;
 }

 printf("Created thread %2d with an ID of %u\n", i,
threadId);

 }

 printf("\nPress a key to thaw all threads\n\n");
 getch();

 // Resume the suspended threads.
 for (i = 0; i < NTHREADS; i++)
 ResumeThread(hThreads[i]);

 // Wait for all threads to finish execution.
 WaitForMultipleObjects(NTHREADS, // Number of objects to
wait for

 hThreads, // The objects to wait for
 TRUE, // Wait for all objects
 INFINITE); // No timeout

 // Close all of the thread handles.
 for (i = 0; i < NTHREADS; i++)
 CloseHandle(hThreads[i]);

 return 0;
}

/* biosequip example */
#include <bios.h>
#include <stdio.h>

#define CO_PROCESSOR_MASK 0x0002

int main(void)
{
 int equip_check;

 /* get the current equipment configuration */
 equip_check = biosequip();

 /* check to see if there is a coprocessor installed */
 if (equip_check & CO_PROCESSOR_MASK)
 printf("There is a math coprocessor installed.\n");
 else
 printf("No math coprocessor installed.\n");
 return 0;
}

/* _bios_equiplist example */
#include <stdio.h>
#include <bios.h>

#define CO_PROCESSOR_MASK 0x0002

int main(void)
{
 unsigned equip_check;

 /* get the current equipment configuration */
 equip_check = _bios_equiplist();

 /* check to see if there is a coprocessor installed */
 if (equip_check & CO_PROCESSOR_MASK)
 printf("There is a math coprocessor installed.\n");
 else
 printf("No math coprocessor installed.\n");
 return 0;
}

/* biosmemory example */
#include <stdio.h>
#include <bios.h>

int main(void)
{
 int memory_size;

 memory_size = biosmemory(); /* returns value up to 640K */
 printf("RAM size = %dK\n",memory_size);
 return 0;
}

/* _bios_memsize example */
#include <stdio.h>
#include <bios.h>

int main(void)
{
 unsigned memory_size;

 memory_size = _bios_memsize(); /* returns value up to 640K */

 printf("RAM size = %dK\n", memory_size);

 return 0;
}

/* biostime example */
#include <stdio.h>
#include <bios.h>
#include <time.h>
#include <conio.h>

int main(void)
{
 long bios_time;
 clrscr();
 printf("The number of clock ticks since midnight is:\n");
 printf("The number of seconds since midnight is:\n");
 printf("The number of minutes since midnight is:\n");
 printf("The number of hours since midnight is:\n");
 printf("\nPress any key to stop:");
 while(!kbhit())
 {
 bios_time = biostime(0, 0L);

 gotoxy(50, 1);
 printf("%lu", bios_time);

 gotoxy(50, 2);
 printf("%.4f", bios_time / _BIOS_CLK_TCK);

 gotoxy(50, 3);
 printf("%.4f", bios_time / _BIOS_CLK_TCK / 60);

 gotoxy(50, 4);
 printf("%.4f", bios_time / _BIOS_CLK_TCK / 3600);
 }
 return 0;
}

/* _bios_timeofday example */
#include <bios.h>
#include <time.h>
#include <conio.h>
#include <stdio.h>

int main(void)
{
 long bios_time;
 clrscr();
 printf("The number of clock ticks since midnight is:\n");
 printf("The number of seconds since midnight is:\n");
 printf("The number of minutes since midnight is:\n");
 printf("The number of hours since midnight is:\n");
 printf("\nPress any key to stop:");
 while(!kbhit())
 {
 _bios_timeofday(_TIME_GETCLOCK, &bios_time);
 gotoxy(50, 1);
 printf("%lu", bios_time);
 gotoxy(50, 2);
 printf("%.4f", bios_time / CLK_TCK);
 gotoxy(50, 3);
 printf("%.4f", bios_time / CLK_TCK / 60);
 gotoxy(50, 4);
 printf("%.4f", bios_time / CLK_TCK / 3600);
 }
 return 0;
}

/* bsearch example */
#include <stdlib.h>
#include <stdio.h>

typedef int (*fptr)(const void*, const void*);

#define NELEMS(arr) (sizeof(arr) / sizeof(arr[0]))

int numarray[] = {123, 145, 512, 627, 800, 933};

int numeric (const int *p1, const int *p2)
{
 return(*p1 - *p2);
}

#pragma argsused
int lookup(int key)
{
 int *itemptr;

 /* The cast of (int(*)(const void *,const void*))
 is needed to avoid a type mismatch error at
 compile time */
 itemptr = (int *) bsearch (&key, numarray, NELEMS(numarray),
 sizeof(int), (fptr)numeric);
 return (itemptr != NULL);
}

int main(void)
{
 if (lookup(512))
 printf("512 is in the table.\n");
 else
 printf("512 isn't in the table.\n");

 return 0;
}

/* lfind example */
#include <stdio.h>
#include <stdlib.h>

int compare(int *x, int *y)
{
 return(*x - *y);
}

int main(void)
{
 int array[5] = {35, 87, 46, 99, 12};
 size_t nelem = 5;
 int key;
 int *result;

 key = 99;
 result = (int *) lfind(&key, array, &nelem,
 sizeof(int), (int(*)(const void *,const void *))compare);
 if (result)
 printf("Number %d found\n",key);
 else
 printf("Number %d not found\n",key);

 return 0;
}

/* lsearch example */
#include <stdlib.h>
#include <stdio.h>
#include <string.h> /* for strcmp declaration */

/* initialize number of colors */
char *colors[10] = { "Red", "Blue", "Green" };
int ncolors = 3;

int colorscmp(char **arg1, char **arg2)
{
 return(strcmp(*arg1, *arg2));
}

int addelem(char **key)
{
 int oldn = ncolors;
 lsearch(key, colors, (size_t *)&ncolors, sizeof(char *),
 (int(*)(const void *,const void *))colorscmp);
 return(ncolors == oldn);
}

int main(void)
{
 int i;
 char *key = "Purple";

 if (addelem(&key))
 printf("%s already in colors table\n", key);
 else
 {
 printf("%s added to colors table\n", key);
 }

 printf("The colors:\n");
 for (i = 0; i < ncolors; i++)
 printf("%s\n", colors[i]);
 return 0;
}

/* qsort example */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int sort_function(const void *a, const void *b);
char list[5][4] = { "cat", "car", "cab", "cap", "can" };

int main(void)
{
 int x;

 qsort((void *)list, 5, sizeof(list[0]), sort_function);
 for (x = 0; x < 5; x++)
 printf("%s\n", list[x]);
 return 0;
}

int sort_function(const void *a, const void *b)
{
 return(strcmp((char *)a,(char *)b));
}

/* _rtl_chmod example */
#include <errno.h>
#include <stdio.h>
#include <dos.h>
#include <io.h>

int get_file_attrib(char *filename);

int main(void)
{
 char filename[128];
 int attrib;
 printf("Enter a filename:");
 scanf("%s", filename);
 attrib = get_file_attrib(filename);
 if (attrib == -1)
 switch(errno)
 {
 case ENOENT : printf("Path or file not found.\n");
 break;
 case EACCES : printf("Permission denied.\n");
 break;
 default: printf("Error number: %d", errno);
 break;
 }
 else
 {
 if (attrib & FA_RDONLY)
 printf("%s is read-only.\n", filename);

 if (attrib & FA_HIDDEN)
 printf("%s is hidden.\n", filename);

 if (attrib & FA_SYSTEM)
 printf("%s is a system file.\n", filename);

 if (attrib & FA_DIREC)
 printf("%s is a directory.\n", filename);

 if (attrib & FA_ARCH)
 printf("%s is an archive file.\n", filename);
 }
 return 0;
}

/* returns the attributes of a DOS file */
int get_file_attrib(char *filename)
{
 return(_rtl_chmod(filename, 0));
}

/* _dos_getfileattr example */
#include <stdio.h>
#include <dos.h>

int main(void)
{
 char filename[128];
 unsigned attrib;
 printf("Enter a file name:");
 scanf("%s", filename);
 if (_dos_getfileattr(filename,&attrib) != 0)
 {
 perror("Unable to obtain file attributes");
 return 1;
 }
 if (attrib & _A_RDONLY)
 printf("%s is read-only.\n", filename);

 if (attrib & _A_HIDDEN)
 printf("%s is hidden.\n", filename);

 if (attrib & _A_SYSTEM)
 printf("%s is a system file.\n", filename);

 if (attrib & _A_VOLID)
 printf("%s is a volume label.\n", filename);

 if (attrib & _A_SUBDIR)
 printf("%s is a directory.\n", filename);

 if (attrib & _A_ARCH)
 printf("%s is an archive file.\n", filename);
 return 0;
}

/* _dos_setfileattr example */
#include <stdio.h>
#include <dos.h>

int main(void)
{
 char filename[128];
 unsigned attrib;
 printf("Enter a file name:");
 scanf("%s", filename);
 if (_dos_getfileattr(filename,&attrib) != 0)
 {
 perror("Unable to obtain file attributes");
 return 1;
 }
 if (attrib & _A_RDONLY)
 {
 printf("%s currently read-only, making it read-write.\n", filename);
 attrib &= ~_A_RDONLY;
 }
 else
 {
 printf("%s currently read-write, making it read-only.\n", filename);
 attrib |= _A_RDONLY;
 }
 if (_dos_setfileattr(filename,attrib) != 0)
 perror("Unable to set file attributes");
 return 0;
}

/* close example */
#include <string.h>
#include <stdio.h>
#include <fcntl.h>
#include <io.h>

main()
{
 int handle;
 char buf[11] = "0123456789";

 /* create a file containing 10 bytes */
 handle = open("NEW.FIL", O_CREAT);
 if (handle > -1)
 {
 write(handle, buf, strlen(buf));

 close(handle); /* close the file */
 }
 else
 {
 printf("Error opening file\n");
 }
 return 0;
}

/* _rtl_close example */
#include <string.h>
#include <stdio.h>
#include <fcntl.h>
#include <io.h>

int main(void)
{
 int handle;
 char msg[] = "Hello world";

 if ((handle = _rtl_open("TEST.$$$", O_RDWR)) == -1)
 {
 perror("Error:");
 return 1;
 }
 _rtl_write(handle, msg, strlen(msg));
 _rtl_close(handle);
 return 0;
}

/* _dos_close example */
#include <dos.h>
#include <string.h>
#include <stdio.h>

int main(void)
{
 unsigned count;
 int handle;
 char buf[11] = "0123456789";

 /* create a file containing 10 bytes */
 if (_dos_creat("DUMMY.FIL", _A_NORMAL, &handle) != 0)
 {
 perror("Unable to create DUMMY.FIL");
 return 1;
 }
 if (_dos_write(handle, buf, strlen(buf), &count) != 0)
 {
 perror("Unable to write to DUMMY.FIL");
 return 1;
 }
 /* close the file */
 _dos_close(handle);
 return 0;
}

/* cos example */
#include <stdio.h>
#include <math.h>

int main(void)
{
 double result;
 double x = 0.5;

 result = cos(x);
 printf("The cosine of %lf is %lf\n", x, result);
 return 0;
}

/* sin example */
#include <stdio.h>
#include <math.h>

int main(void)
{
 double result, x = 0.5;

 result = sin(x);
 printf("The sin of %lf is %lf\n", x, result);
 return 0;
}

/* tan example */
#include <stdio.h>
#include <math.h>

int main(void)
{
 double result, x;

 x = 0.5;
 result = tan(x);
 printf("The tan of %lf is %lf\n", x, result);
 return 0;
}

/* cosh example */
#include <stdio.h>
#include <math.h>

int main(void)
{
 double result;
 double x = 0.5;

 result = cosh(x);
 printf("The hyperbolic cosine of %lf is %lf\n", x, result);
 return 0;
}

/* sinh example */
#include <stdio.h>
#include <math.h>

int main(void)
{
 double result, x = 0.5;

 result = sinh(x);
 printf("The hyperbolic sin of %lf is %lf\n", x, result);
 return 0;
}

/* tanh example */
#include <stdio.h>
#include <math.h>

int main(void)
{
 double result, x;

 x = 0.5;
 result = tanh(x);
 printf("The hyperbolic tangent of %lf is %lf\n", x, result);
 return 0;
}

/* creat example */
#include <sys\stat.h>
#include <string.h>
#include <fcntl.h>
#include <io.h>

int main(void)
{
 int handle;
 char buf[11] = "0123456789";

 /* change the default file mode from text to binary */
 _fmode = O_BINARY;

 /* create a binary file for reading and writing */
 handle = creat("DUMMY.FIL", S_IREAD |S_IWRITE);

 /* write 10 bytes to the file */
 write(handle, buf, strlen(buf));

 /* close the file */
 close(handle);
 return 0;
}

/* _rtl_creat example */
#include <dos.h>
#include <string.h>
#include <stdio.h>
#include <io.h>

int main() {
 unsigned count;
 int handle;
 char buf[11] = "0123456789";

 /* Create a 10-byte file using _dos_creat. */
 if (_dos_creat("DUMMY.FIL", _A_NORMAL, &handle) != 0) {
 perror("Unable to _dos_creat DUMMY.FIL");
 return 1;
 }
 if (_dos_write(handle, buf, strlen(buf), &count) != 0) {
 perror("Unable to _dos_write to DUMMY.FIL");
 return 1;
 }
 _dos_close(handle);

 /* Create another 10-byte file using _rtl_creat. */
 if ((handle = _rtl_creat("DUMMY2.FIL", 0)) < 0) {
 perror("Unable to _rtl_create DUMMY2.FIL");
 return 1;
 }
 if (_rtl_write(handle, buf, strlen(buf)) < 0) {
 perror("Unable to _rtl_write to DUMMY2.FIL");
 return 1;
 }
 _rtl_close(handle);
 return 0;
}

/* _dos_creat example */
#include <dos.h>
#include <string.h>
#include <stdio.h>

int main(void)
{
 unsigned count;
 int handle;
 char buf[11] = "0123456789";

 /* create a file containing 10 bytes */
 if (_dos_creat("DUMMY.FIL", _A_NORMAL, &handle) != 0)
 {
 perror("Unable to create DUMMY.FIL");
 return 1;
 }
 if (_dos_write(handle, buf, strlen(buf), &count) != 0)
 {
 perror("Unable to write to DUMMY.FIL");
 return 1;
 }
 /* close the file */
 _dos_close(handle);
 return 0;
}

/* _dos_creatnew example */
#include <dos.h>
#include <string.h>
#include <stdio.h>

int main(void)
{
 unsigned count;
 int handle;
 char buf[11] = "0123456789";

 /* create a file containing 10 bytes */
 if (_dos_creatnew("DUMMY.FIL", _A_NORMAL, &handle) != 0)
 {
 perror("Unable to create DUMMY.FIL");
 return 1;
 }
 if (_dos_write(handle, buf, strlen(buf), &count) != 0)
 {
 perror("Unable to write to DUMMY.FIL");
 return 1;
 }
 /* close the file */
 _dos_close(handle);
 return 0;
}

/* creatnew example */
#include <string.h>
#include <stdio.h>
#include <errno.h>
#include <dos.h>
#include <io.h>

int main(void)
{
 int handle;
 char buf[11] = "0123456789";

 /* attempt to create a file that doesn't already exist */
 handle = creatnew("DUMMY.FIL", 0);

if (handle == -1)
 printf("DUMMY.FIL already exists.\n");
 else
 {
 printf("DUMMY.FIL successfully created.\n");
 write(handle, buf, strlen(buf));
 close(handle);
 }
 return 0;
}

/* disable example */
/* * * * * * * * * *
NOTE: This is an interrupt service routine. You cannot compile this program
with Test Stack Overflow turned on and get an executable file that
operates correctly.

 * * * * * * * * * */

#include <stdio.h>
#include <dos.h>
#include <conio.h>

#define INTR 0X1C /* The clock tick interrupt */

#ifdef __cplusplus
 #define __CPPARGS ...
#else
 #define __CPPARGS
#endif

void interrupt (*oldhandler)(__CPPARGS);

int count=0;

void interrupt handler(__CPPARGS) /* if C++, need the the ellipsis */
{
/* disable interrupts during the handling of the interrupt */
 disable();
/* increase the global counter */
 count++;
/* reenable interrupts at the end of the handler */
enable();

/* call the old routine */
 oldhandler();
}

int main(void)
{
/* save the old interrupt vector */
 oldhandler = getvect(INTR);

/* install the new interrupt handler */
 setvect(INTR, handler);

/* loop until the counter exceeds 20 */
 while (count < 20)
 printf("count is %d\n",count);

/* reset the old interrupt handler */
 setvect(INTR, oldhandler);

return 0;
}

/* _disable example */
/* * * * * * * * * *
NOTE: This is an interrupt service routine. You cannot compile this program
with Test Stack Overflow turned on and get an executable file that
operates correctly.

 * * * * * * * * * */

#include <stdio.h>
#include <dos.h>
#include <conio.h>

#define INTR 0X1C /* The clock tick interrupt */

#ifdef __cplusplus
 #define __CPPARGS ...
#else
 #define __CPPARGS
#endif

void interrupt (*oldhandler)(__CPPARGS);

int count=0;

void interrupt handler(__CPPARGS) /* if C++, need the the ellipsis */
{
/* disable interrupts during the handling of the interrupt */
 _disable();
/* increase the global counter */
 count++;
/* reenable interrupts at the end of the handler */
 enable();
/* call the old routine */
 oldhandler();
}

int main(void)
{
/* save the old interrupt vector */
oldhandler = _dos_getvect(INTR);

/* install the new interrupt handler */
 _dos_setvect(INTR, handler);

/* loop until the counter exceeds 20 */
 while (count < 20)
 printf("count is %d\n",count);

/* reset the old interrupt handler */
 _dos_setvect(INTR, oldhandler);

 return 0;
}

/* enable example */
/* * * * * * * * * *
NOTE: This is an interrupt service routine. You cannot compile this program
with Test Stack Overflow turned on and get an executable file that
operates correctly.

 * * * * * * * * * */

#include <stdio.h>
#include <dos.h>
#include <conio.h>

#define INTR 0X1C /* The clock tick interrupt */

#ifdef __cplusplus
 #define __CPPARGS ...
#else
 #define __CPPARGS
#endif

void interrupt (*oldhandler)(__CPPARGS);

int count=0;

void interrupt handler(__CPPARGS) /* if C++, need the the ellipsis */
{
/* disable interrupts during the handling of the interrupt */
 disable();
/* increase the global counter */
 count++;
/* reenable interrupts at the end of the handler */
 enable();
/* call the old routine */
 oldhandler();
}

int main(void)
{
/* save the old interrupt vector */
 oldhandler = getvect(INTR);

/* install the new interrupt handler */
 setvect(INTR, handler);

/* loop until the counter exceeds 20 */
 while (count < 20)
 printf("count is %d\n",count);

/* reset the old interrupt handler */
 setvect(INTR, oldhandler);

 return 0;
}

/* _enable example */
/* * * * * * * * * *
NOTE: This is an interrupt service routine. You cannot compile this program
with Test Stack Overflow turned on and get an executable file that
operates correctly.

 * * * * * * * * * */

#include <stdio.h>
#include <dos.h>
#include <conio.h>

#define INTR 0X1C /* The clock tick interrupt */

#ifdef __cplusplus
 #define __CPPARGS ...
#else
 #define __CPPARGS
#endif

void interrupt (*oldhandler)(__CPPARGS);

int count=0;

void interrupt handler(__CPPARGS) /* if C++, need the the ellipsis */
{
/* disable interrupts during the handling of the interrupt */
 disable();
/* increase the global counter */
 count++;
/* reenable interrupts at the end of the handler */
 _enable();
/* call the old routine */
 oldhandler();
}

int main(void)
{
/* save the old interrupt vector */
 oldhandler = _dos_getvect(INTR);

/* install the new interrupt handler */
 _dos_setvect(INTR, handler);

/* loop until the counter exceeds 20 */
 while (count < 20)
 printf("count is %d\n",count);

/* reset the old interrupt handler */
 _dos_setvect(INTR, oldhandler);

 return 0;
}

/* div example */
/* div example */

#include <stdlib.h>
#include <stdio.h>

div_t x;

int main(void)
{
 x = div(10,3);
 printf("10 div 3 = %d remainder %d\n",
 x.quot, x.rem);

 return 0;
}

/* ldiv example */
/* ldiv example */

#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 ldiv_t lx;

 lx = ldiv(100000L, 30000L);
 printf("100000 div 30000 = %ld remainder %ld\n", lx.quot, lx.rem);
 return 0;
}

/* dup example */
#include <string.h>
#include <stdio.h>
#include <conio.h>
#include <io.h>

void flush(FILE *stream);

int main(void)
{
 FILE *fp;
 char msg[] = "This is a test";

 /* create a file */
 fp = fopen("DUMMY.FIL", "w");

 /* write some data to the file */
 fwrite(msg, strlen(msg), 1, fp);

 clrscr();
 printf("Press any key to flush DUMMY.FIL:");
 getch();

 /* flush the data to DUMMY.FIL without closing it */
 flush(fp);

 printf("\nFile was flushed, Press any key to quit:");
 getch();
 return 0;
}

void flush(FILE *stream)
{
 int duphandle;

 /* flush TC's internal buffer */
 fflush(stream);

 /* make a duplicate file handle */
 duphandle = dup(fileno(stream));

 /* close the duplicate handle to flush the DOS buffer */
 close(duphandle);
}

/* dup2 example */
#include <sys\stat.h>
#include <string.h>
#include <fcntl.h>
#include <io.h>

int main(void)
{
 #define STDOUT 1

 int nul, oldstdout;
 char msg[] = "This is a test";

 /* create a file */
 nul = open("DUMMY.FIL", O_CREAT | O_RDWR,
 S_IREAD | S_IWRITE);

 /* create a duplicate handle for standard output */
 oldstdout = dup(STDOUT);
 /*
 redirect standard output to DUMMY.FIL
 by duplicating the file handle onto
 the file handle for standard output.
 */
 dup2(nul, STDOUT);

 /* close the handle for DUMMY.FIL */
 close(nul);

 /* will be redirected into DUMMY.FIL */
 write(STDOUT, msg, strlen(msg));

 /* restore original standard output handle */
 dup2(oldstdout, STDOUT);

 /* close duplicate handle for STDOUT */
 close(oldstdout);

 return 0;
}

/* ecvt example */
#include <stdlib.h>
#include <stdio.h>
#include <conio.h>

int main(void)
{
 char *string;
 double value;
 int dec, sign;
 int ndig = 10;

 clrscr();
 value = 9.876;
 string = ecvt(value, ndig, &dec, &sign);
 printf("string = %s dec = %d sign = %d\n", string, dec, sign);

 value = -123.45;
 ndig= 15;
 string = ecvt(value,ndig,&dec,&sign);
 printf("string = %s dec = %d sign = %d\n", string, dec, sign);

 value = 0.6789e5; /* scientific notation */
 ndig = 5;
 string = ecvt(value,ndig,&dec,&sign);
 printf("string = %s dec = %d sign = %d\n", string, dec, sign);

 return 0;
}

/* fcvt example */
#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 char *str;
 double num;
 int dec, sign, ndig = 5;

 /* a regular number */
 num = 9.876;
 str = fcvt(num, ndig, &dec, &sign);
 printf("string = %10s decimal place = %d sign = %d\n", str, dec, sign);

 /* a negative number */
 num = -123.45;
 str = fcvt(num, ndig, &dec, &sign);
 printf("string = %10s decimal place = %d sign = %d\n", str, dec, sign);

 /* scientific notation */
 num = 0.678e5;
 str = fcvt(num, ndig, &dec, &sign);
 printf("string = %10s decimal place= %d sign = %d\n", str, dec, sign);
 return 0;
}

/* execl example */
/* execl() example */
#include <stdio.h>
#include <process.h>

int main(int argc, char *argv[])
{
 int loop;

 printf("%s running...\n\n", argv[0]);

 if (argc == 1) { /* check for only one command-line parameter */
 printf("%s calling itself again...\n", argv[0]);
 execl(argv[0], argv[0], "ONE", "TWO", "THREE", NULL);
 perror("EXEC:");
 exit(1);
 }

 printf("%s called with arguments:\n", argv[0]);

 for (loop = 1; loop <= argc; loop++)
 puts(argv[loop]); /* Display all command-line parameters */
 return 0;
}

/* execlp example */
/* execlp example */
#include <process.h>
#include <stdio.h>
#include <errno.h>

int main(int argc, char *argv[])
{
 int i;

 printf("Command line arguments:\n");

 for (i=0; i < argc; ++i)
 printf("[%2d] %s\n", i, argv[i]);

 printf("About to exec child with arg1 arg2 ...\n");
 execlp("CHILD.EXE", "CHILD.EXE", "arg1", "arg2", NULL);

 perror("exec error");
 exit(1);

 return 0;
}

/* execle example */
#include <process.h>
#include <stdlib.h>
#include <stdio.h>

int main(int argc, char *argv[], char *env[])
{
 int loop;
 char *new_env[] = { "TESTING", NULL };
 printf("%s running...\n\n", argv[0]);
 if (argc == 1) { /* check for only one command-line parameter */
 printf("%s calling itself again...\n", argv[0]);
 execle(argv[0], argv[0], "ONE", "TWO", "THREE", NULL, new_env);
 perror("EXEC:");
 exit(1);
 }
 printf("%s called with arguments:\n", argv[0]);
 for (loop = 1; loop <= argc; loop++)
 puts(argv[loop]); /* display all command-line parameters */

 /* display the first environment parameter */
 printf("value of env[0]: %s\n",env[0]);
 return 0;
}

/* execlpe example */
#include <process.h>
#include <stdio.h>
#include <errno.h>

int main(int argc, char *argv[], char **envp)
{
 int i;

 printf("Command line arguments:\n");
 for (i=0; i < argc; ++i)
 printf("[%2d] : %s\n", i, argv[i]);

 printf("About to exec child with arg1 arg2 ...\n");
 execlpe("CHILD.EXE", "CHILD.EXE", "arg1", "arg2", NULL, envp);

 perror("exec error");
 exit(1);
 return 0;
}

/* execv example */
#include <process.h>
#include <stdio.h>
#include <errno.h>

int main(int argc, char *argv[])
{
 int i;

 printf("Command line arguments:\n");
 for (i=0; i < argc; i++)
 printf("[%2d] : %s\n", i, argv[i]);

 printf("About to exec child with arg1 arg2 ...\n");
 execv("CHILD.EXE", argv);

 perror("exec error");
 exit(1);
 return 0;
}

/* execve example */
#include <process.h>
#include <stdio.h>
#include <errno.h>

int main(int argc, char *argv[], char **envp)
{
 int i;

 printf("Command line arguments:\n");
 for (i=0; i < argc; ++i)
 printf("[%2d] : %s\n", i, argv[i]);

 printf("About to exec child with arg1 arg2 ...\n");
 execve("CHILD.EXE", argv, envp);

 perror("exec error");
 exit(1);
 return 0;
}

/* execvp example */
#include <process.h>
#include <stdio.h>
#include <errno.h>

int main(int argc, char *argv[])
{
 int i;

 printf("Command line arguments:\n");
 for (i=0; i < argc; ++i)
 printf("[%2d] : %s\n", i, argv[i]);

 printf("About to exec child with arg1 arg2 ...\n");
 execvp("CHILD.EXE", argv);

 perror("exec error");
 exit(1);
 return 0;
}

/* execvpe example */
#include <process.h>
#include <stdio.h>
#include <errno.h>

int main(int argc, char *argv[], char **envp)
{
 int i;

 printf("Command line arguments:\n");
 for (i=0; i < argc; ++i)
 printf("[%2d] : %s\n", i, argv[i]);

 printf("About to exec child with arg1 arg2 ...\n");
 execvpe("CHILD.EXE", argv, envp);

 perror("exec error");
 exit(1);
 return 0;
}

/* _exit example */
#include <stdlib.h>
#include <stdio.h>

void done(void);

int main(void)
{

 atexit(done);
 _exit(0);
 return 0;
}

void done()
{
 printf("hello\n");
}

/* _c_exit example */
#include <process.h>
#include <io.h>
#include <fcntl.h>
#include <stdio.h>
#include <dos.h>

main()
{
 int fd;
 char c;

 if ((fd = open("_c_exit.c",O_RDONLY)) < 0)
 {
 printf("Unable to open _c_exit.c for reading\n");
 return 1;
 }
 if (read(fd,&c,1) != 1)
 printf("Unable to read from open file handle %d before _c_exit\n",fd);
 else
 printf("Successfully read from open file handle %d before _c_exit\
n",fd);

 printf("Interrupt zero vector before _c_exit = %Fp\n",_dos_getvect(0));
 _c_exit();
 if (read(fd,&c,1) != 1)
 printf("Unable to read from open file handle %d after _c_exit\n",fd);
 else
 printf("Successfully read from open file handle %d after _c_exit\
n",fd);

 printf("Interrupt zero vector after _c_exit = %Fp\n",_dos_getvect(0));
 return 0;
}

/* exit */
#include <stdlib.h>
#include <conio.h>
#include <stdio.h>

int main(void)
{
 int status;

 printf("Enter either 1 or 2\n");
 status = getch();
 /* Sets DOS errorlevel */
 exit(status - '0');

/* Note: this line is never reached */
 return 0;
}

/* _cexit example */
#include <windows.h>
#include <process.h>
#include <io.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>

void exit_func(void)
{
 printf("Exit function called\n\n");
 printf("Close Window to return to program... It will beep if able to read
from file");

}

int main(void)
{
 int fd;
 char c;

 if ((fd = open("_cexit.c",O_RDONLY)) < 0)
 {
printf("Unable to open _cexit.c for reading\n");
return 1;

 }
 atexit(exit_func);
 if (read(fd,&c,1) != 1)
printf("Unable to read from open file handle %d before _cexit\n",fd);

 else
printf("Successfully read from open file handle %d before _cexit\n",fd);

 _cexit();
 if (read(fd,&c,1) == 1)
 MessageBeep(0);

 return 0;
}

/* farfree example */
#include <stdio.h>
#include <alloc.h>
#include <string.h>
#include <dos.h>

int main(void)
{
 char far *fptr;
 char *str = "Hello";

 /* allocate memory for the far pointer */
 fptr = (char far *) farcalloc(10, sizeof(char));

 /* copy "Hello" into allocated memory */
/*
Note: movedata is used because you might be in a small data model, in which
case a normal string copy routine can't be used since it assumes the
pointer size is near.

 */
 movedata(FP_SEG(str), FP_OFF(str),
 FP_SEG(fptr), FP_OFF(fptr),
 strlen(str));

 /* display string (note the F modifier) */
 printf("Far string is: %Fs\n", fptr);

 /* free the memory */
 farfree(fptr);

 return 0;
}

/* free example */
#include <string.h>
#include <stdio.h>
#include <alloc.h>

int main(void)
{
 char *str;

 /* allocate memory for string */
 str = (char *) malloc(10);

 /* copy "Hello" to string */
 strcpy(str, "Hello");

 /* display string */
 printf("String is %s\n", str);

 /* free memory */
 free(str);

 return 0;
}

/* fgetc example */
#include <string.h>
#include <stdio.h>
#include <conio.h>

int main(void)
{
 FILE *stream;
 char string[] = "This is a test";
 char ch;

 /* open a file for update */
 stream = fopen("DUMMY.FIL", "w+");

 /* write a string into the file */
 fwrite(string, strlen(string), 1, stream);

 /* seek to the beginning of the file */
 fseek(stream, 0, SEEK_SET);

 do
 {
 /* read a char from the file */
 ch = fgetc(stream);

 /* display the character */
 putch(ch);
 } while (ch != EOF);

 fclose(stream);
 return 0;
}

/* fputc example */
#include <stdio.h>

int main(void)
{
 char msg[] = "Hello world";
 int i = 0;

 while (msg[i])
 {
 fputc(msg[i], stdout);
 i++;
 }
 return 0;
}

/* fgetchar example */
#include <stdio.h>

int main(void)
{
 char ch;

 /* prompt the user for input */
 printf("Enter a character followed by <Enter>: ");

 /* read the character from stdin */
 ch = fgetchar();

 /* display what was read */
 printf("The character read is: '%c'\n", ch);
 return 0;
}

/* fputchar example */
#include <stdio.h>

int main(void)
{
 char msg[] = "This is a test";
 int i = 0;

 while (msg[i])
 {
 fputchar(msg[i]);
 i++;
 }
 return 0;
}

/* fgets example */
#include <string.h>
#include <stdio.h>

int main(void)
{
 FILE *stream;
 char string[] = "This is a test";
 char msg[20];

 /* open a file for update */
 stream = fopen("DUMMY.FIL", "w+");

 /* write a string into the file */
 fwrite(string, strlen(string), 1, stream);

 /* seek to the start of the file */
 fseek(stream, 0, SEEK_SET);

 /* read a string from the file */
 fgets(msg, strlen(string)+1, stream);

 /* display the string */
 printf("%s", msg);

 fclose(stream);
 return 0;
}

/* fputs example */
#include <stdio.h>

int main(void)
{
 /* write a string to standard output */
 fputs("Hello world\n", stdout);

 return 0;
}

/* _dos_findfirst and _dos_findnext example */
#include <stdio.h>
#include <dos.h>

int main(void)
{
 struct find_t ffblk;
 int done;
 printf("Directory listing of *.*\n");
 done = _dos_findfirst("*.*",_A_NORMAL,&ffblk);
 while (!done) {
 printf(" %s\n", ffblk.name);
 done = _dos_findnext(&ffblk);
 }
 return 0;
}

/* Program output

Directory listing of *.*
 FINDFRST.C
 FINDFRST.OBJ
 FINDFRST.MAP
 FINDFRST.EXE */

/* findfirst and findnext example */
/* findfirst and findnext example */

#include <stdio.h>
#include <dir.h>

int main(void)
{
 struct ffblk ffblk;
 int done;
 printf("Directory listing of *.*\n");
 done = findfirst("*.*",&ffblk,0);
 while (!done)
 {
 printf(" %s\n", ffblk.ff_name);
 done = findnext(&ffblk);
 }

 return 0;
}

/* _fsopen example */
#include <io.h>
#include <process.h>
#include <share.h>
#include <stdio.h>

int main(void)
{
 FILE *f;
 int status;
 f = _fsopen("c:\\autoexec.bat", "r", SH_DENYNO);
 if (f == NULL)
 {
 printf("_fsopen failed\n");
 exit(1);
 }
 status = access("c:\\autoexec.bat", 6);
 if (status == 0)
 printf("read/write access allowed\n");
 else
 printf("read/write access not allowed\n");
 fclose(f);
 return 0;
}

/* fdopen example */
#include <sys\stat.h>
#include <stdio.h>
#include <fcntl.h>
#include <io.h>

int main(void)
{
 int handle;
 FILE *stream;

 /* open a file */
 handle = open("DUMMY.FIL", O_CREAT,
 S_IREAD | S_IWRITE);

 /* now turn the handle into a stream */
 stream = fdopen(handle, "w");

 if (stream == NULL)
 printf("fdopen failed\n");
 else
 {
 fprintf(stream, "Hello world\n");
 fclose(stream);
 }
 return 0;
}

/* fopen example */
/* Program to create backup of the AUTOEXEC.BAT file */

#include <stdio.h>

int main(void)
{
 FILE *in, *out;

 if ((in = fopen("\\AUTOEXEC.BAT", "rt"))
 == NULL)
 {
 fprintf(stderr, "Cannot open input file.\n");
 return 1;
 }

 if ((out = fopen("\\AUTOEXEC.BAK", "wt"))
 == NULL)
 {
 fprintf(stderr, "Cannot open output file.\n");
 return 1;
 }

 while (!feof(in))
 fputc(fgetc(in), out);

 fclose(in);
 fclose(out);
 return 0;
}

/* freopen example */
#include <stdio.h>

int main(void)
{
 /* redirect standard output to a file */
 if (freopen("OUTPUT.FIL", "w", stdout)
 == NULL)
 fprintf(stderr, "error redirecting stdout\n");

 /* this output will go to a file */
 printf("This will go into a file.");

 /* close the standard output stream */
 fclose(stdout);

 return 0;
}

/* freemem example */
#include <dos.h>
#include <alloc.h>
#include <stdio.h>

int main(void)
{
 unsigned int size, segp;
 int stat;

 size = 64; /* (64 x 16) = 1024 bytes */
 stat = allocmem(size, &segp);
 if (stat < 0)
 printf("Allocated memory at segment: %x\n", segp);
 else
 printf("Failed: maximum number of\
 paragraphs available is %u\n", stat);
 freemem(segp);

 return 0;
}

/* fstat example */
#include <sys\stat.h>
#include <stdio.h>
#include <time.h>

int main(void)
{
 struct stat statbuf;
 FILE *stream;

 /* open a file for update */
 if ((stream = fopen("DUMMY.FIL", "w+"))
 == NULL)
 {
 fprintf(stderr, "Cannot open output file.\n");
 return(1);
 }
 fprintf(stream, "This is a test");
 fflush(stream);

 /* get information about the file */
 fstat(fileno(stream), &statbuf);
 fclose(stream);

 /* display the information returned */
 if (statbuf.st_mode & S_IFCHR)
 printf("Handle refers to a device.\n");
 if (statbuf.st_mode & S_IFREG)
 printf("Handle refers to an ordinary file.\n");
 if (statbuf.st_mode & S_IREAD)
 printf("User has read permission on file.\n");
 if (statbuf.st_mode & S_IWRITE)
 printf("User has write permission on file.\n");

 printf("Drive letter of file: %c\n", 'A'+statbuf.st_dev);
 printf("Size of file in bytes: %ld\n", statbuf.st_size);
 printf("Time file last opened: %s\n", ctime(&statbuf.st_ctime));
 return 0;
}

/* stat example */
#include <sys\stat.h>
#include <stdio.h>
#include <time.h>

#define FILENAME "TEST.$$$"

int main(void)
{
 struct stat statbuf;
 FILE *stream;

 /* open a file for update */
 if ((stream = fopen(FILENAME, "w+")) == NULL)
 {
 fprintf(stderr, "Cannot open output file.\n");
 return(1);
 }

 /* get information about the file */
 stat(FILENAME, &statbuf);

 fclose(stream);

 /* display the information returned */
 if (statbuf.st_mode & S_IFCHR)
 printf("Handle refers to a device.\n");
 if (statbuf.st_mode & S_IFREG)
 printf("Handle refers to an ordinary file.\n");
 if (statbuf.st_mode & S_IREAD)
 printf("User has read permission on file.\n");
 if (statbuf.st_mode & S_IWRITE)
 printf("User has write permission on file.\n");

 printf("Drive letter of file: %c\n", 'A'+statbuf.st_dev);
 printf("Size of file in bytes: %ld\n", statbuf.st_size);
 printf("Time file last opened: %s\n", ctime(&statbuf.st_ctime));
 return 0;
}

/* getc example */
#include <stdio.h>

int main(void)
{
 char ch;

 printf("Input a character:");
/* read a character from the
standard input stream */

 ch = getc(stdin);
 printf("The character input was: '%c'\n", ch);
 return 0;
}

/* putc example */
#include <stdio.h>

int main(void)
{
 char msg[] = "Hello world\n";
 int i = 0;

 while (msg[i])
 putc(msg[i++], stdout);
 return 0;
}

/* getch example */
#include <conio.h>
#include <stdio.h>

int main(void)
{
 int c;
 int extended = 0;
 c = getch();
 if (!c)
 extended = getch();
 if (extended)
 printf("The character is extended\n");
 else
 printf("The character isn't extended\n");

 return 0;
}

/* getche example */
#include <stdio.h>
#include <conio.h>

int main(void)
{
 char ch;

 printf("Input a character:");
 ch = getche();
 printf("\nYou input a '%c'\n", ch);
 return 0;
}

/* getchar example */
#include <stdio.h>

int main(void)
{
 int c;

/*
Note that getchar reads from stdin and is line buffered; this means it will
not return until you press ENTER.

 */

 while ((c = getchar()) != '\n')
 printf("%c", c);

 return 0;
}

/* putchar example */
#include <stdio.h>

/* define some box-drawing characters */
#define LEFT_TOP 0xDA
#define RIGHT_TOP 0xBF
#define HORIZ 0xC4
#define VERT 0xB3
#define LEFT_BOT 0xC0
#define RIGHT_BOT 0xD9

int main(void)
{
 char i, j;

 /* draw the top of the box */
 putchar(LEFT_TOP);
 for (i=0; i<10; i++)
 putchar(HORIZ);
 putchar(RIGHT_TOP);
 putchar('\n');

 /* draw the middle */
 for (i=0; i<4; i++)
 {
 putchar(VERT);
 for (j=0; j<10; j++)
 putchar(' ');
 putchar(VERT);
 putchar('\n');
 }

 /* draw the bottom */
 putchar(LEFT_BOT);
 for (i=0; i<10; i++)
 putchar(HORIZ);
 putchar(RIGHT_BOT);
 putchar('\n');

 return 0;
}

/* getcwd example */
#include <stdio.h>
#include <dir.h>

int main(void)
{
 char buffer[MAXPATH];

 getcwd(buffer, MAXPATH);
 printf("The current directory is: %s\n", buffer);
 return 0;
}

/* _getdcwd example */
#include <direct.h>
#include <stdio.h>

char buf[65];

void main()
{
 if (_getdcwd(3, buf, sizeof(buf)) == NULL)
 perror("Unable to get current directory of drive C");
 else
 printf("Current directory of drive C is %s\n",buf);
}

/* _dos_getdate example */
#include <dos.h>
#include <stdio.h>

int main(void)
{
 struct dosdate_t d;
 _dos_getdate(&d);
 printf("The current year is: %d\n", d.year);
 printf("The current day is: %d\n", d.day);
 printf("The current month is: %d\n", d.month);
 return 0;
}

/* _dos_setdate example */
#include <dos.h>
#include <process.h>
#include <stdio.h>

int main(void)
{
 struct dosdate_t reset;
 reset.year = 2001;
 reset.day = 1;
 reset.month = 1;
 printf("Setting date to 1/1/2001.\n");
 _dos_setdate(&reset);
 system("date");
 return 0;
}

/* getdate example */
#include <dos.h>
#include <stdio.h>

int main(void)
{
 struct date d;

 getdate(&d);
 printf("The current year is: %d\n", d.da_year);
 printf("The current day is: %d\n", d.da_day);
 printf("The current month is: %d\n", d.da_mon);
 return 0;
}

/* setdate example */
#include <stdio.h>
#include <process.h>
#include <dos.h>

int main(void)
{
 struct date reset;
 struct date save_date;

 getdate(&save_date);
 printf("Original date:\n");
 system("date");

 reset.da_year = 2001;
 reset.da_day = 1;
 reset.da_mon = 1;
 setdate(&reset);

 printf("Date after setting:\n");
 system("date");

 setdate(&save_date);
 printf("Back to original date:\n");
 system("date");

 return 0;
}

/* _dos_getdiskfree example */
#include <stdio.h>
#include <dos.h>
#include <process.h>

int main(void)
{
 struct diskfree_t free;
 long avail;

 if (_dos_getdiskfree(0, &free) != 0) {
 printf("Error in _dos_getdiskfree() call\n");
 exit(1);
 }
 avail = (long) free.avail_clusters
 * (long) free.bytes_per_sector
 * (long) free.sectors_per_cluster;
 printf("The current drive has %ld bytes available\n", avail);
 return 0;
}

/* getdfree example */
#include <stdio.h>
#include <dos.h>
#include <process.h>

int main(void)
{
 struct diskfree_t free;
 long avail;

 if (_dos_getdiskfree(0, &free) != 0) {
 printf("Error in _dos_getdiskfree() call\n");
 exit(1);
 }
 avail = (long) free.avail_clusters
 * (long) free.bytes_per_sector
 * (long) free.sectors_per_cluster;
 printf("The current drive has %ld bytes available\n", avail);
 return 0;
}

/* _chdrive example */
 #include <stdio.h>
#include <direct.h>

int main(void)
{
 if (_chdrive(3) == 0)
 printf("Successfully changed to drive C:\n");
 else
 printf("Cannot change to drive C:\n");
 return 0;
}

/* _dos_getdrive example */
#include <stdio.h>
#include <dos.h>

int main(void)
{
 unsigned disk;
 _dos_getdrive(&disk);
 printf("The current drive is: %c\n", disk + 'A' - 1);
 return 0;
}

/* _dos_setdrive example */
#include <stdio.h>
#include <dos.h>

int main(void)
{
 unsigned maxdrives;
 _dos_setdrive(3,&maxdrives); /* set drive to C: */
 printf("The number of logical drives is: %d\n", maxdrives);
 return 0;
}

/* _getdrive example */
#include <stdio.h>
#include <direct.h>

int main(void)
{
 int disk;
 disk = _getdrive() + 'A' - 1;
 printf("The current drive is: %c\n", disk);
 return 0;
}

/* getdisk example */
#include <stdio.h>
#include <dir.h>

int main(void)
{
 int disk, maxdrives = setdisk(2);
 disk = getdisk() + 'A';
 printf("\nThe number of logical drives is:%d\n", maxdrives);
 printf("The current drive is: %c\n", disk);
 return 0;
 }

/* setdisk example */
#include <stdio.h>
#include <dir.h>

int main(void)
{
 int save, disk, disks;

 /* save original drive */
 save = getdisk();

 /* print number of logic drives */
 disks = setdisk(save);
 printf("%d logical drives on the system\n\n", disks);

 /* print the drive letters available */
 printf("Available drives:\n");
 for (disk = 0;disk < 26;++disk)
 {
 setdisk(disk);
 if (disk == getdisk())
 printf("%c: drive is available\n", disk + 'a');
 }
 setdisk(save);

 return 0;
}

/* getdta example */
#include <dos.h>
#include <stdio.h>

int main(void)
{
 char far *dta;

 dta = getdta();
 printf("The current disk transfer address is: %Fp\n", dta);
 return 0;
}

/* setdta example */
#include <process.h>
#include <string.h>
#include <stdio.h>
#include <dos.h>

int main(void)
{
 char line[80], far *save_dta;
 char buffer[256] = "SETDTA test!";
 struct fcb blk;
 int result;

 /* get new file name from user */
 printf("Enter a file name to create:");
 gets(line);

 /* parse the new file name to the dta */
 parsfnm(line, &blk, 1);
 printf("%d %s\n", blk.fcb_drive, blk.fcb_name);

 /* request DOS services to create file */
 if (bdosptr(0x16, &blk, 0) == -1)
 {
 perror("Error creating file");
 exit(1);
 }

 /* save old dta and set new dta */
 save_dta = getdta();
 setdta(buffer);

 /* write new records */
 blk.fcb_recsize = 256;
 blk.fcb_random = 0L;
 result = randbwr(&blk, 1);
 printf("result = %d\n", result);

 if (!result)
 printf("Write OK\n");
 else
 {
 perror("Disk error");
 exit(1);
 }

 /* request DOS services to close the file */
 if (bdosptr(0x10, &blk, 0) == -1)
 {
 perror("Error closing file");
 exit(1);
 }

 /* reset the old dta */
 setdta(save_dta);
 return 0;

}

/* getfat example */
#include <stdio.h>
#include <dos.h>

int main(void)
{
 struct fatinfo diskinfo;
 int flag = 0;

 printf("Please insert disk in drive A\n");
 getchar();

 getfat(1, &diskinfo);
/* get drive information */

 printf("\nDrive A: is ");
 switch((unsigned char) diskinfo.fi_fatid)
 {
 case 0xFD:
 printf("360K low density\n");
 break;

 case 0xF9:
 printf("1.2 Meg high density\n");
 break;

 default:
 printf("unformatted\n");
 flag = 1;
 }

 if (!flag)
 {
 printf(" sectors per cluster %5d\n", diskinfo.fi_sclus);
 printf(" number of clusters %5d\n", diskinfo.fi_nclus);
 printf(" bytes per sector %5d\n", diskinfo.fi_bysec);
 }

 return 0;
}

/* getfatd example */
#include <stdio.h>
#include <dos.h>

int main()
{
 struct fatinfo diskinfo;

 /* get default drive information */
 getfatd(&diskinfo);
 printf("\nDefault Drive:\n");
 printf("sectors per cluster: %5d\n",diskinfo.fi_sclus);
 printf("FAT ID byte: %5X\n",diskinfo.fi_fatid & 0xFF);
 printf("number of clusters %5d\n",diskinfo.fi_nclus);
 printf("bytes per sector %5d\n",diskinfo.fi_bysec);
 return 0;
}

/* getftime example */
#include <stdio.h>
#include <io.h>

int main(void)
{
 FILE *stream;
 struct ftime ft;

 if ((stream = fopen("TEST.$$$",
 "wt")) == NULL)
 {
 fprintf(stderr, "Cannot open output file.\n");
 return 1;
 }
 getftime(fileno(stream), &ft);
 printf("File time: %u:%u:%u\n",
 ft.ft_hour, ft.ft_min,
 ft.ft_tsec * 2);
 printf("File date: %u/%u/%u\n",
 ft.ft_month, ft.ft_day,
 ft.ft_year+1980);
 fclose(stream);
 return 0;
}

/* setftime example */
#include <stdio.h>
#include <process.h>
#include <fcntl.h>
#include <io.h>

int main(void)
{
 struct ftime filet;
 FILE *fp;

 if ((fp = fopen("TEST.$$$", "w")) == NULL)
 {
 perror("Error:");
 exit(1);
 }

 fprintf(fp, "testing...\n");

 /* load ftime structure with new time and date */
 filet.ft_tsec = 1;
 filet.ft_min = 1;
 filet.ft_hour = 1;
 filet.ft_day = 1;
 filet.ft_month = 1;
 filet.ft_year = 21;

 /* show current directory for time and date */
 system("dir TEST.$$$");

 /* change the time and date stamp*/
 setftime(fileno(fp), &filet);

 /* close and remove the temporary file */
 fclose(fp);

 system("dir TEST.$$$");

 unlink("TEST.$$$");
 return 0;
}

/* _dos_getftime example */
#include <stdio.h>
#include <dos.h>

int main()
{
 FILE *stream;
 unsigned date, time;
 if ((stream = fopen("TEST.$$$", "w")) == NULL)
 {
 fprintf(stderr, "Cannot open output file.\n");
 return 1;
 }
 _dos_getftime(fileno(stream), &date, &time);
 printf("File date: 0x%x\n",date);
 printf("File time: 0x%x\n",time);
 fclose(stream);
 return 0;
}

/* _dos_setftime example */
#include <stdio.h>
#include <dos.h>

int main()
{
 FILE *stream;
 unsigned date, time;
 if ((stream = fopen("TEST.$$$", "w")) == NULL)
 {
 fprintf(stderr, "Cannot open output file.\n");
 return 1;
 }
 _dos_getftime(fileno(stream), &date, &time);
 printf("File year of TEST.$$$: %d\n",((date >> 9) & 0x7f) + 1980);
 date = (date & 0x1ff) | (21 << 9);
 _dos_setftime(fileno(stream), date, time);
 printf("Set file year to 2001.\n");
 fclose(stream);
 return 0;
}

/* puts example */
#include <stdio.h>

int main(void)
{
 char string[] = "This is an example output string\n";

 puts(string);
 return 0;
}

/* gets example */
#include <stdio.h>

int main(void)
{
 char string[80];

 printf("Input a string:");
 gets(string);
 printf("The string input was: %s\n", string);
 return 0;
}

/* puttext example */
#include <conio.h>

int main(void)
{
 char buffer[512];

 /* put some text to the console */
 clrscr();
 gotoxy(20, 12);
 cprintf("This is a test. Press any key to continue ...");
 getch();

 /* grab screen contents */
 gettext(20, 12, 36, 21,buffer);
 clrscr();

 /* put selected characters back to the screen */
 gotoxy(20, 12);
 puttext(20, 12, 36, 21, buffer);
 getch();

 return 0;
}

/* gettext example */
#include <conio.h>

char buffer[4096];

int main(void)
{
 int i;

 clrscr();
 for (i = 0; i <= 20; i++)
 cprintf("Line #%d\r\n", i);
 gettext(1, 1, 80, 25, buffer);

 gotoxy(1, 25);
 cprintf("Press any key to clear screen...");
 getch();
 clrscr();
 gotoxy(1, 25);
 cprintf("Press any key to restore screen...");
 getch();
 puttext(1, 1, 80, 25, buffer);
 gotoxy(1, 25);
 cprintf("Press any key to quit...");
 getch();

 return 0;
}

/* _dos_gettime example */
#include <dos.h>

int main(void)
{
 struct dostime_t t;
 _dos_gettime(&t);
 printf("The current time is: %2d:%02d:%02d.%02d\n", t.hour, t.minute,
 t.second, t.hsecond);
 return 0;
}

/* _dos_settime example */
#include <dos.h>
#include <process.h>
#include <stdio.h>

int main(void)
{
 struct dostime_t reset;
 reset.hour = 17;
 reset.minute = 0;
 reset.second = 0;
 reset.hsecond = 0;
 printf("Setting time to 5 PM.\n");
 _dos_settime(&reset);
 system("time");
 return 0;
}

/* gettime example */
#include <stdio.h>
#include <dos.h>

int main(void)
{
 struct time t;

 gettime(&t);
 printf("The current time is: %2d:%02d:%02d.%02d\n",
 t.ti_hour, t.ti_min, t.ti_sec, t.ti_hund);
 return 0;
}

/* settime example */
#include <stdio.h>
#include <dos.h>

int main(void)
{
 struct time t;

 gettime(&t);
 printf("The current minute is: %d\n", t.ti_min);
 printf("The current hour is: %d\n", t.ti_hour);
 printf("The current hundredth of a second is: %d\n", t.ti_hund);
 printf("The current second is: %d\n", t.ti_sec);

 /* Add one to the minutes struct element and then call settime */
 t.ti_min++;
 settime(&t);

 return 0;
}

/* _dos_getvect and _dos_setvect example */
#include <stdio.h>
#include <dos.h>

#ifdef __cplusplus
 #define __CPPARGS ...
#else
 #define __CPPARGS
#endif

void interrupt get_out(__CPPARGS); /* interrupt prototype */
void interrupt (*oldfunc)(__CPPARGS); /* interrupt function pointer */

int looping = 1;

int main(void)
{
 puts("Press <Shift><PrtSc> to terminate");

 /* save the old interrupt */
 oldfunc = _dos_getvect(5);

 /* install interrupt handler */
 _dos_setvect(5,get_out);

 /* do nothing */
 while (looping);

 /* restore to original interrupt routine */
 _dos_setvect(5,oldfunc);

 puts("Success");
 return 0;
}

void interrupt get_out(__CPPARGS) {
 looping = 0; /* change global var to get out of oop */
}

/* getvect and setvect example */
/* * * * * * * * * * * * * * *
NOTE: This is an interrupt service routine.
You can NOT compile this program with
Test Stack Overflow turned on and get an
executable file that will operate correctly.
 * * * * * * * * * * * * * * */
#include <stdio.h>
#include <dos.h>
#include <conio.h>

#define INTR 0X1C /* The clock tick interrupt */

#ifdef __cplusplus
 #define __CPPARGS ...
#else
 #define __CPPARGS
#endif

void interrupt (*oldhandler)(__CPPARGS);

int count=0;

void interrupt handler(__CPPARGS)
{
/* increase the global counter */
 count++;

/* call the old routine */
oldhandler();

}
int main(void)

{
/* save the old interrupt vector */
 oldhandler = getvect(INTR);

/* install the new interrupt handler */
 setvect(INTR, handler);

/* loop until the counter exceeds 20 */
while (count < 20)

 printf("count is %d\n",count);

/* reset the old interrupt handler */
 setvect(INTR, oldhandler);

 return 0;
}

/* getw example */
#include <stdio.h>
#include <stdlib.h>

#define FNAME "test.$$$"

int main(void)
{
FILE *fp;
int word;

/* place the word in a file */
fp = fopen(FNAME, "wb");
if (fp == NULL)
{

printf("Error opening file %s\n", FNAME);
 exit(1);
 }

 word = 94;
 putw(word,fp);
 if (ferror(fp))
 printf("Error writing to file\n");
 else
 printf("Successful write\n");
 fclose(fp);

 /* reopen the file */
 fp = fopen(FNAME, "rb");
 if (fp == NULL)
 {
 printf("Error opening file %s\n", FNAME);
 exit(1);
 }

 /* extract the word */
 word = getw(fp);

 if (ferror(fp))
 printf("Error reading file\n");
 else
 printf("Successful read: word = %d\n", word);

 /* clean up */
 fclose(fp);
 unlink(FNAME);

 return 0;
}

/* putw example */
#include <stdio.h>
#include <stdlib.h>

#define FNAME "test.$$$"

int main(void)
{
 FILE *fp;
 int word;

 /* place the word in a file */
 fp = fopen(FNAME, "wb");
 if (fp == NULL)
 {
 printf("Error opening file %s\n", FNAME);
 exit(1);
 }

 word = 94;
 putw(word,fp);
 if (ferror(fp))
 printf("Error writing to file\n");
 else
 printf("Successful write\n");
 fclose(fp);

 /* reopen the file */
 fp = fopen(FNAME, "rb");
 if (fp == NULL)
 {
 printf("Error opening file %s\n", FNAME);
 exit(1);
 }

 /* extract the word */
 word = getw(fp);
 if (ferror(fp))
 printf("Error reading file\n");
 else
 printf("Successful read: word = %d\n", word);

 /* clean up */
 fclose(fp);
 unlink(FNAME);

 return 0;
}

/* gmtime example */
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <dos.h>

/* Pacific Standard Time & Daylight Savings */
char *tzstr = "TZ=PST8PDT";

int main(void)
{
 time_t t;
 struct tm *gmt, *area;

 putenv(tzstr);
 tzset();

 t = time(NULL);
 area = localtime(&t);
 printf("Local time is: %s", asctime(area));
 gmt = gmtime(&t);
 printf("GMT is: %s", asctime(gmt));
 return 0;
}

/* localtime example */
#include <time.h>
#include <stdio.h>
#include <dos.h>

int main(void)
{
 time_t timer;
 struct tm *tblock;

 /* gets time of day */
 timer = time(NULL);

 /* converts date/time to a structure */
 tblock = localtime(&timer);

 printf("Local time is: %s", asctime(tblock));

 return 0;
}

/* heapcheck and _heapchk example */
#include <stdio.h>
#include <alloc.h>

#define NUM_PTRS 10
#define NUM_BYTES 16

int main(void)
{
 char *array[NUM_PTRS];
 int i;

 for(i = 0; i < NUM_PTRS; i++)
 array[i] = (char *) malloc(NUM_BYTES);

 for(i = 0; i < NUM_PTRS; i += 2)
 free(array[i]);

 if(heapcheck() == _HEAPCORRUPT)
 printf("Heap is corrupted.\n");
 else
 printf("Heap is OK.\n");

 return 0;
}

/* farheapcheck example */
#include <stdio.h>
#include <alloc.h>

#define NUM_PTRS 10
#define NUM_BYTES 16

int main(void)
{
char far *array[NUM_PTRS];
int i;

 for(i = 0; i < NUM_PTRS; i++)
 array[i] = (char far *) farmalloc(NUM_BYTES);

 for(i = 0; i < NUM_PTRS; i += 2)
 farfree(array[i]);

 if(farheapcheck() == _HEAPCORRUPT)
 printf("Heap is corrupted.\n");
 else
 printf("Heap is OK.\n");

 return 0;
}

/* heapchecknode example */
#include <stdio.h>
#include <alloc.h>

#define NUM_PTRS 10
#define NUM_BYTES 16

int main(void)
{
 char *array[NUM_PTRS];
 int i;

 for(i = 0; i < NUM_PTRS; i++)
 array[i] = (char *) malloc(NUM_BYTES);

 for(i = 0; i < NUM_PTRS; i += 2)
 free(array[i]);

 for(i = 0; i < NUM_PTRS; i++)
 {
 printf("Node %2d ", i);
 switch(heapchecknode(array[i]))
 {
 case _HEAPEMPTY:
 printf("No heap.\n");
 break;
 case _HEAPCORRUPT:
 printf("Heap corrupt.\n");
 break;
 case _BADNODE:
 printf("Bad node.\n");
 break;
 case _FREEENTRY:
 printf("Free entry.\n");
 break;
 case _USEDENTRY:
 printf("Used entry.\n");
 break;
 default:
 printf("Unknown return code.\n");
 break;
 }
 }

 return 0;
}

/* heapfillfree and heapcheckfree example */
#include <stdio.h>
#include <alloc.h>
#include <mem.h>

#define NUM_PTRS 10
#define NUM_BYTES 16

int main(void)
{
 char *array[NUM_PTRS];
 int i;
 int res;

 for(i = 0; i < NUM_PTRS; i++)
 array[i] = (char *) malloc(NUM_BYTES);

 for(i = 0; i < NUM_PTRS; i += 2)
 free(array[i]);

 if(heapfillfree(1) < 0)
 {
 printf("Heap corrupted.\n");
 return 1;
 }

 for(i = 1; i < NUM_PTRS; i += 2)
 memset(array[i], 0, NUM_BYTES);

 res = heapcheckfree(1);
 if(res < 0)
 switch(res)
 {
 case _HEAPCORRUPT:
 printf("Heap corrupted.\n");
 return 1;
 case _BADVALUE:
 printf("Bad value in free space.\n");
 return 1;
 default:
 printf("Unknown error.\n");
 return 1;
 }

 printf("Test successful.\n");
 return 0;
}

/* heapwalk example*/
#include <stdio.h>
#include <alloc.h>

#define NUM_PTRS 10
#define NUM_BYTES 16

int main(void)
{
 struct heapinfo hi;
char *array[NUM_PTRS];

 int i;

 for(i = 0; i < NUM_PTRS; i++)
 array[i] = (char *) malloc(NUM_BYTES);

 for(i = 0; i < NUM_PTRS; i += 2)
 free(array[i]);

 hi.ptr = NULL;
 printf(" Size Status\n");
 printf(" ---- ------\n");
 while(heapwalk(&hi) == _HEAPOK)
 printf("%7u %s\n", hi.size, hi.in_use ? "used" : "free");

 return 0;
}

/* _rtl_heapwalk example*/
#include <stdio.h>
#include <malloc.h>
#include <alloc.h>

#define NUM_PTRS 10
#define NUM_BYTES 16
#if defined(__FLAT__)
int main(void)
{
struct heapinfo hi;
char *array[NUM_PTRS];
int i;

for(i = 0; i < NUM_PTRS; i++)
array[i] = (char *) malloc(NUM_BYTES);

for(i = 0; i < NUM_PTRS; i += 2)
free(array[i]);

hi.ptr = NULL;
printf(" Size Status\n");
printf(" ---- ------\n");
while(_rtl_heapwalk(&hi) == _HEAPOK)
printf("%7u %s\n", hi.size, hi.in_use ? "used" : "free");

return 0;
}
#endif

/* inp example */
#include <stdio.h>
#include <dos.h>

int main(void)
{
 int result;
 int port = 0; /* serial port 0 */

 result = inport(port);
 printf("Word read from port %d = 0x%X\n", port, result);
 return 0;
}

/* inpw example */
#include <stdio.h>
#include <conio.h>

int main(void)
{
 unsigned result;
 unsigned port = 0;
 result = inpw(port);
 printf("Word read from port %d = 0x%X\n", port, result);
 return 0;
}

/* outp example */
#include <stdio.h>
#include <conio.h>

int main(void)
{
 unsigned port = 0;
 int value;
 value = outp(port, 'C');
 printf("Value %c sent to port number %d\n", value, port);
 return 0;
}

/* outpw example */
#include <stdio.h>
#include <conio.h>

int main(void)
{
 unsigned value;
 unsigned port = 0;
 value = outpw(port, 64);
 printf("Value %d sent to port number %d\n", value, port);
 return 0;
}

/* inport example */
#include <stdio.h>
#include <dos.h>

int main(void)
{
 int result;
 int port = 0;
 result = inport(port);
 printf("Word read from port %d = 0x%X\n", port, result);
 return 0;
}

/* inportb example */
#include <stdio.h>
#include <conio.h>

int main(void)
{
 unsigned char result;
 int port = 0; /* serial port 1 */

 result = inportb(port);
 printf("Byte read from port %d = 0x%X\n", port, result);
 return 0;
}

/* outport example */
#include <conio.h>
#include <stdio.h>
int main(void)
{
 int port = 0;
 int value = 'C';

 outport(port, value);
 printf("Value %d sent to port number %d\n", value, port);
 return 0;
}

/* outportb example */
#include <stdio.h>
#include <dos.h>

int main(void)
{
int port = 0;
char value = 'C';

outportb(port, value);
 printf("Value %c sent to port number %d\n", value, port);
return 0;

}

/* int86 example */
#include <stdio.h>
#include <conio.h>
#include <dos.h>

#define VIDEO 0x10

void movetoxy(int x, int y)
{
union REGS regs;

 regs.h.ah = 2; /* set cursor position */
regs.h.dh = y;

 regs.h.dl = x;
 regs.h.bh = 0; /* video page 0 */
int86(VIDEO, ®s, ®s);

}

int main(void)
{
clrscr();
movetoxy(35, 10);
printf("Hello\n");
return 0;

}

/* int86x example */
#include <dos.h>
#include <process.h>
#include <stdio.h>

int main(void)
{
char filename[80];
union REGS inregs, outregs;
struct SREGS segregs;

printf("Enter filename: ");
gets(filename);
inregs.h.ah = 0x43;
inregs.h.al = 0x21;
inregs.x.dx = FP_OFF(filename);
segregs.ds = FP_SEG(filename);
int86x(0x21, &inregs, &outregs, &segregs);

 printf("File attribute: %X\n", outregs.x.cx);
 return 0;
}

/* intdos example */
#include <stdio.h>
#include <dos.h>

/* deletes file name; returns 0 on success, nonzero on failure */
int delete_file(char near *filename)
{
 union REGS regs;
 int ret;
 regs.h.ah = 0x41;
/* delete file */
 regs.x.dx = (unsigned) filename;
 ret = intdos(®s, ®s);

 /* if carry flag is set, there was an error */
 return(regs.x.cflag ? ret : 0);
}

int main(void)
{
 int err;
 err = delete_file("NOTEXIST.$$$");
 if (!err)
 printf("Able to delete NOTEXIST.$$$\n");
 else
 printf("Not Able to delete NOTEXIST.$$$\n");
 return 0;
}

/* intdosx example */
#include <stdio.h>
#include <dos.h>

/* deletes file name; returns 0 on success,
nonzero on failure */
int delete_file(char far *filename)
{
 union REGS regs; struct SREGS sregs;
 int ret;
 regs.h.ah = 0x41; /* delete file */
 regs.x.dx = FP_OFF(filename);
 sregs.ds = FP_SEG(filename);
 ret = intdosx(®s, ®s, &sregs);

 /* if carry flag is set, there was an error */
 return(regs.x.cflag ? ret : 0);
}

int main(void)

{
 int err;
 err = delete_file("NOTEXIST.$$$");
 if (!err)
 printf("Able to delete NOTEXIST.$$$\n");
 else
 printf("Not Able to delete NOTEXIST.$$$\n");
 return 0;
}

/* itoa example */
#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 int number = 12345;
 char string[25];

 itoa(number, string, 10);
 printf("integer = %d string = %s\n", number, string);
 return 0;
}

/* ltoa example */
#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 char string[25];
 long value = 123456789L;

 ltoa(value,string,10);
 printf("number = %ld string = %s\n", value, string);

 return 0;
}

/* ultoa example */
#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 unsigned long lnumber = 3123456789L;
 char string[25];

 ultoa(lnumber,string,10);
 printf("string = %s unsigned long = %lu\n",string,lnumber);

 return 0;
}

/* keep example */
/* * * * * * * * * * * * *

NOTE: This is an interrupt service routine. You can NOT compile this
program with Test Stack Overflow turned on and get an executable file
which will operate correctly.

Due to the nature of this function the formula used to compute the number
of paragraphs may not necessarily work in all cases. Use with care!

Terminate Stay Resident (TSR) programs are complex and no other support for
them is provided.

Refer to the MS-DOS technical documentation for more information.

 * * * * * * * * * * * * */

#include <dos.h>
/* The clock tick interrupt */
#define INTR 0x1C
/* Screen attribute (blue on grey) */
#define ATTR 0x7900

#ifdef __cplusplus
 #define __CPPARGS ...
#else
 #define __CPPARGS
#endif

/* reduce heaplength and stacklength to make a smaller program in memory */
extern unsigned _heaplen = 1024;
extern unsigned _stklen = 512;

void interrupt (*oldhandler)(__CPPARGS);

typedef unsigned int (far *s_arrayptr);

void interrupt handler(__CPPARGS)
{
 s_arrayptr screen[80];
 static int count;

/* For a color screen the video memory is at B800:0000.
 For a monochrome system use B000:000 */
 screen[0] = (s_arrayptr) MK_FP(0xB800,0);

/* increase the counter and keep it within 0 to 9 */
 count++;
 count %= 10;

/* put the number on the screen */
 screen[0][79] = count + '0' + ATTR;

/* call the old interrupt handler */
 oldhandler();
}

int main(void)
{

/* get the address of the current clock
 tick interrupt */
oldhandler = getvect(INTR);

/* install the new interrupt handler */
setvect(INTR, handler);

/* * *
_psp is the starting address of the program in memory. The top of the
stack is the end of the program.

Using _SS and _SP together we can get the end of the stack. You may want
to allow a bit of safety space to insure that enough room is being
allocated ie:

 (_SS + ((_SP + safety space)/16) - _psp)
* * */

keep(0, (_SS + (_SP/16) - _psp));
return 0;
}

/* localeconv example */
#include <locale.h>
#include <stdio.h>

int main(void)
{
 struct lconv ll;
 struct lconv *conv = ≪

/* read the locality conversion structure */
 conv = localeconv();

/* display the structure */
 printf("Decimal Point : %s\n", conv-> decimal_point);
 printf("Thousands Separator : %s\n", conv-> thousands_sep);
 printf("Grouping : %s\n", conv-> grouping);
 printf("International Currency symbol : %s\n", conv-> int_curr_symbol);
 printf("$ thousands separator : %s\n", conv-> mon_thousands_sep);
 printf("$ grouping : %s\n", conv-> mon_grouping);
 printf("Positive sign : %s\n", conv-> positive_sign);
 printf("Negative sign : %s\n", conv-> negative_sign);
 printf("International fraction digits : %d\n", conv-> int_frac_digits);
 printf("Fraction digits : %d\n", conv-> frac_digits);
 printf("Positive $ symbol precedes : %d\n", conv-> p_cs_precedes);
 printf("Positive sign space separation: %d\n", conv-> p_sep_by_space);
 printf("Negative $ symbol precedes : %d\n", conv-> n_cs_precedes);
 printf("Negative sign space separation: %d\n", conv-> n_sep_by_space);
 printf("Positive sign position : %d\n", conv-> p_sign_posn);
 printf("Negative sign position : %d\n", conv-> n_sign_posn);
 return 0;
}

/* setlocale example */
#include <locale.h>
#include <stdio.h>

int main(void)
{
 char *old_locale;

 /* The only locale supported in Borland C++ is "C" */
 old_locale = setlocale(LC_ALL,"C");
 printf("Old locale was %s\n",old_locale);

 return 0;
}

/* locking example */
#include <io.h>
#include <fcntl.h>
#include <process.h>
#include <share.h>
#include <stdio.h>
#include <sys\locking.h>

int main(void)
{
 int handle, status;
 long length;

 /* must have DOS SHARE.EXE loaded for file locking to function */
 handle = sopen("c:\\autoexec.bat", O_RDONLY,SH_DENYNO);
 if (handle < 0) {
 printf("sopen failed\n");
 exit(1);
 }
 length = filelength(handle);
 status = locking(handle,LK_LOCK,length/2);
 if (status == 0)
 printf("lock succeeded\n");
 else
 perror("lock failed");
 status = locking(handle,LK_UNLCK,length/2);
 if (status == 0)
 printf("unlock succeeded\n");
 else
 perror("unlock failed");
 close(handle);
 return 0;
}

/* lock example */
#include <io.h>
#include <fcntl.h>
#include <sys\stat.h>
#include <process.h>
#include <share.h>
#include <stdio.h>

int main(void)
{
 int handle, status;
 long length;

 /* Must have DOS Share.exe loaded for */
 /* file locking to function properly */

 handle = sopen("c:\\autoexec.bat",
 O_RDONLY,SH_DENYNO,S_IREAD);

 if (handle < 0)
 {
 printf("sopen failed\n");
 exit(1);
 }

 length = filelength(handle);
 status = lock(handle,0L,length/2);

 if (status == 0)
 printf("lock succeeded\n");
 else
 printf("lock failed\n");

 status = unlock(handle,0L,length/2);

 if (status == 0)
 printf("unlock succeeded\n");
 else
 printf("unlock failed\n");

 close(handle);
 return 0;
}

/* unlock example */
#include <io.h>
#include <fcntl.h>
#include <sys\stat.h>
#include <process.h>
#include <share.h>
#include <stdio.h>

int main(void)
{
 int handle, status;
 long length;

 handle = sopen("c:\\autoexec.bat",O_RDONLY,SH_DENYNO,S_IREAD);

 if (handle < 0)
 {
 printf("sopen failed\n");
 exit(1);
 }

 length = filelength(handle);
 status = lock(handle,0L,length/2);

 if (status == 0)
 printf("lock succeeded\n");
 else
 printf("lock failed\n");

 status = unlock(handle,0L,length/2);

 if (status == 0)
 printf("unlock succeeded\n");
 else
 printf("unlock failed\n");

 close(handle);
 return 0;
}

/* log example */
#include <math.h>
#include <stdio.h>

int main(void)
{
 double result;
 double x = 8.6872;

 result = log(x);
 printf("The natural log of %lf is %lf\n", x, result);

 return 0;
}

/* log10 example */
#include <math.h>
#include <stdio.h>

int main(void)
{
 double result;
 double x = 800.6872;

 result = log10(x);
 printf("The common log of %lf is %lf\n", x, result);

 return 0;
}

/* _lrotl and _lrotr example */
#include <stdlib.h>
#include <stdio.h>

/* function prototypes */

int lrotl_example(void);
int lrotr_example(void);

/* lrotl example */

int lrotl_example(void)
{
 unsigned long result;
 unsigned long value = 100;

 result = _lrotl(value,1);
 printf("The value %lu rotated left one bit is: %lu\n", value, result);

 return 0;
}

/* lrotr example */

int lrotr_example(void)
{
 unsigned long result;
 unsigned long value = 100;

 result = _lrotr(value,1);
 printf("The value %lu rotated right one bit is: %lu\n", value, result);

 return 0;
}

int main(void)
{
 lrotl_example();
 lrotr_example();
 return 0;
}

/* _rotl and _rotr example */
#include <stdlib.h>
#include <stdio.h>

/* rotl example */

int rotl_example(void)
{
 unsigned value, result;

 value = 32767;
 result = _rotl(value, 1);
 printf("The value %u rotated left one bit is: %u\n", value, result);
 return 0;
}

/* rotr example */

int rotr_example(void)
{
 unsigned value, result;

 value = 32767;
 result = _rotr(value, 1);
 printf("The value %u rotated right one bit is: %u\n", value, result);
 return 0;
}

int main(void)
{
 rotl_example();
 rotr_example();
 return 0;
}

/* _makepath example */
#include <dir.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 char s[_MAX_PATH];
 char drive[_MAX_DRIVE];
 char dir[_MAX_DIR];
 char file[_MAX_FNAME];
 char ext[_MAX_EXT];

 getcwd(s,_MAX_PATH); /* get current working directory */
 if (s[strlen(s)-1] != '\\')
 strcat(s,"\\"); /* append a trailing \ character */
 _splitpath(s,drive,dir,file,ext); /* split the string to separate
 elems */
 strcpy(file,"DATA");
 strcpy(ext,".TXT");
 _makepath(s,drive,dir,file,ext); /* merge everything into one string */
 puts(s); /* display resulting string */
 return 0;
}

/* _splitpath example */
#include <dir.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 char s[_MAX_PATH];
 char drive[_MAX_DRIVE];
 char dir[_MAX_DIR];
 char file[_MAX_FNAME];
 char ext[_MAX_EXT];

 /* get current working directory */
 getcwd(s,_MAX_PATH);
 if (s[strlen(s)-1] != '\\')

 /* append a trailing \ character */
 strcat(s,"\\");

 /* split the string to separate elems */
 _splitpath(s,drive,dir,file,ext);
 strcpy(file,"DATA");
 strcpy(ext,".TXT");

 /* merge everything into one string */
 _makepath(s,drive,dir,file,ext);

 /* display resulting string */
 puts(s);
 return 0;
}

/* fnsplit example */
#include <stdlib.h>
#include <stdio.h>
#include <dir.h>

int main(void)
{
 char *s;
 char drive[MAXDRIVE];
 char dir[MAXDIR];
 char file[MAXFILE];
 char ext[MAXEXT];
 int flags;

 s=getenv("COMSPEC"); /* get the comspec environment parameter */
 flags=fnsplit(s,drive,dir,file,ext);

 printf("Command processor info:\n");
 if(flags & DRIVE)
 printf("\tdrive: %s\n",drive);
 if(flags & DIRECTORY)
 printf("\tdirectory: %s\n",dir);
 if(flags & FILENAME)
 printf("\tfile: %s\n",file);
 if(flags & EXTENSION)
 printf("\textension: %s\n",ext);

 return 0;
}

/* fnmerge example */
#include <string.h>
#include <stdio.h>
#include <dir.h>

int main(void)
{
 char s[MAXPATH];
 char drive[MAXDRIVE];
 char dir[MAXDIR];
 char file[MAXFILE];
 char ext[MAXEXT];

 getcwd(s,MAXPATH); /* get the current working directory */
 strcat(s,"\\"); /* append on a trailing character */
 fnsplit(s,drive,dir,file,ext); /* split the string to separate elems */
 strcpy(file,"DATA");
 strcpy(ext,".TXT");
 fnmerge(s,drive,dir,file,ext); /* merge everything into one string */
 puts(s); /* display resulting string */

 return 0;
}

/* memmove example */
#include <string.h>
#include <stdio.h>

int main(void)
{
 char *dest = "abcdefghijklmnopqrstuvwxyz0123456789";
 char *src = "******************************";
 printf("destination prior to memmove: %s\n", dest);
 memmove(dest, src, 26);
 printf("destination after memmove: %s\n", dest);
 return 0;
}

/* memccpy example */
#include <string.h>
#include <stdio.h>

int main(void)
{
 char *src = "This is the source string";
 char dest[50];
 char *ptr;

 ptr = (char *) memccpy(dest, src, 'c', strlen(src));

 if (ptr)
 {
 *ptr = '\0';
 printf("The character was found: %s\n", dest);
 }
 else
 printf("The character wasn't found\n");
 return 0;
}

/* memcpy example */
#include <stdio.h>
#include <string.h>

int main(void)
{
 char src[] = "******************************";
 char dest[] = "abcdefghijlkmnopqrstuvwxyz0123456709";
 char *ptr;

 printf("destination before memcpy: %s\n", dest);
 ptr = (char *) memcpy(dest, src, strlen(src));
 if (ptr)
 printf("destination after memcpy: %s\n", dest);
 else
 printf("memcpy failed\n");
 return 0;
}

/* memcmp example */
#include <stdio.h>
#include <string.h>

int main(void)
{
 char *buf1 = "aaa";
 char *buf2 = "bbb";
 char *buf3 = "ccc";

 int stat;

 stat = memcmp(buf2, buf1, strlen(buf2));
 if (stat > 0)
 printf("buffer 2 is greater than buffer 1\n");
 else
 printf("buffer 2 is less than buffer 1\n");

 stat = memcmp(buf2, buf3, strlen(buf2));
 if (stat > 0)
 printf("buffer 2 is greater than buffer 3\n");
 else
 printf("buffer 2 is less than buffer 3\n");

 return 0;
}

/* memicmp example */
#include <stdio.h>
#include <string.h>

int main(void)
{
 char *buf1 = "ABCDE123";
 char *buf2 = "abcde456";
 int stat;
 stat = memicmp(buf1, buf2, 5);
 printf("The strings to position 5 are ");
 if (stat)
 printf("not ");
 printf("the same\n");
 return 0;
}

/* _dos_open example */
#include <string.h>
#include <stdio.h>
#include <fcntl.h>
#include <dos.h>

int main(void)
{
 int handle;
 unsigned nbytes;
 char msg[] = "Hello world\n";
 if (_dos_open("TEST.$$$", O_RDWR, &handle) != 0) {
 perror("Unable to open TEST.$$$");
 return 1;
 }
 if (_dos_write(handle, msg, strlen(msg),&nbytes) != 0)
 perror("Unable to write to TEST.$$$");
 printf("%u bytes written to TEST.$$$\n",nbytes);
 _dos_close(handle);
 return 0;
}

/* _rtl_open example */
#include <string.h>
#include <stdio.h>
#include <fcntl.h>
#include <io.h>

int main(void)
{
 int handle;
 char msg[] = "Hello world";

 if ((handle = _rtl_open("TEST.$$$", O_RDWR)) == -1)
 {
 perror("Error:");
 return 1;
 }
 _rtl_write(handle, msg, strlen(msg));
 _rtl_close(handle);
 return 0;
}

/* sopen example */
/* Load share before running this example.
*/
 #include <io.h>
 #include <fcntl.h>
 #include <sys\stat.h>
 #include <process.h>
 #include <share.h>
 #include <stdio.h>
 #include <stdlib.h>

 int main(void)
 {
 int handle,
 handle1;

 handle = sopen("c:\\autoexec.bat", O_RDONLY, SH_DENYWR, S_IREAD);

 if (handle == -1)
 {
 perror (sys_errlist[errno]);
 exit (1);
 }

 if (!handle)
 {
 printf("sopen failed\n");
 exit(1);
 }

 /* Attempt sopen for write.
 */
 handle1 = sopen("c:\\autoexec.bat", O_RDONLY, SH_DENYWR, S_IREAD);

 if (handle1 == -1)
 {
 perror (sys_errlist[errno]);
 exit (1);
 }

 if (!handle1)
 {
 printf("sopen failed\n");
 exit(1);
 }

 close (handle);
 close (handle1);
 return 0;
}

/* open example */
#include <string.h>
#include <stdio.h>
#include <fcntl.h>
#include <io.h>

int main(void)
{
 int handle;
 char msg[] = "Hello world";

 if ((handle = open("TEST.$$$", O_CREAT | O_TEXT)) == -1)
 {
 perror("Error:");
 return 1;
 }
 write(handle, msg, strlen(msg));
 close(handle);
 return 0;
}

/* cprintf example */
#include <conio.h>

int main(void)
{
 /* clear the screen */
 clrscr();

 /* create a text window */
 window(10, 10, 80, 25);

 /* output some text in the window */
 cprintf("Hello world\r\n");

 /* wait for a key */
 getch();
 return 0;
}

/* fprintf example */
#include <stdio.h>

int main(void)
{
 FILE *stream;
 int i = 100;
 char c = 'C';
 float f = 1.234;

 /* open a file for update */
 stream = fopen("DUMMY.FIL", "w+");

 /* write some data to the file */
 fprintf(stream, "%d %c %f", i, c, f);

 /* close the file */
 fclose(stream);
 return 0;
}

/* printf example */
#include <stdio.h>
#include <string.h>

#define I 555
#define R 5.5

int main(void)
{
 int i,j,k,l;
 char buf[7];
 char *prefix = buf;
 char tp[20];
 printf("prefix 6d 6o 8x 10.2e "
 "10.2f\n");
 strcpy(prefix,"%");
 for (i = 0; i < 2; i++)
 {
 for (j = 0; j < 2; j++)
 for (k = 0; k < 2; k++)
 for (l = 0; l < 2; l++)
 {
 if (i==0) strcat(prefix,"-");
 if (j==0) strcat(prefix,"+");
 if (k==0) strcat(prefix,"#");
 if (l==0) strcat(prefix,"0");
 printf("%5s |",prefix);
 strcpy(tp,prefix);
 strcat(tp,"6d |");
 printf(tp,I);
 strcpy(tp,"");
 strcpy(tp,prefix);
 strcat(tp,"6o |");
 printf(tp,I);
 strcpy(tp,"");
 strcpy(tp,prefix);
 strcat(tp,"8x |");
 printf(tp,I);
 strcpy(tp,"");
 strcpy(tp,prefix);
 strcat(tp,"10.2e |");
 printf(tp,R);
 strcpy(tp,prefix);
 strcat(tp,"10.2f |");
 printf(tp,R);
 printf(" \n");
 strcpy(prefix,"%");
 }
 }
 return 0;
}

/* sprintf example */
#include <stdio.h>
#include <math.h>

int main(void)
{
 char buffer[80];

 sprintf(buffer, "An approximation of Pi is %f\n", M_PI);
 puts(buffer);
 return 0;
}

/* vfprintf example */
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>

FILE *fp;

int vfpf(char *fmt, ...)
{
 va_list argptr;
 int cnt;

 va_start(argptr, fmt);
 cnt = vfprintf(fp, fmt, argptr);
 va_end(argptr);

 return(cnt);
}

int main(void)
{
 int inumber = 30;
 float fnumber = 90.0;
 char string[4] = "abc";

 fp = tmpfile();
 if (fp == NULL)
 {
 perror("tmpfile() call");
 exit(1);
 }

 vfpf("%d %f %s", inumber, fnumber, string);
 rewind(fp);
 fscanf(fp,"%d %f %s", &inumber, &fnumber, string);
 printf("%d %f %s\n", inumber, fnumber, string);
 fclose(fp);

 return 0;
}

/* vprintf example */
#include <stdio.h>
#include <stdarg.h>

int vpf(char *fmt, ...)
{
 va_list argptr;
 int cnt;

 va_start(argptr, fmt);
 cnt = vprintf(fmt, argptr);
 va_end(argptr);

 return(cnt);
}

int main(void)
{
 int inumber = 30;
 float fnumber = 90.0;
 char *string = "abc";

 vpf("%d %f %s\n",inumber,fnumber,string);

 return 0;
}

/* vsprintf example */
#include <stdio.h>
#include <conio.h>
#include <stdarg.h>

char buffer[80];

int vspf(char *fmt, ...)
{
 va_list argptr;
 int cnt;

 va_start(argptr, fmt);
 cnt = vsprintf(buffer, fmt, argptr);
 va_end(argptr);

 return(cnt);
}

int main(void)
{
 int inumber = 30;
 float fnumber = 90.0;
 char string[4] = "abc";

 vspf("%d %f %s", inumber, fnumber, string);
 printf("%s\n", buffer);
 return 0;
}

/* _dos_read example */
#include <stdio.h>
#include <fcntl.h>
#include <dos.h>

int main(void)
{
 int handle;
 unsigned bytes;
 char buf[10];

 /* Looks for a file in the current directory named TEST.$$$ and
 attempts to read 10 bytes from it. To use this example you
 should create the file TEST.$$$ */
 if (_dos_open("TEST.$$$", O_RDONLY, &handle) != 0) {
 perror("Unable to open TEST.$$$");
 return 1;
 }
 if (_dos_read(handle, buf, 10, &bytes) != 0) {
 perror("Unable to read from TEST.$$$");
 return 1;
 }
 else
 printf("_dos_read: %d bytes read.\n", bytes);
 return 0;
}

/* _rtl_read example */
#include <stdio.h>
#include <io.h>
#include <alloc.h>
#include <fcntl.h>
#include <process.h>
#include <sys\stat.h>

int main(void)
{
 void *buf;
 int handle, bytes;

 buf = malloc(10);

/*
Looks for a file in the current directory named TEST.$$$ and attempts to
read 10 bytes from it. To use this example you should create the file
TEST.$$$

 */
 if ((handle =
 open("TEST.$$$", O_RDONLY | O_BINARY, S_IWRITE | S_IREAD)) == -1)
 {
 printf("Error Opening File\n");
 exit(1);
 }

 if ((bytes = _rtl_read(handle, buf, 10)) == -1) {
 printf("Read Failed.\n");
 exit(1);
 }
 else {
 printf("_rtl_read: %d bytes read.\n", bytes);
 }
 return 0;
}

/* read example */
#include <stdio.h>
#include <io.h>
#include <alloc.h>
#include <fcntl.h>
#include <process.h>
#include <sys\stat.h>

int main(void)
{
 void *buf;
 int handle, bytes;

 buf = malloc(10);

/*
Looks for a file in the current directory named TEST.$$$ and attempts to
read 10 bytes from it. To use this example you should create the file
TEST.$$$.

 */
 if ((handle =
 open("TEST.$$$", O_RDONLY | O_BINARY, S_IWRITE | S_IREAD)) == -1)
 {
 printf("Error Opening File\n");
 exit(1);
 }

 if ((bytes = read(handle, buf, 10)) == -1) {
 printf("Read Failed.\n");
 exit(1);
 }
 else {
 printf("Read: %d bytes read.\n", bytes);
 }
 return 0;
}

/* farrealloc example */
#include <stdio.h>
#include <alloc.h>

int main(void)
{
 char far *fptr;
 char far *newptr;

 fptr = (char far *) farmalloc(16);
 printf("First address: %Fp\n", fptr);

/*
We use a second pointer, newptr, so that in the case of farrealloc()
returning NULL, our original pointer is not set to NULL.

 */

 newptr = (char far *) farrealloc(fptr,64);
 printf("New address : %Fp\n", newptr);
 if (newptr != NULL)
 farfree(newptr);
 return 0;
}

/* realloc example */
#include <stdio.h>
#include <alloc.h>
#include <string.h>

int main(void)
{
 char *str;

 /* allocate memory for string */
 str = (char *) malloc(10);

 /* copy "Hello" into string */
 strcpy(str, "Hello");

 printf("String is %s\n Address is %p\n", str, str);
 str = (char *) realloc(str, 20);
 printf("String is %s\n New address is %p\n", str, str);

 /* free memory */
 free(str);

 return 0;
}

/* cscanf example */
#include <conio.h>

int main(void)
{
 char string[80];

 /* clear the screen */
 clrscr();

 /* Prompt the user for input */
 cprintf("Enter a string with no spaces:");

 /* read the input */
 cscanf("%s", string);

 /* display what was read */
 cprintf("\r\nThe string entered is: %s", string);
 return 0;
}

/* fscanf example */
#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 int i;

 printf("Input an integer: ");

 /* read an integer from the
 standard input stream */
 if (fscanf(stdin, "%d", &i))
 printf("The integer read was: %i\n", i);
 else
 {
 fprintf(stderr, "Error reading an integer from stdin.\n");
 exit(1);
 }
 return 0;
}

/* scanf example */
#include <stdio.h>
#include <conio.h>

int main(void)
{
 char label[20];
 char name[20];
 int entries = 0;
 int loop, age;
 double salary;

 struct Entry_struct
 {
 char name[20];
 int age;
 float salary;
 } entry[20];

/* Input a label as a string of characters restricting to 20 characters */
 printf("\n\nPlease enter a label for the chart: ");
 scanf("%20s", label);
 fflush(stdin); /* flush the input stream in case of bad input */

/* Input number of entries as an integer */
 printf("How many entries will there be? (less than 20) ");
 scanf("%d", &entries);
 fflush(stdin); /* flush the input stream in case of bad input */

/* input a name restricting input to only letters upper or lower case */
 for (loop=0;loop<entries;++loop)
 {
 printf("Entry %d\n", loop);
 printf(" Name : ");
 scanf("%[A-Za-z]", entry[loop].name);
 fflush(stdin); /* flush the input stream in case of bad input */

/* input an age as an integer */
 printf(" Age : ");
 scanf("%d", &entry[loop].age);
 fflush(stdin); /* flush the input stream in case of bad input */

/* input a salary as a float */
 printf(" Salary : ");
 scanf("%f", &entry[loop].salary);
 fflush(stdin); /* flush the input stream in case of bad input */
 }

/* Input a name, age and salary as a string, integer, and double */
 printf("\nPlease enter your name, age and salary\n");
 scanf("%20s %d %lf", name, &age, &salary);

/* Print out the data that was input */
 printf("\n\nTable %s\n",label);
 printf("Compiled by %s age %d $%15.2lf\n", name, age, salary);

 printf("---\n");
 for (loop=0;loop<entries;++loop)
 printf("%4d | %-20s | %5d | %15.2lf\n",
 loop + 1,
 entry[loop].name,
 entry[loop].age,
 entry[loop].salary);
 printf("---\n");
 return 0;
}

/* sscanf example */
#include <stdio.h>
#include <conio.h>
#include <stdlib.h>

char *names[4] = {"Peter", "Mike", "Shea", "Jerry"};

#define NUMITEMS 4

int main(void)
{
 int loop;
 char temp[4][80];

 char name[20];
 int age;
 long salary;

/* clear the screen */
 clrscr();

/* create name, age and salary data */
 for (loop=0; loop < NUMITEMS; ++loop)
 sprintf(temp[loop], "%s %d %ld", names[loop], random(10) + 20,
random(5000) + 27500L);

/* print title bar */
 printf("%4s | %-20s | %5s | %15s\n", "#", "Name", "Age", "Salary");
 printf(" --\n");

/* input a name, age and salary data */
 for (loop=0; loop < NUMITEMS; ++loop)
 {
 sscanf(temp[loop],"%s %d %ld", &name, &age, &salary);
 printf("%4d | %-20s | %5d | %15ld\n", loop + 1, name, age, salary);
 }

 return 0;
}

/* vfscanf example */
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>

FILE *fp;

int vfsf(char *fmt, ...)
{
 va_list argptr;
 int cnt;

 va_start(argptr, fmt);
 cnt = vfscanf(fp, fmt, argptr);
 va_end(argptr);

 return(cnt);
}

int main(void)
{
 int inumber = 30;
 float fnumber = 90.0;
 char string[4] = "abc";

 fp = tmpfile();
 if (fp == NULL)
 {
 perror("tmpfile() call");
 exit(1);
 }
 fprintf(fp,"%d %f %s\n",inumber,fnumber,string);
 rewind(fp);

 vfsf("%d %f %s",&inumber,&fnumber,string);
 printf("%d %f %s\n",inumber,fnumber,string);
 fclose(fp);

 return 0;
}

/* vscanf example */
#include <stdio.h>
#include <conio.h>
#include <stdarg.h>

int vscnf(char *fmt, ...)
{
 va_list argptr;
 int cnt;

 printf("Enter an integer, a float, and a string (e.g. i,f,s,)\n");
 va_start(argptr, fmt);
 cnt = vscanf(fmt, argptr);
 va_end(argptr);

 return(cnt);
}

int main(void)
{
 int inumber;
 float fnumber;
 char string[80];

 vscnf("%d, %f, %s", &inumber, &fnumber, string);
 printf("%d %f %s\n", inumber, fnumber, string);

 return 0;
}

/* vsscanf example */
#include <stdio.h>
#include <conio.h>
#include <stdarg.h>

char buffer[80] = "30 90.0 abc";

int vssf(char *fmt, ...)
{
 va_list argptr;
 int cnt;

 fflush(stdin);

 va_start(argptr, fmt);
 cnt = vsscanf(buffer, fmt, argptr);
 va_end(argptr);

 return(cnt);
}

int main(void)
{
 int inumber;
 float fnumber;
 char string[80];

 vssf("%d %f %s", &inumber, &fnumber, string);
 printf("%d %f %s\n", inumber, fnumber, string);
 return 0;
}

/* setbuf example */
#include <stdio.h>

/* BUFSIZ is defined in stdio.h */
char outbuf[BUFSIZ];

int main(void)
{
 /* attach a buffer to the standard output stream */
 setbuf(stdout, outbuf);

 /* put some characters into the buffer */
 puts("This is a test of buffered output.\n\n");
 puts("This output will go into outbuf\n");
 puts("and won't appear until the buffer\n");
 puts("fills up or we flush the stream.\n");

 /* flush the output buffer */
 fflush(stdout);

 return 0;
}

/* setvbuf example */
#include <stdio.h>

int main(void)
{
 FILE *input, *output;
 char bufr[512];

 input = fopen("file.in", "r+b");
 output = fopen("file.out", "w");

 /* set up input stream for minimal disk access,
 using our own character buffer */
if (setvbuf(input, bufr, _IOFBF, 512) != 0)

 printf("failed to set up buffer for input file\n");
 else
 printf("buffer set up for input file\n");

 /* set up output stream for line buffering using space that
 will be obtained through an indirect call to malloc */
 if (setvbuf(output, NULL, _IOLBF, 132) != 0)
 printf("failed to set up buffer for output file\n");
 else
 printf("buffer set up for output file\n");

 /* perform file I/O here */

 /* close files */
 fclose(input);
 fclose(output);
 return 0;
}

/* spawnl example */
#include <process.h>
#include <stdio.h>
#include <conio.h>

void spawnl_example(void)
{
 int result;

 clrscr();
 result = spawnl(P_WAIT, "bcc.exe", "bcc.exe", NULL);
 if (result == -1)
 {
 perror("Error from spawnl");
 exit(1);
 }
}

int main(void)
{
 spawnl_example();
 return 0;
}

/* spawnle example */
#include <process.h>
#include <stdio.h>
#include <conio.h>

void spawnle_example(void)
 {
 int result;

 clrscr();
 result = spawnle(P_WAIT, "bcc.exe", "bcc.exe", NULL, NULL);
 if (result == -1)
 {
 perror("Error from spawnle");
 exit(1);
 }
}

int main(void)
{
 spawnle_example();
 return 0;
}

/* spawnlp example */
#include <process.h>
#include <stdio.h>
#include <errno.h>

void main(int argc, char *argv[])
{
 int i;

 printf("Command line arguments:\n");
 for (i=0; i<argc; ++i)
 printf("[%2d] : %s\n", i, argv[i]);
 printf("About to exec child with arg1 arg2 ...\n");
 spawnlp(P_WAIT, "C:\\BC5\\BIN\\BCC.EXE", "C:\\BC5\\BIN\\BCC.EXE",
argv[1], argv[2], NULL);

 perror("exec error");
 exit(1);
}

/* spawnlpe example */
#include <process.h>
#include <stdio.h>
#include <errno.h>

int main(int argc, char *argv[], char **envp)
{
 int i;

 printf("Command line arguments:\n");

 for (i=0; i < argc; ++i)
 printf("[%2d] %s\n", i, argv[i]);

 printf("About to exec child with arg1 arg2 ...\n");
 spawnlpe(P_WAIT, "C:\\BC5\\BIN\\BCC.EXE", "C:\\BC5\\BIN\\BCC.EXE",
argv[1], argv[2], NULL, envp);

 perror("exec error");
 exit(1);

 return 0;
}

/* spawnv example */
#include <process.h>
#include <stdio.h>
#include <errno.h>

void main(int argc, char *argv[])
{
 int i;

 printf("Command line arguments:\n");
 for (i=0; i<argc; ++i)
 printf("[%2d] : %s\n", i, argv[i]);
 printf("About to exec child with arg1 arg2 ...\n");
spawnv(P_WAIT, "C:\\BC5\\BIN\\BCC.EXE", argv);

 perror("exec error");
 exit(1);
 }

/* spawnve example */
#include <process.h>
#include <stdio.h>
#include <errno.h>

void main(int argc, char *argv[], char **envp)
{
 int i;

 printf("Command line arguments:\n");
 for (i=0; i<argc; ++i)
 printf("[%2d] : %s\n", i, argv[i]);
 printf("About to exec child with arg1 arg2 ...\n");
spawnve(P_WAIT, "C:\\BC5\\BIN\\TDMEM.EXE", argv, envp);

 perror("exec error");
 exit(1);
}

/* spawnvp example */
#include <process.h>
#include <stdio.h>
#include <errno.h>

void main(int argc, char *argv[])
{
 int i;

 printf("Command line arguments:\n");
 for (i=0; i<argc; ++i)
 printf("[%2d] : %s\n", i, argv[i]);
 printf("About to exec child with arg1 arg2 ...\n");
 spawnvp(P_WAIT, "C:\\BC5\\BIN\\BCC.EXE", argv);

 perror("exec error");
 exit(1);
}

/* spawnvpe example */
#include <process.h>
#include <stdio.h>
#include <errno.h>

int main(int argc, char *argv[], char **envp)
{
int i;

printf("Command line arguments:\n");

for (i=0; i < argc; ++i)
printf("[%2d] %s\n", i, argv[i]);

printf("About to exec child with arg1 arg2 ...\n");
spawnvpe(P_WAIT, "C:\\BC5\\BIN\\BCC.EXE", argv, envp);

perror("exec error");
exit(1);

 return 0;
}

/* strcmp example */
#include <string.h>
#include <stdio.h>

int main(void)
{
char *buf1 = "aaa", *buf2 = "bbb", *buf3 = "ccc";
int ptr;

ptr = strcmp(buf2, buf1);
if (ptr > 0)

 printf("buffer 2 is greater than buffer 1\n");
 else
 printf("buffer 2 is less than buffer 1\n");

 ptr = strcmp(buf2, buf3);
 if (ptr > 0)
 printf("buffer 2 is greater than buffer 3\n");
 else
 printf("buffer 2 is less than buffer 3\n");

 return 0;
}

/* strcmpi example */
/* strncmpi example */

#include <string.h>
#include <stdio.h>

int main(void)
{
 char *buf1 = "BBB", *buf2 = "bbb";
 int ptr;

 ptr = strcmpi(buf2, buf1);

 if (ptr > 0)
 printf("buffer 2 is greater than buffer 1\n");

 if (ptr < 0)
 printf("buffer 2 is less than buffer 1\n");

 if (ptr == 0)
 printf("buffer 2 equals buffer 1\n");

 return 0;
}

/* stricmp example */
#include <string.h>
#include <stdio.h>

int main(void)
{
 char *buf1 = "BBB", *buf2 = "bbb";
 int ptr;

 ptr = stricmp(buf2, buf1);

 if (ptr > 0)
 printf("buffer 2 is greater than buffer 1\n");

 if (ptr < 0)
 printf("buffer 2 is less than buffer 1\n");

 if (ptr == 0)
 printf("buffer 2 equals buffer 1\n");

 return 0;
}

/* _strnextc example */
#include <tchar.h>
#include <stdio.h>

int main()
{
 unsigned int retval = 0;
 const unsigned char *string = "ABC";

 retval = _strnextc(string);
 printf("The starting character:%c", retval);

 retval = _strnextc(++string);
 printf("\nThe next character:%c", retval);

 return 0;
}

/***
The starting character:A
The next character:B
***/

/* strspn example */
#include <stdio.h>
#include <string.h>
#include <alloc.h>

int main(void)
{
 char *string1 = "1234567890";
 char *string2 = "123DC8";
 int length;

 length = strspn(string1, string2);
 printf("Character where strings differ is at position %d\n", length);
 return 0;
}

/* strcspn example */
#include <stdio.h>
#include <string.h>
#include <alloc.h>

int main(void)
{
 char *string1 = "1234567890";
 char *string2 = "747DC8";
 int length;

 length = strcspn(string1, string2);
 printf("Character where strings intersect is at position %d\n",
 length);

 return 0;
}

/* _strerror example */
#include <stdio.h>
#include <errno.h>

int main(void)
{
 char *buffer;
 buffer = strerror(errno);
 printf("Error: %s\n", buffer);
 return 0;
}

/* strerror example */
#include <stdio.h>
#include <errno.h>

int main(void)
{
 char *buffer;
 buffer = strerror(errno);
 printf("Error: %s\n", buffer);
 return 0;
}

/* strlwr example */
#include <stdio.h>
#include <string.h>

int main(void)
{
 char *string = "Borland International";

 printf("string prior to strlwr: %s\n", string);
 strlwr(string);
 printf("string after strlwr: %s\n", string);
 return 0;
}

/* strupr example */
#include <stdio.h>
#include <string.h>

int main(void)
{
 char *string = "abcdefghijklmnopqrstuvwxyz", *ptr;

 /* converts string to upper case characters */
 ptr = strupr(string);
 printf("%s\n", ptr);
 return 0;
}

/* strncmp example */
#include <string.h>
#include <stdio.h>

int main(void)

{
 char *buf1 = "aaabbb", *buf2 = "bbbccc", *buf3 = "ccc";
 int ptr;

 ptr = strncmp(buf2,buf1,3);
 if (ptr > 0)
 printf("buffer 2 is greater than buffer 1\n");
 else
 printf("buffer 2 is less than buffer 1\n");

 ptr = strncmp(buf2,buf3,3);
 if (ptr > 0)
 printf("buffer 2 is greater than buffer 3\n");
 else
 printf("buffer 2 is less than buffer 3\n");

 return(0);
}

/* strncmpi Example */
#include <string.h>
#include <stdio.h>

int main(void)
{
 char *buf1 = "BBBccc", *buf2 = "bbbccc";
 int ptr;

 ptr = strncmpi(buf2,buf1,3);

 if (ptr > 0)
 printf("buffer 2 is greater than buffer 1\n");

 if (ptr < 0)
 printf("buffer 2 is less than buffer 1\n");

 if (ptr == 0)
 printf("buffer 2 equals buffer 1\n");

 return 0;
}

/* strnicmp Example */
#include <string.h>
#include <stdio.h>

int main(void)
{
 char *buf1 = "BBBccc", *buf2 = "bbbccc";
 int ptr;

 ptr = strnicmp(buf2, buf1, 3);

 if (ptr > 0)
 printf("buffer 2 is greater than buffer 1\n");

 if (ptr < 0)
 printf("buffer 2 is less than buffer 1\n");

 if (ptr == 0)
 printf("buffer 2 equals buffer 1\n");

 return 0;
}

/* strtod example */
#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 char input[80], *endptr;
 double value;

 printf("Enter a floating point number:");
 gets(input);
 value = strtod(input, &endptr);
 printf("The string is %s the number is %lf\n", input, value);
 return 0;
}

/* strtol example */
#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 char *string = "87654321", *endptr;
 long lnumber;

 /* strtol converts string to long integer */
 lnumber = strtol(string, &endptr, 10);
 printf("string = %s long = %ld\n", string, lnumber);

 return 0;
}

/* strtoul example */
#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 char *string = "87654321", *endptr;
 unsigned long lnumber;

 lnumber = strtoul(string, &endptr, 10);
 printf("string = %s long = %lu\n",
 string, lnumber);

 return 0;
}

/* textattr example */
#include <conio.h>

int main(void)
{
 int i;

 clrscr();
 for (i=0; i<9; i++)
 {
 textattr(i + ((i+1) << 4));
 cprintf("This is a test\r\n");
 }

 return 0;
}

/* textbackground and textcolor example */
#include <conio.h>

int main(void)
{
 int i, j;

 clrscr();
 for (i=0; i<9; i++)
 {
 for (j=0; j<80; j++)
 cprintf("C");
 cprintf("\r\n");
 textcolor(i+1);
 textbackground(i);
 }

 return 0;
}

/* time example */
#include <time.h>
#include <stdio.h>
#include <dos.h>

int main(void)
{
 time_t t;

 t = time(NULL);
 printf("The number of seconds since January 1, 1970 is %ld",t);
 return 0;
}

/* stime example */
#include <stdio.h>
#include <time.h>

int main(void)
{
 time_t t;

 t = time(NULL);

 printf("Current date is %s", ctime(&t));

 t -= 24L*60L*60L; /* Back up to same time previous day */

 stime(&t);
 printf("\nNew date is %s", ctime(&t));

 return 0;
}

/* tolower example */
#include <string.h>
#include <stdio.h>
#include <ctype.h>

int main(void)
{
 int length, i;
 char *string = "THIS IS A STRING";

 length = strlen(string);
 for (i=0; i<length; i++)
 {
 string[i] = tolower(string[i]);
 }
 printf("%s\n",string);

 return 0;
}

/* _tolower example */
#include <string.h>
#include <stdio.h>
#include <ctype.h>

int main(void)
{
 int length, i;
 char *string = "THIS IS A STRING.";

 length = strlen(string);
 for (i = 0; i < length; i++) {
 if ((string[i] >= 'A') && (string[i] <= 'Z')){
 string[i] = _tolower(string[i]);
 }
 }

 printf("%s\n",string);
 return 0;
}

/* toupper example */
#include <string.h>
#include <stdio.h>
#include <ctype.h>

int main(void)
{
 int length, i;
 char *string = "this is a string";

 length = strlen(string);
 for (i=0; i<length; i++)
 {
 string[i] = toupper(string[i]);
 }

 printf("%s\n",string);

 return 0;
}

/* _toupper example */
#include <string.h>
#include <stdio.h>
#include <ctype.h>

int main(void)
{
 int length, i;
 char *string = "this is a string.";

 length = strlen(string);
 for (i = 0; i < length; i++) {
 if ((string[i] >= 'a') && (string[i] <= 'z')){
 string[i] = _toupper(string[i]);
 }
 }
 printf("%s\n",string);
 return 0;
}

/* _dos_write example */
#include <dos.h>
#include <string.h>
#include <stdio.h>

int main(void)
{
 unsigned count;
 int handle;
 char buf[11] = "0123456789";

 /* create a file containing 10 bytes */
 if (_dos_creat("DUMMY.FIL", _A_NORMAL, &handle) != 0)
 {
 perror("Unable to create DUMMY.FIL");
 return 1;
 }
 if (_dos_write(handle, buf, strlen(buf), &count) != 0)
 {
 perror("Unable to write to DUMMY.FIL");
 return 1;
 }
 /* close the file */
 _dos_close(handle);
 return 0;
}

/* _rtl_write example */
#include <stdio.h>
#include <io.h>
#include <alloc.h>
#include <fcntl.h>
#include <process.h>
#include <sys\stat.h>

int main(void)
{
 void *buf;
 int handle, bytes;

 buf = malloc(200);

/*
Create a file name TEST.$$$ in the current directory and writes 200 bytes
to it. If TEST.$$$ already exists, it's overwritten.

 */

 if ((handle = open("TEST.$$$", O_CREAT | O_WRONLY | O_BINARY,
 S_IWRITE | S_IREAD)) == -1)
 {
 printf("Error Opening File\n");
 exit(1);
 }

 if ((bytes = _rtl_write(handle, buf, 200)) == -1) {
 printf("Write Failed.\n");
 exit(1);
 }
 printf("_rtl_write: %d bytes written.\n",bytes);

 return 0;
}

/* write example */
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys\stat.h>
#include <io.h>
#include <string.h>

int main(void)
{
 int handle;
 char string[40];
 int length, res;

/*
Create a file named "TEST.$$$" in the current directory and write a string
to it. If "TEST.$$$" already exists, it will be overwritten.

 */

 if ((handle = open("TEST.$$$", O_WRONLY | O_CREAT | O_TRUNC,
 S_IREAD | S_IWRITE)) == -1)
 {
 printf("Error opening file.\n");
 exit(1);
 }

 strcpy(string, "Hello, world!\n");
 length = strlen(string);

 if ((res = write(handle, string, length)) != length)
 {
 printf("Error writing to the file.\n");
 exit(1);
 }
 printf("Wrote %d bytes to the file.\n", res);

 close(handle);
 return 0;
}

/* getcurdir example */
#include <dir.h>
#include <stdio.h>
#include <string.h>

char *current_directory(char *path)
{
 strcpy(path, "X:\\"); /* fill string with form of response: X:\ */
 path[0] = 'A' + getdisk(); /* replace X with current drive letter */
 getcurdir(0, path+3); /* fill rest of string with current directory */
 return(path);
}

int main(void)
{
 char curdir[MAXPATH];

 current_directory(curdir);
 printf("The current directory is %s\n", curdir);

 return 0;
}

/* getenv example */
#include <stdio.h>
#include <stdlib.h>
#include <alloc.h>
#include <string.h>
#include <dos.h>

int main(void)
{
 char *path, *ptr;
 int i = 0;

 /* get the current path environment */
 ptr = getenv("PATH");

 /* set up new path */
 path = (char *) malloc(strlen(ptr)+15);
 strcpy(path,"PATH=");
 strcat(path,ptr);
 strcat(path,";c:\\temp");

 /* replace the current path and display current environment */
 putenv(path);
 while (_environ[i])
 printf("%s\n",_environ[i++]);

 return 0;
}

/* putenv example */
#include <stdio.h>
#include <stdlib.h>
#include <alloc.h>
#include <string.h>
#include <dos.h>

int main(void)
{
 char *path, *ptr;
 int i = 0;

 /* get the current path environment */
 ptr = getenv("PATH");

 /* set up new path */
 path = (char *) malloc(strlen(ptr)+15);
 strcpy(path,"PATH=");
 strcat(path,ptr);
 strcat(path,";c:\\temp");

 /* replace the current path and display current environment */
 putenv(path);
 while (_environ[i])
 printf("%s\n",_environ[i++]);

 return 0;
}

/* getpass example */
#include <conio.h>

int main(void)
{
 char *password;

 password = getpass("Input a password:");
 cprintf("The password is: %s\r\n", password);
 return 0;
}

/* getpid example */
#include <stdio.h>
#include <process.h>

int main()
{
 printf("This program's process identification number (PID) "
 "number is %X\n", getpid());
 printf("Note: under DOS it is the PSP segment\n");
 return 0;
}

/* gettextinfo example */
#include <conio.h>

int main(void)
 {
 struct text_info ti;
 gettextinfo(&ti);
 cprintf("window left %2d\r\n",ti.winleft);
 cprintf("window top %2d\r\n",ti.wintop);
 cprintf("window right %2d\r\n",ti.winright);
 cprintf("window bottom %2d\r\n",ti.winbottom);
 cprintf("attribute %2d\r\n",ti.attribute);
 cprintf("normal attribute %2d\r\n",ti.normattr);
 cprintf("current mode %2d\r\n",ti.currmode);
 cprintf("screen height %2d\r\n",ti.screenheight);
 cprintf("screen width %2d\r\n",ti.screenwidth);
 cprintf("current x %2d\r\n",ti.curx);
 cprintf("current y %2d\r\n",ti.cury);
 return 0;
}

/* getverify example */
#include <stdio.h>
#include <conio.h>
#include <dos.h>

int main(void)
{
 int verify_flag;

 printf("Enter 0 to set verify flag off\n");
 printf("Enter 1 to set verify flag on\n");

 verify_flag = getch() - 0;

 setverify(verify_flag);

 if (getverify())
 printf("DOS verify flag is on\n");
 else
 printf("DOS verify flag is off\n");

 return 0;
}

/* setverify example */
#include <stdio.h>
#include <conio.h>
#include <dos.h>

int main(void)
{
 int verify_flag;

 printf("Enter 0 to set verify flag off\n");
 printf("Enter 1 to set verify flag on\n");

 verify_flag = getch() - 0;

 setverify(verify_flag);

 if (getverify())
 printf("DOS verify flag is on\n");
 else
 printf("DOS verify flag is off\n");

 return 0;
}

/* gotoxy example */
#include <conio.h>

int main(void)
{
 clrscr();
 gotoxy(35, 12);
 cprintf("Hello world");
 getch();
 return 0;
}

/* harderr example */
/*
This program will trap disk errors and
prompt the user for action. Try running it
with no disk in drive A: to invoke its
functions.
*/
#include <stdio.h>
#include <conio.h>
#include <dos.h>

#define IGNORE 0
#define RETRY 1
#define ABORT 2

int buf[500];

/*
define the error messages for trapping disk problems
*/
 static char *err_msg[] = {
 "write protect",
 "unknown unit",

 "drive not ready",
 "unknown command",
 "data error (CRC)",
 "bad request",
 "seek error",

 "unknown media type",
 "sector not found",
 "printer out of paper",
 "write fault",
 "read fault",
 "general failure",
 "reserved",

 "reserved",
 "invalid disk change"
};

error_win(char *msg)
{
 int retval;

 cputs(msg);

/*
prompt for user to press a key to abort, retry, ignore
*/
 while(1)
 {
 retval= getch();
 if (retval == 'a' || retval == 'A')
 {
 retval = ABORT;
 break;

 }
 if (retval == 'r' || retval == 'R')
 {

retval = RETRY;
 break;
 }
 if (retval == 'i' || retval == 'I')
 {
 retval = IGNORE;
 break;
 }
 }

 return(retval);
}

/*
pragma warn -par reduces warnings which occur
due to the non use of the parameters
not_used1 and not_used2 to the handler.
*/
#pragma warn -par
void handler(unsigned int ax, unsigned int not_used1, unsigned int
*not_used2)

{
static char msg[80];
unsigned di;
int drive;
int errorno;

di= _DI;
/*
if this is not a disk error then it was
another device having trouble
*/

if (ax < 0)
{

/* report the error */
error_win("Device error");
/* and return to the program directly requesting abort */
_hardretn(ABORT);

}
/* otherwise it was a disk error */
drive = ax & 0x00FF;
errorno = di & 0x00FF;

/* report which error it was */
sprintf(msg, "Error: %s on drive %c\r\nA)bort, R)etry, I)gnore: ",
 err_msg[errorno], 'A' + drive);

/*
return to the program via dos interrupt 0x23 with abort, retry,
or ignore as input by the user.
*/
_hardresume(error_win(msg));
// return ABORT;

}
#pragma warn +par

int main(void)
{
/*
install our handler on the hardware problem interrupt
*/
_harderr(handler);

 clrscr();
 printf("Make sure there is no disk in drive A:\n");
 printf("Press any key\n");
 getch();
 printf("Trying to access drive A:\n");
 printf("fopen returned %p\n",fopen("A:temp.dat", "w"));
 return 0;
}

/* hardresume example */
/*
This program will trap disk errors and
prompt the user for action. Try running it
with no disk in drive A: to invoke its
functions.
*/
#include <stdio.h>
#include <conio.h>
#include <dos.h>

#define IGNORE 0
#define RETRY 1
#define ABORT 2

int buf[500];

/*
define the error messages for trapping disk problems
*/
static char *err_msg[] = {
 "write protect",
 "unknown unit",
 "drive not ready",

 "unknown command",
 "data error (CRC)",
 "bad request",
 "seek error",
 "unknown media type",
 "sector not found",
 "printer out of paper",
 "write fault",
 "read fault",
 "general failure",
 "reserved",
 "reserved",

 "invalid disk change"
};

error_win(char *msg)
{
 int retval;

 cputs(msg);

/*
prompt for user to press a key to abort, retry, ignore
*/
 while(1)
 {
 retval= getch();
 if (retval == 'a' || retval == 'A')
 {
 retval = ABORT;
 break;
 }

 if (retval == 'r' || retval == 'R')
 {

retval = RETRY;
break;

 }
 if (retval == 'i' || retval == 'I')
 {
 retval = IGNORE;
 break;
 }
 }

 return(retval);
}

/*
pragma warn -par reduces warnings which occur
due to the non use of the parameters
not_used1 and not_used2 to the handler.
*/

#pragma warn -par
void handler(unsigned int ax, unsigned int not_used1, unsigned int
*not_used2)

{
 static char msg[80];
 unsigned di;
 int drive;
 int errorno;

 di= _DI;
 /*
 if this is not a disk error then it was
 another device having trouble
 */

 if (ax < 0)
 {

 /* report the error */
 error_win("Device error");
 /* and return to the program directly requesting abort */
 _hardretn(ABORT);

 }
 /* otherwise it was a disk error */
 drive = ax & 0x00FF;
 errorno = di & 0x00FF;
 /* report which error it was */
 sprintf(msg, "Error: %s on drive %c\r\nA)bort, R)etry, I)gnore: ",

 err_msg[errorno], 'A' + drive);
 /*
 return to the program via dos interrupt 0x23 with abort, retry,
 or ignore as input by the user.
 */
 _hardresume(error_win(msg));
// return ABORT;

 }
 #pragma warn +par

 int main(void)
 {
 /*
 install our handler on the hardware problem interrupt
 */
 _harderr(handler);
 clrscr();
 printf("Make sure there is no disk in drive A:\n");
 printf("Press any key\n");

 getch();
 printf("Trying to access drive A:\n");
 printf("fopen returned %p\n",fopen("A:temp.dat", "w"));
 return 0;

}

/* highvideo example */
#include <conio.h>

int main(void)
{
clrscr();

lowvideo();
cprintf("Low Intensity text\r\n");
highvideo();
gotoxy(1,2);
cprintf("High Intensity Text\r\n");

return 0;
}

/* lowvideo example */
#include <conio.h>

int main(void)
{
clrscr();

highvideo();
 cprintf("High Intensity Text\r\n");
 lowvideo();
gotoxy(1,2);

 cprintf("Low Intensity Text\r\n");

return 0;
}

/* normvideo example */
#include <conio.h>

int main(void)
{
 normvideo();
 cprintf("NORMAL Intensity Text\r\n");
 return 0;

}

/* hypot example */
#include <stdio.h>
#include <math.h>

int main(void)
{
 double result;
 double x = 3.0;

 double y = 4.0;

 result = hypot(x, y);
 printf("The hypotenuse is: %lf\n", result);

 return 0;
}

/* imag example */
#include <iostream.h>
#include <complex.h>

int main(void)
{
 double x = 3.1, y = 4.2;

 complex z = complex(x,y);
 cout << "z = " << z << "\n";
 cout << " has real part = " << real(z) << "\n";

 cout << " and imaginary real part = " << imag(z) << "\n";
 cout << "z has complex conjugate = " << conj(z) << "\n";
 return 0;

}

/* insline example */
#include <conio.h>

int main(void)
{
 clrscr();
 cprintf("INSLINE inserts an empty line in the text window\r\n");
 cprintf("at the cursor position using the current text\r\n");

 cprintf("background color. All lines below the empty one\r\n");
 cprintf("move down one line and the bottom line scrolls\r\n");
 cprintf("off the bottom of the window.\r\n");

 cprintf("\r\nPress any key to continue:");
 gotoxy(1, 3);
 getch();

 insline();
 getch();
 return 0;

}

/* intr example */
#include <stdio.h>
#include <string.h>
#include <dir.h>
#include <dos.h>

#define CF 1 /* Carry flag */

int main(void)
{
 char directory[80];
 struct REGPACK reg;

 printf("Enter directory to change to: ");
 gets(directory);
 reg.r_ax = 0x3B << 8; /* shift 3Bh into AH */
 reg.r_dx = FP_OFF(directory);
 reg.r_ds = FP_SEG(directory);
 intr(0x21, ®);
 if (reg.r_flags & CF)
 printf("Directory change failed\n");
 getcwd(directory, 80);
 printf("The current directory is: %s\n", directory);
 return 0;
}

/* ioctl example */
#include <stdio.h>
#include <dir.h>
#include <io.h>

int main(void)
{
 int stat;

 /* use func 8 to determine if the default drive is removable */
 stat = ioctl(0, 8, 0, 0);
 if (!stat)
 printf("Drive %c is removable.\n", getdisk() + 'A');
 else
 printf("Drive %c is not removable.\n", getdisk() + 'A');
 return 0;
}

/* isatty example */
#include <stdio.h>
#include <io.h>

int main(void)
{
 int handle;

 handle = fileno(stdprn);
 if (isatty(handle))
 printf("Handle %d is a device type\n", handle);
 else
 printf("Handle %d isn't a device type\n", handle);
 return 0;
}

/* kbhit example */
#include <conio.h>

int main(void)
{
 cprintf("Press any key to continue:");

 while (!kbhit()) /* do nothing */ ;
 cprintf("\r\nA key was pressed...\r\n");
 return 0;
}

/* ldexp example */
#include <stdio.h>
#include <math.h>

int main(void)
{
 double value;
 double x = 2;

 /* ldexp raises 2 by a power of 3
 then multiplies the result by 2 */
 value = ldexp(x,3);
 printf("The ldexp value is: %lf\n", value);

 return 0;
}

/* setjmp example */
#include <stdio.h>
#include <setjmp.h>
#include <stdlib.h>

void subroutine(jmp_buf);

int main(void)
{

 int value;
 jmp_buf jumper;

 value = setjmp(jumper);
 if (value != 0)
 {
 printf("Longjmp with value %d\n", value);
 exit(value);
 }
 printf("About to call subroutine ... \n");
 subroutine(jumper);

 return 0;
}

void subroutine(jmp_buf jumper)
{
 longjmp(jumper,1);
}

/* longjmp example */
#include <stdio.h>
#include <setjmp.h>
#include <stdlib.h>

void subroutine(jmp_buf);

int main(void)
{

 int value;
 jmp_buf jumper;

 value = setjmp(jumper);
 if (value != 0)
 {
 printf("Longjmp with value %d\n", value);
 exit(value);
 }
 printf("About to call subroutine ... \n");
 subroutine(jumper);

 return 0;
}

void subroutine(jmp_buf jumper)
{
 longjmp(jumper,1);
}

/* lseek example */
#include <sys\stat.h>
#include <string.h>
#include <stdio.h>
#include <fcntl.h>
#include <io.h>

int main(void)
{
 int handle;
 char msg[] = "This is a test";
 char ch;

 /* create a file */
 handle = open("TEST.$$$", O_CREAT | O_RDWR, S_IREAD | S_IWRITE);

 /* write some data to the file */
 write(handle, msg, strlen(msg));

 /* seek to the begining of the file */
 lseek(handle, 0L, SEEK_SET);

 /* reads chars from the file until we hit EOF */
 do
 {
 read(handle, &ch, 1);
 printf("%c", ch);
 } while (!eof(handle));

 close(handle);
 return 0;
}

/* malloc example */
#include <stdio.h>
#include <string.h>
#include <alloc.h>
#include <process.h>

int main(void)
{
 char *str;

 /* allocate memory for string */
 if ((str = (char *) malloc(10)) == NULL)
 {
 printf("Not enough memory to allocate buffer\n");
 exit(1); /* terminate program if out of memory */
 }

 /* copy "Hello" into string */
 strcpy(str, "Hello");

 /* display string */
 printf("String is %s\n", str);

 /* free memory */
 free(str);

 return 0;
}

/* _matherr example */
#include <math.h>
#include <string.h>
#include <stdio.h>

int matherr (struct exception *a)
{
 if (a->type == DOMAIN)
 if (!strcmp(a->name,"sqrt")) {
 a->retval = sqrt (-(a->arg1));
 return 1;
 }
 return 0;
}

int main(void)
{
 double x = -2.0, y;
 y = sqrt(x);
 printf("Matherr corrected value: %lf\n",y);
 return 0;
}

/* max and min example */
#include <stdlib.h>
#include <stdio.h>

#ifdef __cplusplus

 int max (int value1, int value2);

 int max(int value1, int value2)
 {
 return ((value1 > value2) ? value1 : value2);
 }

#endif

int main(void)
{
 int x = 5;
 int y = 6;
 int z;
 z = max(x, y);
 printf("The larger number is %d\n", z);
 return 0;
}

/* memchr example */
#include <string.h>
#include <stdio.h>

int main(void)
{
 char str[17];
 char *ptr;

 strcpy(str, "This is a string");
 ptr = (char *) memchr(str, 'r', strlen(str));
 if (ptr)
 printf("The character 'r' is at position: %d\n", ptr - str);
 else
 printf("The character was not found\n");
 return 0;
}

/* memset example */
#include <string.h>
#include <stdio.h>
#include <mem.h>

int main(void)
{
 char buffer[] = "Hello world\n";

 printf("Buffer before memset: %s\n", buffer);
 memset(buffer, '*', strlen(buffer) - 1);
 printf("Buffer after memset: %s\n", buffer);
 return 0;
}

/* mkdir example */
#include <stdio.h>
#include <conio.h>
#include <process.h>
#include <dir.h>

#define DIRNAME "testdir.$$$"

int main(void)
{
 int stat;

 stat = mkdir(DIRNAME);
 if (!stat)
 printf("Directory created\n");
 else
 {
 printf("Unable to create directory\n");
 exit(1);
 }

 getch();
 system("dir/p");
 getch();

 stat = rmdir(DIRNAME);
 if (!stat)
 printf("\nDirectory deleted\n");
 else
 {
 perror("\nUnable to delete directory\n");
 exit(1);
 }

 return 0;
}

/* rmdir example */
#include <stdio.h>
#include <conio.h>
#include <process.h>
#include <dir.h>

#define DIRNAME "testdir.$$$"

int main(void)
{
 int stat;

 stat = mkdir(DIRNAME);
 if (!stat)
 printf("Directory created\n");
 else
 {
 printf("Unable to create directory\n");
 exit(1);
 }

 getch();
 system("dir/p");
 getch();

 stat = rmdir(DIRNAME);
 if (!stat)
 printf("\nDirectory deleted\n");
 else
 {
 perror("\nUnable to delete directory\n");
 exit(1);
 }

 return 0;
}

/* mktemp example */
#include <dir.h>
#include <stdio.h>

int main(void)
{
 /* fname defines the template for the
 temporary file. */

 char *fname = "TXXXXXX", *ptr;

 ptr = mktemp(fname);
 printf("%s\n",ptr);
 return 0;
}

/* mktime example */
#include <stdio.h>
#include <time.h>

 char *wday[] = {"Sunday", "Monday", "Tuesday", "Wednesday",
 "Thursday", "Friday", "Saturday", "Unknown"};

int main(void)
{
 struct tm time_check;
 int year, month, day;

/* Input a year, month and day to find the weekday for */
 printf("Year: ");
 scanf("%d", &year);
 printf("Month: ");
 scanf("%d", &month);
 printf("Day: ");
 scanf("%d", &day);

/* load the time_check structure with the data */
 time_check.tm_year = year - 1900;
 time_check.tm_mon = month - 1;
 time_check.tm_mday = day;
 time_check.tm_hour = 0;
 time_check.tm_min = 0;
 time_check.tm_sec = 1;
 time_check.tm_isdst = -1;

/* call mktime to fill in the weekday field of the structure */
 if (mktime(&time_check) == -1)
 time_check.tm_wday = 7;

/* print out the day of the week */
 printf("That day is a %s\n", wday[time_check.tm_wday]);
 return 0;
}

/* modf example */
#include <math.h>
#include <stdio.h>

int main(void)
{
 double fraction, integer;
 double number = 100000.567;

 fraction = modf(number, &integer);
 printf("The whole and fractional parts of %lf are %lf and %lf\n",
 number, integer, fraction);
 return 0;
}

/* movedata example */
#include <mem.h>

#define MONO_BASE 0xB000

char buf[80*25*2];

/* saves the contents of the monochrome screen in buffer */
void save_mono_screen(char near *buffer)
{
 movedata(MONO_BASE, 0, _DS, (unsigned)buffer, 80*25*2);
}

int main(void)
{
 save_mono_screen(buf);
 return 0;
}

/* movmem example */
#include <mem.h>
#include <alloc.h>
#include <stdio.h>
#include <string.h>

int main(void)
{
 char *source = "Borland International";
 char *destination;
 int length;

 length = strlen(source);
 destination = (char *) malloc(length + 1);
 movmem(source, destination, length);
 printf("%s\n", destination);

 return 0;
}

/* movetext example */
#include <conio.h>
#include <string.h>

int main(void)
{
 char *str = "This is a test string";

 clrscr();
 cputs(str);
 getch();

 movetext(1, 1, strlen(str), 2, 10, 10);
 getch();

 return 0;
}

/* norm example */
#include <iostream.h>
#include <complex.h>

int main(void)
{
 double x = 3.1, y = 4.2;
 complex z = complex(x,y);
 cout << "z = " << z << "\n";
 cout << " has real part = " << real(z) << "\n";
 cout << " and imaginary real part = " << imag(z) << "\n";
 cout << "z has complex conjugate = " << conj(z) << "\n";

 double mag = sqrt(norm(z));
 double ang = arg(z);
 cout << "The polar form of z is:\n";
 cout << " magnitude = " << mag << "\n";
 cout << " angle (in radians) = " << ang << "\n";
 cout << "Reconstructing z from its polar form gives:\n";
 cout << " z = " << polar(mag,ang) << "\n";
 return 0;
}

/* closedir and readdir example */
/* opendir.c - test opendir(), readdir(), closedir() */

#include <dirent.h>
#include <stdio.h>
#include <stdlib.h>

void scandir(char *dirname)
{
 DIR *dir;
 struct dirent *ent;

 printf("First pass on '%s':\n",dirname);
 if ((dir = opendir(dirname)) == NULL)
 {
 perror("Unable to open directory");
 exit(1);
 }
 while ((ent = readdir(dir)) != NULL)
 printf("%s\n",ent->d_name);

 printf("Second pass on '%s':\n",dirname);
 rewinddir(dir);
 while ((ent = readdir(dir)) != NULL)
 printf("%s\n",ent->d_name);
 if (closedir(dir) != 0)
 perror("Unable to close directory");
}

void main(int argc,char *argv[])
{
 if (argc != 2)
 {
 printf("usage: opendir dirname\n");
 exit(1);
 }
 scandir(argv[1]);
 exit(0);
}

/* opendir example */
 /* opendir.c - test opendir(), readdir(), closedir() */

#include <dirent.h>
#include <stdio.h>
#include <stdlib.h>

void scandir(char *dirname)
{
 DIR *dir;
 struct dirent *ent;

 printf("First pass on '%s':\n",dirname);
 if ((dir = opendir(dirname)) == NULL)
 {
 perror("Unable to open directory");
 exit(1);
 }
 while ((ent = readdir(dir)) != NULL)
 printf("%s\n",ent->d_name);

 printf("Second pass on '%s':\n",dirname);
 rewinddir(dir);
 while ((ent = readdir(dir)) != NULL)
 printf("%s\n",ent->d_name);
 if (closedir(dir) != 0)
 perror("Unable to close directory");
}

void main(int argc,char *argv[])
{
 if (argc != 2)
 {
 printf("usage: opendir dirname\n");
 exit(1);
 }
 scandir(argv[1]);
 exit(0);
}

/* parsfnm example */
#include <process.h>
#include <string.h>
#include <stdio.h>
#include <dos.h>

int main(void)
{
 char line[80];
 struct fcb blk;

 /* get file name */
 printf("Enter drive and file name (no path; e.g., a:file.dat)\n");
 gets(line);

 /* put file name in fcb */
 if (parsfnm(line, &blk, 1) == NULL)
 printf("Error in parsfm call\n");
 else
 printf("Drive #%d Name: %11s\n", blk.fcb_drive, blk.fcb_name);

 return 0;
}

/* peek example */
#include <stdio.h>
#include <conio.h>
#include <dos.h>

int main(void)
{
 int value = 0;

 printf("The current status of your keyboard is:\n");
 value = peek(0x0040, 0x0017);
 if (value & 1)
 printf("Right shift on\n");
 else
 printf("Right shift off\n");

 if (value & 2)
 printf("Left shift on\n");
 else
 printf("Left shift off\n");

 if (value & 4)
 printf("Control key on\n");
 else
 printf("Control key off\n");

 if (value & 8)
 printf("Alt key on\n");
 else
 printf("Alt key off\n");

 if (value & 16)
 printf("Scroll lock on\n");
 else
 printf("Scroll lock off\n");

 if (value & 32)
 printf("Num lock on\n");
 else
 printf("Num lock off\n");

 if (value & 64)
 printf("Caps lock on\n");
 else
 printf("Caps lock off\n");

 return 0;
}

/* perror example */
#include <stdio.h>

int main(void)
{
 FILE *fp;

 fp = fopen("perror.dat", "r");
 if (!fp)
 perror("Unable to open file for reading");
 return 0;
}

/* poke example */
#include <dos.h>
#include <conio.h>

int main(void)
{
 clrscr();
 cprintf("Make sure the scroll lock key is off and press any key\r\n");
 getch();
 poke(0x0000,0x0417,16);
 cprintf("The scroll lock is now on\r\n");
 return 0;
}

/* polar example */
#include <iostream.h>
#include <complex.h>

int main(void)
{
 double x = 3.1, y = 4.2;
 complex z = complex(x,y);
 cout << "z = " << z << "\n";
 cout << " has real part = " << real(z) << "\n";
 cout << " and imaginary real part = " << imag(z) << "\n";
 cout << "z has complex conjugate = " << conj(z) << "\n";

 double mag = sqrt(norm(z));
 double ang = arg(z);
 cout << "The polar form of z is:\n";
 cout << " magnitude = " << mag << "\n";
 cout << " angle (in radians) = " << ang << "\n";
 cout << "Reconstructing z from its polar form gives:\n";
 cout << " z = " << polar(mag,ang) << "\n";
 return 0;
}

/* poly example */
#include <stdio.h>
#include <math.h>

/* polynomial: x**3 - 2x**2 + 5x - 1 */

int main(void)
{
 double array[] = { -1.0, 5.0, -2.0, 1.0
};
 double result;

 result = poly(2.0, 3, array);
 printf("The polynomial: x**3 - 2.0x**2 + 5x - 1 at 2.0 is %lf\n",
result);

 return 0;
}

/* pow example */
#include <math.h>
#include <stdio.h>

int main(void)
{
 double x = 2.0, y = 3.0;

 printf("%lf raised to %lf is %lf\n", x, y, pow(x, y));
 return 0;
}

/* pow10 example */
#include <math.h>
#include <stdio.h>

int main(void)
{
 double p = 3.0;

 printf("Ten raised to %lf is %lf\n", p, pow10(p));
 return 0;
}

/* putch example */
#include <stdio.h>
#include <conio.h>

int main(void)
{
 char ch = 0;

 printf("Input a string:");
 while ((ch != '\r'))
 {
 ch = getch();
 putch(ch);
 }
 return 0;
}

/* raise example */
#include <signal.h>

int main(void)
{
 int a, b;

 a = 10;
 b = 0;
 if (b == 0)
 /* preempt divide by zero error */
 raise(SIGFPE);
 a = a / b;
 return 0;
}

/* rand example */
#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 int i;

 randomize();
 printf("Ten random numbers from 0 to 99\n\n");
 for(i=0; i<10; i++)
 printf("%d\n", rand() % 100);
 return 0;
}

/* random example */
#include <stdlib.h>
#include <stdio.h>
#include <time.h>

/* prints a random number in the range 0 to 99 */
int main(void)
 {
 randomize();
 printf("Random number in the 0-99 range: %d\n", random (100));
 return 0;
}

/* randomize example */
#include <stdlib.h>
#include <stdio.h>
#include <time.h>

int main(void)
{
 int i;

 randomize();
 printf("Ten random numbers from 0 to 99\n\n");
 for(i=0; i<10; i++)
 printf("%d\n", rand() % 100);
 return 0;
}

/* real example */
#include <iostream.h>
#include <complex.h>

int main(void)
{
 double x = 3.1, y = 4.2;
 complex z = complex(x,y);
 cout << "z = " << z << "\n";
 cout << " has real part = " << real(z) << "\n";
 cout << " and imaginary real part = " << imag(z) << "\n";
 cout << "z has complex conjugate = " << conj(z) << "\n";
 return 0;
}

/* remove example */
#include <stdio.h>

int main(void)
{
 char file[80];

 /* prompt for file name to delete */
 printf("File to delete: ");
 gets(file);

 /* delete the file */
 if (remove(file) == 0)
 printf("Removed %s.\n",file);
 else
 perror("remove");

 return 0;
}

/* rename example */
#include <stdio.h>

int main(void)
{
 char oldname[80], newname[80];

 /* prompt for file to rename and new name */
 printf("File to rename: ");
 gets(oldname);
 printf("New name: ");
 gets(newname);

 /* Rename the file */
 if (rename(oldname, newname) == 0)
 printf("Renamed %s to %s.\n", oldname, newname);
 else
 perror("rename");

 return 0;
}

/* rewind example */
#include <stdio.h>
#include <dir.h>

int main(void)
{
 FILE *fp;
 char *fname = "TXXXXXX", *newname, first;

 newname = mktemp(fname);
 fp = fopen(newname,"w+");
 fprintf(fp,"abcdefghijklmnopqrstuvwxyz");
 rewind(fp);
 fscanf(fp,"%c",&first);
 printf("The first character is: %c\n",first);
 fclose(fp);
 remove(newname);

 return 0;
}

/* rewinddir example */
/* opendir.c - test opendir(), readdir(), closedir() */

#include <dirent.h>
#include <stdio.h>
#include <stdlib.h>

void scandir(char *dirname)
{
 DIR *dir;
 struct dirent *ent;

 printf("First pass on '%s':\n",dirname);
 if ((dir = opendir(dirname)) == NULL)
 {
 perror("Unable to open directory");
 exit(1);
 }
 while ((ent = readdir(dir)) != NULL)
 printf("%s\n",ent->d_name);

 printf("Second pass on '%s':\n",dirname);
 rewinddir(dir);
 while ((ent = readdir(dir)) != NULL)
 printf("%s\n",ent->d_name);
 if (closedir(dir) != 0)
 perror("Unable to close directory");
 }

 void main(int argc,char *argv[])
 {
 if (argc != 2)
 {
 printf("usage: opendir dirname\n");
 exit(1);
 }
 scandir(argv[1]);
 exit(0);
}

/* rmtmp example */
#include <stdio.h>
#include <process.h>

void main()
{
 FILE *stream;
 int i;

 /* Create temporary files */
 for (i = 1; i <= 10; i++)
 {
 if ((stream = tmpfile()) == NULL)
 perror("Could not open temporary file\n");
 else
 printf("Temporary file %d created\n", i);
 }
 /* Remove temporary files */
 if (stream != NULL)
 printf("%d temporary files deleted\n", rmtmp());
}

/* _searchenv example */
#include <stdio.h>
#include <stdlib.h>

char buf[_MAX_PATH];

int main(void)
{
 /* looks for TLINK */
 _searchenv("TLINK.EXE","PATH",buf);
 if (buf[0] == '\0')
 printf("TLINK.EXE not found\n");
 else
 printf("TLINK.EXE found in %s\n", buf);

 /* looks for non-existent file */
 _searchenv("NOTEXIST.FIL","PATH",buf);
 if (buf[0] == '\0')
 printf("NOTEXIST.FIL not found\n");
 else
 printf("NOTEXIST.FIL found in %s\n", buf);
 return 0;
}

 /* Program output

 TLINK.EXE found in C:\BIN\TLINK.EXE
 NOTEXIST.FIL not found
 */

/* searchpath example */
#include <stdio.h>
#include <dir.h>

int main(void)
{
 char *p;

 /* Looks for TLINK and returns a pointer
 to the path */
 p = searchpath("TLINK.EXE");
 printf("Search for TLINK.EXE : %s\n", p);

 /* Looks for non-existent file */
 p = searchpath("NOTEXIST.FIL");
 printf("Search for NOTEXIST.FIL : %s\n", p);

 return 0;
}

/* abort example */
#include <stdio.h>
#include <stdlib.h>

 int main(void)
 {
 printf("Calling abort()\n");
 abort();
 return 0; /* This is never reached */
 }

/* access example */
 #include <stdio.h>
 #include <io.h>

 int file_exists(char *filename);

 int main(void)
 {
printf("Does NOTEXIST.FIL exist: %s\n",

 file_exists("NOTEXISTS.FIL") ? "YES" : "NO");
return 0;

 }

 int file_exists(char *filename)
 {
 return (access(filename, 0) == 0);
 }

/* arg example */
 #include <iostream.h>
 #include <complex.h>

 int main(void)
 {
 double x = 3.1, y = 4.2;
 complex z = complex(x,y);
 cout << "z = " << z << "\n";
 cout << " has real part = " << real(z) << "\n";
 cout << " and imaginary part = " << imag(z) << "\n";
 cout << "z has complex conjugate = " << conj(z) << "\n";

 double mag = sqrt(norm(z));
 double ang = arg(z);
 cout << "The polar form of z is:\n";
 cout << " magnitude = " << mag << "\n";
 cout << " angle (in radians) = " << ang << "\n";
 cout << "Reconstructing z from its polar form gives:\n";
 cout << " z = " << polar(mag,ang) << "\n";
 return 0;
 }

/* assert example */
 #include <assert.h>
 #include <stdio.h>
 #include <stdlib.h>

 struct ITEM {
 int key;
 int value;
 };

 /* add item to list, make sure list is not null */
 void additem(struct ITEM *itemptr) {
 assert(itemptr != NULL);
 /* add item to list */
 }

 int main(void)
 {
 additem(NULL);
 return 0;
 }

/* atexit example */
 #include <stdio.h>
 #include <stdlib.h>

 void exit_fn1(void)
 {
 printf("Exit function #1 called\n");
 }

 void exit_fn2(void)
 {
 printf("Exit function #2 called\n");
 }

 int main(void)
 {
 /* post exit function #1 */
 atexit(exit_fn1);
 /* post exit function #2 */
 atexit(exit_fn2);
 return 0;
 }

/* atof example */
 #include <stdlib.h>
 #include <stdio.h>

 int main(void)
 {
 float f;
 char *str = "12345.67";

 f = atof(str);
 printf("string = %s float = %f\n", str, f);
 return 0;
 }

/* atoi example */
 #include <stdlib.h>
 #include <stdio.h>

 int main(void)
 {
 int n;
 char *str = "12345.67";

 n = atoi(str);
 printf("string = %s integer = %d\n", str, n);
 return 0;
 }

/* atol example */
 #include <stdlib.h>
 #include <stdio.h>

 int main(void)
 {
 long l;
 char *lstr = "98765432";

 l = atol(lstr);
 printf("string = %s integer = %ld\n", lstr, l);
 return(0);
 }

/* bcd example */
 #include <iostream.h>
 #include <bcd.h>

 double x = 10000.0; // ten thousand dollars
 bcd a = bcd(x/3,2); // a third, rounded to nearest penny

 int main(void)
 {
 cout << "share of fortune = $" << a << "\n";
 return 0;
 }

/* bdos example */
 #include <stdio.h>
 #include <dos.h>

 /* Get current drive as 'A', 'B', ... */
 char current_drive(void)
 {
 char curdrive;

 /* Get current disk as 0, 1, ... */
 curdrive = bdos(0x19, 0, 0);
 return('A' + curdrive);
 }

 int main(void)
 {
 printf("The current drive is %c:\n", current_drive());
 return 0;
 }

/* bdosptr example */
 #include <string.h>
 #include <stdio.h>
 #include <dir.h>
 #include <dos.h>
 #include <errno.h>
 #include <stdlib.h>

 #define BUFLEN 80

 int main(void)
 {
 char buffer[BUFLEN];
 int test;

 printf("Enter full pathname of a directory\n");
 gets(buffer);

 test = bdosptr(0x3B,buffer,0);
 if(test)
 {
 printf("DOS error message: %d\n", errno);
 /* See errno.h for error listings */
 exit (1);
 }

 getcwd(buffer, BUFLEN);
 printf("The current directory is: %s\n", buffer);

 return 0;
 }

/* calloc example */
 #include <stdio.h>
 #include <alloc.h>
 #include <string.h>

 int main(void)
 {
 char *str = NULL;

 /* allocate memory for string */
 str = (char *) calloc(10, sizeof(char));

 /* copy "Hello" into string */
 strcpy(str, "Hello");

 /* display string */
 printf("String is %s\n", str);

 /* free memory */
 free(str);

 return 0;
 }

/* ceil and floor example */
 #include <math.h>
 #include <stdio.h>

 int main(void)
 {
 double number = 123.54;
 double down, up;

 down = floor(number);
 up = ceil(number);

 printf("original number %5.2lf\n", number);
 printf("number rounded down %5.2lf\n", down);
 printf("number rounded up %5.2lf\n", up);

 return 0;
 }

/* cgets example */
 #include <stdio.h>
 #include <conio.h>

 int main(void)
 {
 char buffer[83];
 char *p;

 /* There's space for 80 characters plus the NULL terminator */
 buffer[0] = 81;

 printf("Input some chars:");
 p = cgets(buffer);
 printf("\ncgets read %d characters: \"%s\"\n", buffer[1], p);
 printf("The returned pointer is %p, buffer[0] is at %p\n", p, &buffer);

 /* Leave room for 5 characters plus the NULL terminator */
 buffer[0] = 6;

 printf("Input some chars:");
 p = cgets(buffer);
 printf("\ncgets read %d characters: \"%s\"\n", buffer[1], p);
 printf("The returned pointer is %p, buffer[0] is at %p\n", p, &buffer);
 return 0;
 }

/* _chain_intr example */
#include <dos.h>
#include <stdio.h>
#include <process.h>

#ifdef __cplusplus
 #define __CPPARGS ...
#else
 #define __CPPARGS
#endif

typedef void interrupt (*fptr)(__CPPARGS);

static void mesg(char *s)
{
 while (*s)
 bdos(2,*s++,0);
}

#pragma argsused
void interrupt handler2(unsigned bp, unsigned di)
{
 _enable();
 mesg("In handler 2.\r\n");
 if (di == 1)
 mesg("DI is 1\r\n");
 else
 mesg("DI is not 1\r\n");
 di++;
}

#pragma argsused
void interrupt handler1(unsigned bp, unsigned di)
{
 _enable();
 mesg("In handler 1.\r\n");
 if (di == 0)
 mesg("DI is 0\r\n");
 else
 mesg("DI is not 0\r\n");
 di++;
 mesg("Chaining to handler 2.\r\n");
 _chain_intr((fptr) handler2);
}

int main()
{
 _dos_setvect(128,(fptr) handler1);
 printf("About to generate interrupt 128\n");
 _DI = 0;
 geninterrupt(128);
 printf("DI was 0 before interrupt, is now 0x%x\n",_DI);
 return 0;
}

/* chdir example */
#include <stdio.h>
#include <stdlib.h>
#include <dir.h>

char old_dir[MAXDIR];
char new_dir[MAXDIR];

int main(void)
{
 if (getcurdir(0, old_dir))
 {
 perror("getcurdir()");
 exit(1);
 }
 printf("Current directory is: \\%s\n", old_dir);

 if (chdir("\\"))
 {
 perror("chdir()");
 exit(1);
 }

 if (getcurdir(0, new_dir))
 {
 perror("getcurdir()");
 exit(1);
 }
 printf("Current directory is now: \\%s\n", new_dir);

 printf("\nChanging back to original directory: \\%s\n", old_dir);
 if (chdir(old_dir))
 {
 perror("chdir()");
 exit(1);
 }

 return 0;
}

/* chmod example */
/* NEW chmod() example: */

#include <errno.h>
#include <stdio.h>
#include <io.h>
#include <process.h>
#include <sys\stat.h>

void main(void)
{
 char filename[64];
 struct stat stbuf;
 int amode;

 printf("Enter name of file: ");
 scanf("%s", filename);
 if (stat(filename, &stbuf) != 0)
 {
 perror("Unable to get file information");
 exit(1);
 }
 if (stbuf.st_mode & S_IWRITE)
 {
 printf("Changing to read-only\n");
 amode = S_IREAD;
 }
 else
 {
 printf("Changing to read-write\n");
 amode = S_IREAD|S_IWRITE;
 }
 if (chmod(filename, amode) != 0)
 {
 perror("Unable to change file mode");
 exit(1);
 }
 exit(0);
}

/* chsize example */
#include <string.h>
#include <fcntl.h>
#include <io.h>

int main(void)
{
 int handle;
 char buf[11] = "0123456789";

 /* create text file containing 10 bytes */
 handle = open("DUMMY.FIL", O_CREAT);
 write(handle, buf, strlen(buf));

 /* truncate the file to 5 bytes in size */
 chsize(handle, 5);

 /* close the file */
 close(handle);
 return 0;
}

/* _clear87 and _status87 example */
#include <stdio.h>
#include <float.h>

int main(void)
{
 float x;
 double y = 1.5e-100;

 printf("\nStatus 87 before error: %X\n", _status87());

 x = y; /* create underflow and precision loss */
 printf("Status 87 after error: %X\n", _status87());

 _clear87();
 printf("Status 87 after clear: %X\n", _status87());

 y = x;

 return 0;
}

/* clearerr example */
#include <stdio.h>

int main(void)
{
 FILE *fp;
 char ch;

 /* open a file for writing */
 fp = fopen("DUMMY.FIL", "w");

 /* force an error condition by attempting to read */
 ch = fgetc(fp);
 printf("%c\n",ch);

 if (ferror(fp))
 {
 /* display an error message */
 printf("Error reading from DUMMY.FIL\n");

 /* reset the error and EOF indicators */
 clearerr(fp);
 }

 fclose(fp);
 return 0;
}

/* clock example */
#include <time.h>
#include <stdio.h>
#include <dos.h>

int main(void)
{
 clock_t start, end;
 start = clock();

 delay(2000);

 end = clock();
 printf("The time was: %f\n", (end - start) / CLK_TCK);

 return 0;
}

/* clreol example */
#include <conio.h>

int main(void)

{
 clrscr();
 cprintf("The function CLREOL clears all characters from the\r\n");
 cprintf("cursor position to the end of the line within the\r\n");
 cprintf("current text window, without moving the cursor.\r\n");
 cprintf("Press any key to continue . . .");
 gotoxy(14, 4);
 getch();

 clreol();
 getch();

 return 0;
}

/* clrscr example */
#include <conio.h>

int main(void)
{
 int i;

 clrscr();
 for (i = 0; i < 20; i++)
 cprintf("%d\r\n", i);
 cprintf("\r\nPress any key to clear screen");
 getch();

 clrscr();
 cprintf("The screen has been cleared!");
 getch();

 return 0;
}

/* complex example */
#include <iostream.h>
#include <complex.h>

int main(void)
{
 double x = 3.1, y = 4.2;
 complex z = complex(x,y);
 cout << "z = "<< z << "\n";
 cout << " and imaginary real part = " << imag(z) << "\n";
 cout << "z has complex conjugate = " << conj(z) << " \n";
 return 0;
}

/* conj example */
#include <iostream.h>
#include <complex.h>

int main(void)
{
 double x = 3.1, y = 4.2;
 complex z = complex(x,y);
 cout << "z = "<< z << "\n";
 cout << " and imaginary real part = " << imag(z) << "\n";
 cout << "z has complex conjugate = " << conj(z) << " \n";
 return 0;
}

/* country example */
#include <dos.h>
#include <stdio.h>

#define USA 0

int main(void)
{
 struct COUNTRY country_info;

 country(USA, &country_info);
 printf("The currency symbol for the USA is: %s\n",
 country_info.co_curr);
 return 0;
}

/* cputs example */
#include <conio.h>

int main(void)
{
 /* clear the screen */
 clrscr();

 /* create a text window */
 window(10, 10, 80, 25);

 /* output some text in the window */
 cputs("This is within the window\r\n");

 /* wait for a key */
 getch();
 return 0;
}

/* creattemp example */
#include <string.h>
#include <stdio.h>
#include <io.h>

int main(void)
{
 int handle;
 char pathname[128];

 strcpy(pathname, "\\");

 /* create a unique file in the root directory */
 handle = creattemp(pathname, 0);

 printf("%s was the unique file created.\n", pathname);
 close(handle);
 return 0;
}

/* ctrlbrk example */
#include <stdio.h>
#include <dos.h>

#define ABORT 0

int c_break(void)
{
 printf("Control-Break pressed. Program aborting ...\n");
return (ABORT);

}

void main(void)
{
 ctrlbrk(c_break);
 for(;;)
 {
 printf("Looping... Press <Ctrl-Break> to quit:\n");
 }
}

/* delline example */
#include <conio.h>

int main(void)
{
 clrscr();
 cprintf("The function DELLINE deletes the line containing the\r\n");
 cprintf("cursor and moves all lines below it one line up.\r\n");
 cprintf("DELLINE operates within the currently active text\r\n");
 cprintf("window. Press any key to continue . . .");
 gotoxy(1,2); /* Move the cursor to the second line and first column */
 getch();

 delline();
 getch();

 return 0;
}

/* difftime example */
#include <time.h>
#include <stdio.h>
#include <dos.h>
#include <conio.h>

int main(void)
{
 time_t first, second;

 clrscr();
 first = time(NULL); /* Gets system
 time */
 delay(2000); /* Waits 2 secs */
 second = time(NULL); /* Gets system time
 again */

 printf("The difference is: %f seconds\n",difftime(second,first));
 getch();

 return 0;
}

/* dosexterr example */
#include <stdio.h>
#include <dos.h>

int main(void)
{
 FILE *fp;
 struct DOSERROR info;

 fp = fopen("perror.dat","r");
 if (!fp) perror("Unable to open file for reading");
 dosexterr(&info);

 printf("Extended DOS error information:\n");
 printf(" Extended error: %d\n",info.de_exterror);
 printf(" Class: %x\n",info.de_class);
 printf(" Action: %x\n",info.de_action);
 printf(" Error Locus: %x\n",info.de_locus);

 return 0;
}

/* dostounix example */
#include <time.h>
#include <stddef.h>
#include <dos.h>
#include <stdio.h>

int main(void)
{
 time_t t;
 struct time d_time;
 struct date d_date;
 struct tm *local;

 getdate(&d_date);
 gettime(&d_time);

 t = dostounix(&d_date, &d_time);
 local = localtime(&t);
 printf("Time and Date: %s\n", asctime(local));

 return 0;
}

/* __emit__ example */
#include <dos.h>

int main(void)
{
/* Emit code that will generate a print screen via int 5 */
 __emit__(0xcd,0x05);
 return 0;
}

/* eof example */
#include <sys\stat.h>
#include <string.h>
#include <stdio.h>
#include <fcntl.h>
#include <io.h>

int main(void)
{
 int handle;
 char msg[] = "This is a test";
 char ch;

 /* create a file */
 handle = open("DUMMY.FIL",
 O_CREAT | O_RDWR,
 S_IREAD | S_IWRITE);

 /* write some data to the file */
 write(handle, msg, strlen(msg));

 /* seek to the beginning of the file */
 lseek(handle, 0L, SEEK_SET);

 /* reads chars from the file until it reaches EOF */
 do
 {
 read(handle, &ch, 1);
 printf("%c", ch);
 } while (!eof(handle));

 close(handle);
 return 0;
}

/* exp and expl example */
#include <stdio.h>
#include <math.h>

int main(void)
{
 double result;
 double x = 4.0;

 result = exp(x);
 printf("'e' raised to the power \
 of %lf (e ^ %lf) = %lf\n",
 x, x, result);

 return 0;
}

/* farcalloc example */
#include <stdio.h>
#include <alloc.h>
#include <string.h>
#include <dos.h>

int main(void)
{
 char far *fptr;
 char *str = "Hello";

 /* allocate memory for the far pointer */
 fptr = (char far *) farcalloc(10, sizeof(char));

 /* copy "Hello" into allocated memory */
 /*
 Note: movedata is used because you might be in a small data model, in
 which case a normal string copy routine can not be used since it
 assumes the pointer size is near.
 */
 movedata(FP_SEG(str), FP_OFF(str),
 FP_SEG(fptr), FP_OFF(fptr),
 strlen(str));

 /* display string (note the F modifier) */
 printf("Far string is: %Fs\n", fptr);

 /* free the memory */
 farfree(fptr);

 return 0;
}

/* farmalloc example */
#include <stdio.h>
#include <alloc.h>
#include <string.h>
#include <dos.h>

int main(void)
{
 char far *fptr;
 char *str = "Hello";

 /* allocate memory for the far pointer */
 fptr = (char far *) farmalloc(10);

 /* copy "Hello" into allocated memory */
 /*
 Note: movedata is used because we might be in a small data model,
 in which case a normal string copy routine can not be used since it
 assumes the pointer size is near.
 */
 movedata(FP_SEG(str), FP_OFF(str),
 FP_SEG(fptr), FP_OFF(fptr),
 strlen(str) + 1);

 /* display string (note the F modifier)
*/
 printf("Far string is: %Fs\n", fptr);

 /* free the memory */
 farfree(fptr);

 return 0;
}

/* fclose example */
#include <string.h>
#include <stdio.h>

int main(void)
{
 FILE *fp;
 char buf[11] = "0123456789";

 /* create a file containing 10 bytes */
 fp = fopen("DUMMY.FIL", "w");
 fwrite(&buf, strlen(buf), 1, fp);

 /* close the file */
 fclose(fp);
 return 0;
}

/* fcloseall example */
#include <stdio.h>

int main(void)
{
 int streams_closed;

 /* open two streams */
 fopen("DUMMY.ONE", "w");
 fopen("DUMMY.TWO", "w");

 /* close the open streams */
 streams_closed = fcloseall();

 if (streams_closed == EOF)
 /* issue an error message */
 perror("Error");
 else
 /* print result of fcloseall() function */
 printf("%d streams were closed.\n", streams_closed);

 return 0;
}

/* feof example */
#include <stdio.h>

int main(void)
{
 FILE *stream;

 /* open a file for reading */
 stream = fopen("DUMMY.FIL", "r");

 /* read a character from the file */
 fgetc(stream);

 /* check for EOF */
 if (feof(stream))
 printf("We have reached end-of-file\n");

 /* close the file */
 fclose(stream);
 return 0;
}

/* ferror example */
#include <stdio.h>

int main(void)
{
 FILE *stream;

 /* open a file for writing */
 stream = fopen("DUMMY.FIL", "w");

 /* force an error condition by attempting to read */
 (void) getc(stream);

 if (ferror(stream)) /* test for an error on the stream */
 {
 /* display an error message */
 printf("Error reading from DUMMY.FIL\n");

 /* reset the error and EOF indicators */
 clearerr(stream);
 }

 fclose(stream);
 return 0;
}

/* fflush example */
#include <string.h>
#include <stdio.h>
#include <conio.h>
#include <io.h>

void flush(FILE *stream);

int main(void)
{
 FILE *stream;
 char msg[] = "This is a test";

 /* create a file */
 stream = fopen("DUMMY.FIL", "w");

 /* write some data to the file */
 fwrite(msg, strlen(msg), 1, stream);

 clrscr();
 printf("Press any key to flush DUMMY.FIL:");
 getch();

 /* flush the data to DUMMY.FIL without closing it */
 flush(stream);

 printf("\nFile was flushed, Press any key to quit:");
 getch();
 return 0;
}

void flush(FILE *stream)
{
 int duphandle;

 /* flush the stream's internal buffer */
 fflush(stream);

 /* make a duplicate file handle */
 duphandle = dup(fileno(stream));

 /* close the duplicate handle to flush the DOS buffer */
 close(duphandle);
}

/* fgetpos and fsetpos example */
#include <stdlib.h>
#include <stdio.h>

void showpos(FILE *stream);

int main(void)
{
 FILE *stream;
 fpos_t filepos;

 /* open a file for update */
 stream = fopen("DUMMY.FIL", "w+");

 /* save the file pointer position */
 fgetpos(stream, &filepos);

 /* write some data to the file */
 fprintf(stream, "This is a test");

 /* show the current file position */
 showpos(stream);

 /* set a new file position, display it */
 if (fsetpos(stream, &filepos) == 0)
 showpos(stream);
 else
 {
 fprintf(stderr, "Error setting file pointer.\n");
 exit(1);
 }

 /* close the file */
 fclose(stream);
 return 0;
}

void showpos(FILE *stream)
{
 fpos_t pos;

 /* display the current file pointer
 position of a stream */
 fgetpos(stream, &pos);
 printf("File position: %ld\n", pos);
}

/* filelength example */
#include <string.h>
#include <stdio.h>
#include <fcntl.h>
#include <io.h>

int main(void)
{
 int handle;
 char buf[11] = "0123456789";

 /* create a file containing 10 bytes */
 handle = open("DUMMY.FIL", O_CREAT);
 write(handle, buf, strlen(buf));

 /* display the size of the file */
 printf("file length in bytes: %ld\n", filelength(handle));

 /* close the file */
 close(handle);
 return 0;
}

/* fileno example */
#include <stdio.h>

int main(void)
{
 FILE *stream;
 int handle;

 /* create a file */
 stream = fopen("DUMMY.FIL", "w");

 /* obtain the file handle associated with the stream */
 handle = fileno(stream);

 /* display the handle number */
 printf("handle number: %d\n", handle);

 /* close the file */
 fclose(stream);
 return 0;
}

/* flushall example */
#include <stdio.h>

int main(void)
{
 FILE *stream;

 /* create a file */
 stream = fopen("DUMMY.FIL", "w");

 /* flush all open streams */
 printf("%d streams were flushed.\n", flushall());

 /* close the file */
 fclose(stream);
 return 0;
}

/* fmod and fmodl example */
#include <stdio.h>
#include <math.h>

int main(void)
{
 double x = 5.0, y = 2.0;
 double result;

 result = fmod(x,y);
 printf("The remainder of (%lf / %lf) is %lf\n", x, y, result);
 return 0;
}

/* FP_OFF, and FP_SEG example*/
#include <stdio.h>
#include <dos.h>

main()
{
 char *str = "Hello\n";

 printf("The address pointed to by str is %04X:%04X\n",
 FP_SEG(str), FP_OFF(str));
 printf("The address of str is %04X:%04X\n", FP_SEG(&str), FP_OFF(&str));
 return 0;
}

/* fread example */
#include <string.h>
#include <stdio.h>

int main(void)
{
 FILE *stream;
 char msg[] = "this is a test";
 char buf[20];

 if ((stream = fopen("DUMMY.FIL", "w+"))
 == NULL)
 {
 fprintf(stderr, "Cannot open output file.\n");
 return 1;
 }

 /* write some data to the file */
 fwrite(msg, strlen(msg)+1, 1, stream);

 /* seek to the beginning of the file */
 fseek(stream, SEEK_SET, 0);

 /* read the data and display it */
 fread(buf, strlen(msg)+1, 1, stream);
 printf("%s\n", buf);

 fclose(stream);
 return 0;
}

/* frexp and frexpl examples */
#include <math.h>
#include <stdio.h>

int main(void)
{
 double mantissa, number;
 int exponent;

 number = 8.0;
 mantissa = frexp(number, &exponent);

 printf("The number %lf is ", number);
 printf("%lf times two to the ", mantissa);
 printf("power of %d\n", exponent);

 return 0;
}

/* fseek example */
#include <stdio.h>

long filesize(FILE *stream);

int main(void)
{
 FILE *stream;

 stream = fopen("MYFILE.TXT", "w+");
 fprintf(stream, "This is a test");
 printf("Filesize of MYFILE.TXT is %ld bytes\n", filesize(stream));
 fclose(stream);
 return 0;
}

long filesize(FILE *stream)
{
 long curpos, length;

 curpos = ftell(stream);
 fseek(stream, 0L, SEEK_END);
 length = ftell(stream);
 fseek(stream, curpos, SEEK_SET);
 return length;
}

/* ftell example */
#include <stdio.h>
int main(void)
{
 FILE *stream;

 stream = fopen("MYFILE.TXT", "w+");
 fprintf(stream, "This is a test");
 printf("The file pointer is at byte %ld\n", ftell(stream));
 fclose(stream);
 return 0;
}

/* ftime example */
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <sys\timeb.h>

/* pacific standard & daylight savings */
char *tzstr = "TZ=PST8PDT";

int main(void)
{
 struct timeb t;
 putenv(tzstr);
 tzset();
 ftime(&t);
 printf("Seconds since 1/1/1970 GMT: %ld\n", t.time);
 printf("Thousandths of a second: %d\n", t.millitm);
 printf("Difference between local time and GMT: %d\n", t._timezone);
 printf("Daylight savings in effect (1) not (0): %d\n", t.dstflag);
 return 0;
}

/* _fullpath example */
#include <stdio.h>
#include <stdlib.h>

char buf[_MAX_PATH];

void main(int argc, char *argv[])
{
 for (; argc; argv++, argc--)
 {
 if (_fullpath(buf, argv[0], _MAX_PATH) == NULL)
 printf("Unable to obtain full path of %s\n",argv[0]);
 else
 printf("Full path of %s is %s\n",argv[0],buf);
 }
}

/* fwrite example */
#include <stdio.h>

struct mystruct
{
 int i;
 char ch;
};

int main(void)
{
 FILE *stream;
 struct mystruct s;

 if ((stream = fopen("TEST.$$$", "wb")) == NULL) /* open file TEST.$$$ */
 {
 fprintf(stderr, "Cannot open output file.\n");
 return 1;
 }
 s.i = 0;
 s.ch = 'A';
 fwrite(&s, sizeof(s), 1, stream); /* write struct s to file */
 fclose(stream); /* close file */
 return 0;
}

/* gcvt example */
#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 char str[25];
 double num;
 int sig = 5; /* significant digits */

 /* a regular number */
 num = 9.876;
 gcvt(num, sig, str);
 printf("string = %s\n", str);

 /* a negative number */
 num = -123.4567;
 gcvt(num, sig, str);
 printf("string = %s\n", str);

 /* scientific notation */
 num = 0.678e5;
 gcvt(num, sig, str);
 printf("string = %s\n", str);

 return(0);
}

/* geninterrupt example */
#include <conio.h>
#include <dos.h>

/* function prototype */
void writechar(char ch);

int main(void)
{
 clrscr();
 gotoxy(80,25);
 writechar('*');
 getch();
 return 0;
}

/*
 outputs a character at the current cursor
 position using the video BIOS to avoid
 the scrolling of the screen when writing
 to location (80,25).
*/

void writechar(char ch)
{
 struct text_info ti;
 /* grab current text settings */
 gettextinfo(&ti);
 /* interrupt 0x10 sub-function 9 */
 _AH = 9;
 /* character to be output */
 _AL = ch;
 _BH = 0; /* video page */
 _BL = ti.attribute; /* video attribute */
 _CX = 1; /* repetition factor */
 geninterrupt(0x10); /* output the char */
}

/* getcbrk and setcbrk example */
#include <dos.h>
#include <conio.h>
#include <stdio.h>

int main(void)
{
 int break_flag;

 printf("Enter 0 to turn control break off\n");
 printf("Enter 1 to turn control break on\n");

 break_flag = getch() - 0;

 setcbrk(break_flag);

 if (getcbrk())
 printf("Cntrl-brk flag is on\n");
 else
 printf("Cntrl-brk flag is off\n");
 return 0;
}

/* segread example */
#include <stdio.h>
#include <dos.h>

int main(void)
{
 struct SREGS segs;

 segread(&segs);
 printf("Current segment register settings\n\n");
 printf("CS: %X DS: %X\n", segs.cs, segs.ds);
 printf("ES: %X SS: %X\n", segs.es, segs.ss);

 return 0;
}

/* setmem example */
#include <stdio.h>
#include <alloc.h>
#include <mem.h>

int main(void)
{
 char *dest;

 dest = (char *) calloc(21, sizeof(char));
 setmem(dest, 20, 'c');
 printf("%s\n", dest);

 return 0;
}

/* setmode example */
#include <fcntl.h>
#include <io.h>
#include <stdio.h>
int main (int argc, char ** argv)
(
 FILE *fp;
 int newmode;
 long where;
 char buf[256];

 fp = fopen(argv[1], "r+");
 if (!fp)
 {
 printf("Couldn't open %s\n", argv[1]);
 return -1;
 }

 newmode = setmode(fileno(fp), O_BINARY);
 if (newmode == -1)
 {
 printf("Coudn't set mode of %s\n", argv[1]);
 return -2
 }

 fp->flags |= _F_BIN;
 where = ftell(fp);
 printf ("file position: %d\n", where);
 fread(buf, 1, 1, fp);
 where = ftell (fp);
 printf("read %c, file position: %ld\n", *buf, where);
 fclose (fp);
 return 0;
}

/* signal example */
/* signal example */

/*
 This example installs a signal handler routine for SIGFPE,
 catches an integer overflow condition, makes an adjustment to AX
 register, and returns. This example program MAY cause your computer
 to crash, and will produce runtime errors depending on which memory
 model is used.
*/

#pragma inline
#include <stdio.h>
#include <signal.h>

#ifdef __cplusplus
 typedef void (*fptr)(int);
#else
 typedef void (*fptr)();
#endif

void Catcher(int *reglist)
{
 signal(SIGFPE, (fptr)Catcher); // ******reinstall signal handler

 printf("Caught it!\n"); *(reglist + 8) = 3; /* make return AX = 3 */
}

int main(void)
{
 signal(SIGFPE, (fptr)Catcher); /* cast Catcher to appropriate type */

 asm mov ax,07FFFH /* AX = 32767 */
 asm inc ax /* cause overflow */
 asm into /* activate handler */

 /* The handler set AX to 3 on return. If that had not happened,
 there would have been another exception when the next 'into'
 executed after the 'dec' instruction. */

 asm dec ax /* no overflow now */
 asm into /* doesn't activate */
 return 0;
}

/* sleep example */
#include <dos.h>
#include <stdio.h>

int main(void)
{
 int i;

 for (i=1; i<5; i++)
 {
 printf("Sleeping for %d seconds\n", i);
 sleep(i);
 }
 return 0;
}

/* sqrt example */
#include <math.h>
#include <stdio.h>

int main(void)
{
 double x = 4.0, result;

 result = sqrt(x);
 printf("The square root of %lf is %lf\n", x, result);
 return 0;
}

/* srand example */
#include <stdlib.h>
#include <stdio.h>
#include <time.h>

int main(void)
{
 int i;
 time_t t;

 srand((unsigned) time(&t));
 printf("Ten random numbers from 0 to 99\n\n");
 for(i=0; i<10; i++)
 printf("%d\n", rand() % 100);
 return 0;
}

/* stpcpy example */
#include <stdio.h>
#include <string.h>

int main(void)
{
 char string[10];
 char *str1 = "abcdefghi";

 stpcpy(string, str1);
 printf("%s\n", string);
 return 0;
}

/*strcat example */
#include <string.h>
#include <stdio.h>

int main(void)
{
 char destination[25];
 char *blank = " ", *c = "C++", *Borland = "Borland";

 strcpy(destination, Borland);
 strcat(destination, blank);
 strcat(destination, c);

 printf("%s\n", destination);
 return 0;
}

/* strchr example */
#include <string.h>
#include <stdio.h>

int main(void)
{
 char string[15];
 char *ptr, c = 'r';

 strcpy(string, "This is a string");
 ptr = strchr(string, c);
 if (ptr)
 printf("The character %c is at position: %d\n", c, ptr-string);
 else
 printf("The character was not found\n");
 return 0;
}

/* strcoll example */
#include <stdio.h>
#include <string.h>

int main(void)
{
 char *two = "International";
 char *one = "Borland";
 int check;

 check = strcoll(one, two);
 if (check == 0)
 printf("The strings are equal\n");
 if (check < 0)
 printf("%s comes before %s\n", one, two);
 if (check > 0)
 printf("%s comes before %s\n", two, one);
 return 0;
}

/* strcpy example */
#include <stdio.h>
#include <string.h>

int main(void)
{
 char string[10];
 char *str1 = "abcdefghi";

 strcpy(string, str1);
 printf("%s\n", string);
 return 0;
}

/* _strdate example */
#include <time.h>
#include <stdio.h>
void main(void)
{
 char datebuf[9];
 char timebuf[9];

 _strdate(datebuf);
 _strtime(timebuf);
 printf("Date: %s Time: %s\n",datebuf,timebuf);
}

/* strdup example */
#include <stdio.h>
#include <string.h>
#include <alloc.h>

int main(void)
{
 char *dup_str, *string = "abcde";

 dup_str = strdup(string);
 printf("%s\n", dup_str);
 free(dup_str);

 return 0;
}

/* strftime example */
#include <stdio.h>
#include <time.h>
#include <dos.h>

int main(void)
{
 struct tm *time_now;
 time_t secs_now;
 char str[80];

 tzset();
 time(&secs_now);
 time_now = localtime(&secs_now);
 strftime(str, 80,
 "It is %M minutes after %I o'clock (%Z) %A, %B %d 19%y",
 time_now);
 printf("%s\n",str);
 return 0;
}

/*strlen example */
#include <stdio.h>
#include <string.h>

int main(void)
{
 char *string = "Borland International";

 printf("%d\n", strlen(string));
 return 0;
}

/*strncat example */
#include <string.h>
#include <stdio.h>

int main(void)
{
 char destination[25];
 char *source = " States";

 strcpy(destination, "United");
 strncat(destination, source, 7);
 printf("%s\n", destination);
 return 0;
}

/* strncpy example */
#include <stdio.h>
#include <string.h>

int main(void)
{
 char string[10];
 char *str1 = "abcdefghi";

 strncpy(string, str1, 3);
 string[3] = '\0';
 printf("%s\n", string);
 return 0;
}

/* strnset example */
#include <stdio.h>
#include <string.h>

int main(void)
{
 char *string = "abcdefghijklmnopqrstuvwxyz";
 char letter = 'x';

 printf("string before strnset: %s\n", string);
 strnset(string, letter, 13);
 printf("string after strnset: %s\n", string);

 return 0;
}

/* strpbrk example */
#include <stdio.h>
#include <string.h>

int main(void)
{
 char *string1 = "abcdefghijklmnopqrstuvwxyz";
 char *string2 = "onm";
 char *ptr;

 ptr = strpbrk(string1, string2);

 if (ptr)
 printf("strpbrk found first character: %c\n", *ptr);
 else
 printf("strpbrk didn't find character in set\n");

 return 0;
}

/* strrchr example */
#include <string.h>
#include <stdio.h>

int main(void)
{
 char string[15];
 char *ptr, c = 'r';

 strcpy(string, "This is a string");
 ptr = strrchr(string, c);
 if (ptr)
 printf("The character %c is at position: %d\n", c, ptr-string);
 else
 printf("The character was not found\n");
 return 0;
}

/* strrev example */
#include <string.h>
#include <stdio.h>

int main(void)
{
 char *forward = "string";

 printf("Before strrev(): %s\n", forward);
 strrev(forward);
 printf("After strrev(): %s\n", forward);
 return 0;
}

/* strset example */
#include <stdio.h>
#include <string.h>

int main(void)
{
 char string[10] = "123456789";
 char symbol = 'c';

 printf("Before strset(): %s\n", string);
 strset(string, symbol);
 printf("After strset(): %s\n", string);
 return 0;
}

/* strstr example */
#include <stdio.h>
#include <string.h>

int main(void)
{
 char *str1 = "Borland International", *str2 = "nation", *ptr;

 ptr = strstr(str1, str2);
 printf("The substring is: %s\n", ptr);
 return 0;
}

/* _strtime example */
#include <time.h>
#include <stdio.h>
void main(void)
{
 char datebuf[9];
 char timebuf[9];

 _strdate(datebuf);
 _strtime(timebuf);
 printf("Date: %s Time: %s\n",datebuf,timebuf);
}

/* strtok example */
 #include <string.h>
 #include <stdio.h>

 int main(void)
 {
 char input[16] = "abc,d";
 char *p;

 /* strtok places a NULL terminator
 in front of the token, if found */
 p = strtok(input, ",");
 if (p) printf("%s\n", p);

 /* A second call to strtok using a NULL
 as the first parameter returns a pointer
 to the character following the token */
 p = strtok(NULL, ",");
 if (p) printf("%s\n", p);
 return 0;
 }

/* strxfrm example */
#include <stdio.h>
#include <string.h>
#include <alloc.h>

int main(void)
{
 char *target;
 char *source = "Frank Borland";
 int length;

 /* allocate space for the target string */
 target = (char *) calloc(80, sizeof(char));

 /* copy the source over to the target and get the length */
 length = strxfrm(target, source, 80);

 /* print out the results */
 printf("%s has the length %d\n", target, length);
 return 0;
}

/* swab example */
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

char source[15] = "rFna koBlrna d";
char target[15];

int main(void)
{
 swab(source, target, strlen(source));
 printf("This is target: %s\n", target);
 return 0;
}

/* system example */
#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 printf("About to spawn command.com and run a DOS command\n");
 system("dir");
 return 0;
}

/* tell example */
#include <string.h>
#include <stdio.h>
#include <fcntl.h>
#include <io.h>

int main(void)
{
 int handle;
 char msg[] = "Hello world";

 if ((handle = open("TEST.$$$", O_CREAT | O_TEXT | O_APPEND)) == -1)
 {
 perror("Error:");
 return 1;
 }
 write(handle, msg, strlen(msg));
 printf("The file pointer is at byte %ld\n", tell(handle));
 close(handle);
 return 0;
}

/* tempnam example */
#include <stdio.h>
#include <stdlib.h>

void main(void)
{
 FILE *stream;
 int i;
 char *name;

 for (i = 1; i <= 10; i++) {
 if ((name = tempnam("\\tmp","wow")) == NULL)
 perror("tempnam couldn't create name");
 else {
 printf("Creating %s\n",name);
 if ((stream = fopen(name,"wb")) == NULL)
 perror("Could not open temporary file\n");
 else
 fclose(stream);
 }
 free(name);
 }
 printf("Warning: temp files not deleted.\n");
}

/* textmode example */
#include <conio.h>

int main(void)
{
 textmode(BW40);
 cprintf("ABC");
 getch();

 textmode(C40);
 cprintf("ABC");
 getch();

 textmode(BW80);
 cprintf("ABC");
 getch();

 textmode(C80);
 cprintf("ABC");
 getch();

 textmode(MONO);
 cprintf("ABC");
 getch();

 return 0;
}

/* tmpfile example */
#include <stdio.h>
#include <process.h>

int main(void)
{
 FILE *tempfp;

 tempfp = tmpfile();
 if (tempfp)
 printf("Temporary file created\n");
 else
 {
 printf("Unable to create temporary file\n");
 exit(1);
 }

 return 0;
}

/* tmpnam example */
#include <stdio.h>

int main(void)
{
 char name[13];

 tmpnam(name);
 printf("Temporary name: %s\n", name);
 return 0;
}

/* toascii example */
#include <stdio.h>
#include <ctype.h>

int main(void)
{
 int number, result;
 number = 511;
 result = toascii(number);
 printf("%d %d\n", number, result);
 return 0;
}

/* tzset example */
#include <time.h>
#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 time_t td;

 putenv("TZ=PST8PDT");
 tzset();
 time(&td);
 printf("Current time = %s\n", asctime(localtime(&td)));
 return 0;
}

/* ungetc example */
#include <stdio.h>
#include <ctype.h>

int main(void)
{
 int i=0;
 char ch;

 puts("Input an integer followed by a char:");

 /* read chars until non digit or EOF */
 while((ch = getchar()) != EOF && isdigit(ch))
 i = 10 * i + ch - 48; /* convert ASCII into int value */

 /* if non digit char was read, push it back into input buffer */
 if (ch != EOF)
 ungetc(ch, stdin);

 printf("i = %d, next char in buffer = %c\n", i, getchar());
 return 0;
}

/* ungetch example */
#include <stdio.h>
#include <ctype.h>
#include <conio.h>

int main(void)
{
 int i=0;
 char ch;

 puts("Input an integer followed by a char:");

 /* read chars until non digit or EOF */
 while((ch = getche()) != EOF && isdigit(ch))
 i = 10 * i + ch - 48; /* convert ASCII into int value */

 /* if non digit char was read, push it back into input buffer */
 if (ch != EOF)
 ungetch(ch);

 printf("\n\ni = %d, next char in buffer = %c\n", i, getch());
 return 0;
}

/* unixtodos example */
#include <stdio.h>
#include <dos.h>

char *month[] = {"---", "Jan", "Feb", "Mar", "Apr", "May", "Jun",
 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"};

#define SECONDS_PER_DAY 86400L /* the number of seconds in one day */

struct date dt;
struct time tm;

int main(void)
{
 unsigned long val;

/* get today's date and time */
 getdate(&dt);
 gettime(&tm);
 printf("today is %d %s %d\n", dt.da_day, month[dt.da_mon], dt.da_year);

/*convert date and time to unix format (num of seconds since Jan 1, 1970*/
 val = dostounix(&dt, &tm);
/* subtract 42 days worth of seconds */
 val -= (SECONDS_PER_DAY * 42);

/* convert back to dos time and date */
 unixtodos(val, &dt, &tm);
 printf("42 days ago it was %d %s %d\n",
 dt.da_day, month[dt.da_mon], dt.da_year);
 return 0;
}

/* unlink example */
#include <stdio.h>
#include <io.h>

int main(void)
{
 FILE *fp = fopen("junk.jnk","w");
 int status;

 fprintf(fp,"junk");

 status = access("junk.jnk",0);
 if (status == 0)
 printf("File exists\n");
 else
 printf("File doesn't exist\n");

 fclose(fp);
 unlink("junk.jnk");
 status = access("junk.jnk",0);
 if (status == 0)
 printf("File exists\n");
 else
 printf("File doesn't exist\n");

 return 0;
}

/* umask example */
#include <io.h>
#include <stdio.h>
#include <sys\stat.h>

#define FILENAME "TEST.$$$"

int main(void)
{
 unsigned oldmask;

 FILE *f;
 struct stat statbuf;

 /* Cause subsequent files to be created as read-only */
 oldmask = umask(S_IWRITE);
 printf("Old mask = 0x%x\n",oldmask);

 /* Create a zero-length file */
 if ((f = fopen(FILENAME,"w+")) == NULL)
 {
 perror("Unable to create output file");
 return (1);
 }
 fclose(f);

 /* Verify that the file is read-only */
 if (stat(FILENAME,&statbuf) != 0)
 {
 perror("Unable to get information about output file");
 return (1);
 }
 if (statbuf.st_mode & S_IWRITE)
 printf("Error! %s is writable!\n",FILENAME);
 else
 printf("Success! %s is not writable.\n",FILENAME);
 return (0);
}

/* utime example */
/* Copy timestamp from one file to another */

#include <sys\stat.h>
#include <utime.h>
#include <stdio.h>

int main(int argc, char *argv[])
{
 struct stat src_stat;
 struct utimbuf times;
 if(argc != 3) {
 printf("Usage: copytime <source file> <dest file>\n");
 return 1;
 }

 if (stat(argv[1],&src_stat) != 0) {
 perror("Unable to get status of source file");
 return 1;
 }

 times.modtime = times.actime = src_stat.st_mtime;
 if (utime(argv[2],×) != 0) {
 perror("Unable to set time of destination file");
 return 1;
 }
 return 0;
}

/* va_arg example */
#include <stdio.h>
#include <stdarg.h>

/* calculate sum of a 0 terminated list */
void sum(char *msg, ...)
{
 int total = 0;
 va_list ap;
 int arg;
 va_start(ap, msg);
 while ((arg = va_arg(ap,int)) != 0) {
 total += arg;
 }
 printf(msg, total);
 va_end(ap);
}

int main(void) {
 sum("The total of 1+2+3+4 is %d\n", 1,2,3,4,0);
 return 0;
}

/* wherex and wherey example */
#include <conio.h>

int main(void)
{
 clrscr();
 gotoxy(10,10);
 cprintf("Current location is X: %d Y: %d\r\n", wherex(), wherey());
 getch();

 return 0;
}

/* window example */
#include <conio.h>

int main(void)
{

 window(10,10,40,11);
 textcolor(BLACK);
 textbackground(WHITE);
 cprintf("This is a test\r\n");

 return 0;
}

/* getpsp example */
#include <stdio.h>
#include <dos.h>

int main(void)
{
 static char command[128];
 char far *cp;
 int len, i;

 printf("The program segment prefix is: %u\n", getpsp());

/*
_psp is preset to segment of the PSP. Command line is located at offset
0x81 from start of PSP

*/
 cp = (char *) MK_FP(_psp, 0x80);
 len = *cp;

 for (i = 0; i < len; i++)
 command[i] = cp[i+1];

 printf("Command line: %s\n", command);

 return 0;
}

/* stackavail example */
 #include <malloc.h>
 #include <stdio.h>

 int main(void)
 {
 char *buf;

 printf("\nThe stack: %u\tstack pointer: %u", stackavail(), _SP);
 buf = (char *) alloca(100 * sizeof(char));
 printf("\nNow, the stack: %u\tstack pointer: %u", stackavail(), _SP);
 return 0;
 }

 /* **

 Program output

 The stack: 64046 stack pointer: 65524
 Now, the stack: 63946 stack pointer: 65424

 ** */

/* set_new_handler example */
#include <iostream.h>
#include <new.h>
#include <stdlib.h>

void mem_warn() {
 cerr << "\nCan't allocate!";
 exit(1);
 }

void main(void) {
 set_new_handler(mem_warn);

 char *ptr = new char[100];
 cout << "\nFirst allocation: ptr = " << hex << long(ptr);
 ptr = new char[64000U];
 cout << "\nFinal allocation: ptr = " << hex << long(ptr);
 set_new_handler(0); // Reset to default.
}

/* isalpha example */
#include <stdio.h>
#include <ctype.h>

int main(void)
{
 char c = 'C';

 if (isalpha(c))
 printf("%c is alphabetical\n",c);
 else printf("%c is not alphabetical\n",c);

 return 0;
}

/* isalnum example */
#include <stdio.h>
#include <ctype.h>

int main(void)
{
 char c = 'C';

 if (isalnum(c))
 printf("%c is alphanumeric\n",c);
 else printf("%c is not alphanumeric\n",c);

 return 0;
}

/* isascii example */
#include <stdio.h>
#include <ctype.h>
#include <stdio.h>
int main(void)
{
 char c = 'C';

 if (isascii(c))
 printf("%c is ascii\n",c);
 else printf("%c is not ascii\n",c);
 return 0;
}

/* iscntrl example */
#include <stdio.h>
#include <ctype.h>

int main(void)
{
 char c = 'C';
 if (iscntrl(c))
 printf("%c is a control character\n",c);
 else printf("%c is not a control character\n",c);

 return 0;
}

/* isdigit example */
#include <stdio.h>
#include <ctype.h>

int main(void)
{
 char c = 'C';

 if (isdigit(c))
 printf("%c is a digit\n",c);
 else printf("%c is not a digit\n",c);

 return 0;
}

/* isgraph example */
#include <stdio.h>
#include <ctype.h>

int main(void)
{
 char c = 'C';

 if (isgraph(c))
 printf("%c is a graphic character\n",c);
 else printf("%c is not a graphic character\n",c);

 return 0;
}

/* islower example */
#include <stdio.h>
#include <ctype.h>

int main(void)
{
 char c = 'C';

 if (islower(c))
 printf("%c is a lowercase character\n",c);
 else printf("%c is not a lowercase character\n",c);

 return 0;
}

/* isprint example */
#include <stdio.h>
#include <ctype.h>

int main(void)
{
 char c = 'C';

 if (isprint(c))
 printf("%c is a printable character\n",c);
 else printf("%c is not a printable character\n",c);

 return 0;
}

/* ispunct example */
#include <stdio.h>
#include <ctype.h>

int main(void)
{
 char c = 'C';

 if (ispunct(c))
 printf("%c is a punctuation character\n",c);
 else printf("%c is not a punctuation character\n",c);

 return 0;
}

/* isspace example */
#include <stdio.h>
#include <ctype.h>

int main(void)
{
 char c = 'C';

 if (isspace(c))
 printf("%c is white space\n",c);
 else printf("%c is not white space\n",c);

 return 0;
}

/* isupper example */
#include <stdio.h>
#include <ctype.h>

int main(void)
{
 char c = 'C';

 if (isupper(c))
 printf("%c is an uppercase character\n",c);
 else printf("%c is not an uppercase character\n",c);

 return 0;
}

/* isxdigit example */
#include <stdio.h>
#include <ctype.h>

int main(void)
{
 char c = 'C';

 if (isxdigit(c))
 printf("%c is a hexidecimal digit\n",c);
 else printf("%c is not a hexidecimal digit\n",c);

 return 0;
}

/* mblen example */
#include <stdlib.h>
#include <stdio.h>

void main (void)
{
 int i ;
 char *mulbc = (char *)malloc(sizeof(char));
 wchar_t widec = L'a';
 printf (" convert a wide character to multibyte character:\n");
 i = wctomb (mulbc, widec);
 printf("\tCharacters converted: %u\n", i);
 printf("\tMultibyte character: %x\n\n", mulbc);

 printf(" Find length--in byte-- of multibyte character:\n");
 i = mblen(mulbc, MB_CUR_MAX);
 printf("\tLenght--in bytes--if multiple character: %u\n",i);
 printf("\tWide character: %x\n\n", mulbc);

 printf(" Attempt to find length of a Wide character Null:\n");
 widec = L'\0';
 wctomb(mulbc, widec);
 i = mblen(mulbc, MB_CUR_MAX);
 printf("\tLenght--in bytes--if multiple character: %u\n",i);
 printf("\tWide character: %x\n\n", mulbc);

}

/* mbstowcs example */
#include <stdio.h>
#include <stdlib.h>

void main(void)
{
 int x;
 char *mbst = (char *)malloc(MB_CUR_MAX);
 wchar_t *pwst = L"Hi";
 wchar_t *pwc = (wchar_t *)malloc(sizeof(wchar_t));

 printf ("Convert to multibyte string:\n");
 x = wcstombs (mbst, pwst, MB_CUR_MAX);
 printf ("\tCharacters converted %u\n",x);
 printf ("\tHEx value of first");
 printf (" multibyte character: %#.4x\n\n", mbst);

 printf ("Convert back to wide character string:\n");
 x = mbstowcs(pwc, mbst, MB_CUR_MAX);
 printf("\tCharacters converted: %u\n",x);
 printf("\tHex value of first");
 printf("wide character: %#.4x\n\n", pwc);
}

/* mbtowc example */
#include <stdlib.h>
#include<stdio.h>

void main(void)
{
 int x;
 char *mbchar = (char *)calloc(1, sizeof(char));
 wchar_t wchar = L'a';
 wchar_t *pwcnull = NULL;
 wchar_t *pwchar = (wchar_t *)calloc(1, sizeof(wchar_t));

 printf ("Convert a wide character to multibyte character:\n");
 x = wctomb(mbchar, wchar);
 printf("\tCharacters converted: %u\n", x);
 printf("\tMultibyte character: %x\n\n", mbchar);

 printf ("Convert multibyte character back to a wide character:\n");
 x = mbtowc(pwchar, mbchar, MB_CUR_MAX);
 printf("\tBytes converted: %u\n", x);
 printf("\tWide character: %x\n\n", pwchar);

 printf ("Atempt to convert when target is NULL\n");
 printf (" returns the length of the multibyte character:\n");
 x = mbtowc (pwcnull, mbchar, MB_CUR_MAX);
 printf ("\tlength of multibyte character:%u\n\n", x);

 printf ("Attempt to convert a NULL pointer to a");
 printf (" wide character:\n");
 mbchar = NULL;
 x = mbtowc (pwchar, mbchar, MB_CUR_MAX);
 printf("\tBytes converted: %u\n", x);
 }

/* MK_FP example */
#include <stdio.h>
#include <conio.h>
#include <string.h>
#include <dos.h>
#include <malloc.h>

main()
{

 char *str = "hello\n";
 char far *farstr;

 printf ("the address pointed to by str is %04X:%04X\n",
 FP_SEG(str), FP_OFF(str));
 farstr = (char far *)MK_FP(FP_SEG(str), FP_OFF(str));

 printf ("the string pointed by far pointer is %s\n", farstr);
 return 0;
}

/* _msize example */
/* _msize works as a 32-bit command, not as a 16-bit command */
#include <malloc.h> /* malloc() _msize() */
#include <stdio.h> /* printf() */

int main()
{
 int size;
 int *buffer;

 buffer = malloc(100 * sizeof(int));
 size = _msize(buffer);
 printf("Allocated %d bytes for 100 integers\n", size);

 return(0);
}

/* offsetof example */
/*
This program uses the offsetof command to show the effect
of changing alignment boundaries within a structure.
It produces this output:

 In STRUCT1, two_bytes begins at byte 1.
 In STRUCT2, two_bytes begins at byte 2.

By default, the 16-bit compiler aligns structure members
at 1-byte boundaries. With the -a2 flag set, the compiler
aligns fields on even boundaries.

The CPU often processes structure elements more quickly
when they align on even boundaries.
*/

#include <stddef.h> // offsetof()
#include <stdio.h> // printf()

#pragma option -a1 // align on bytes (default)

typedef struct {
 char one_byte;
 int two_bytes;
} STRUCT1;

#pragma option -a2 // align on even bytes

typedef struct {
 char one_byte;
 int two_bytes;
} STRUCT2;

#pragma option -a. // restore command-line option

void main()
{
 printf("In STRUCT1, two_bytes begins at byte %d.\n",
 offsetof(STRUCT1, two_bytes));

 printf("In STRUCT2, two_bytes begins at byte %d.\n",
 offsetof(STRUCT2, two_bytes));
}

/* _pipe example */
/* _pipe example */
#include <windows.h> //for SECURITY_ATTRIBUTES
#include <stdlib.h>
#include <stdio.h>
#include <io.h>
#include <fcntl.h>
#include <process.h>

void main(int argc, char *argv[])
{
 int retcode, stat, pid;
 char asc_handle[10];
 SECURITY_ATTRIBUTES sa;
 HANDLE s_hFileMap;
 LPVOID lpView;

 if (argc > 1) /* this is the child */
 {
 /* Get the read pipe handle from command line,
 * and set the handle to binary.
 */

 printf("Child: The handle passed as 2nd argument is: %s\n",
argv[1]);

 s_hFileMap = (HANDLE) atoi(argv[1]);

 lpView = MapViewOfFile(s_hFileMap,
 FILE_MAP_READ|FILE_MAP_WRITE,
 0,0,0);
 if (lpView == NULL)
 {
 perror("Child: unable to read pipe");
 retcode = 255;
 }

 printf("Child: returning %s to parent\n",lpView);

 retcode = atoi((char*) lpView);
 UnmapViewOfFile(lpView);
 CloseHandle(s_hFileMap); //Child is responsible for this
 exit(retcode);
 }
 else /* this is the parent */
 {
 //Here we set up the security attributes of the file mapping object
 //so that we can inherit it from the child process. Alternatively
 //and more cheaply, we could use just the name of the mapping
object

 //once inside the child process and call OpenFileMapping with that

 //name.
 sa.nLength = sizeof(sa);
 sa.lpSecurityDescriptor = NULL;
 sa.bInheritHandle = TRUE;

 s_hFileMap = CreateFileMapping((HANDLE) 0xFFFFFFFF,//in memory
 &sa, //security
attrib

 PAGE_READWRITE,
 0, //min. size
 256, //size

 NULL); //give mapping
object no name

 lpView = MapViewOfFile(s_hFileMap,
 FILE_MAP_READ|FILE_MAP_WRITE,
 0,0,0);
 if (lpView == NULL)
 {
 perror("Parent: unable to create file mapping");
 exit(1);
 }

 sprintf(asc_handle,"%d",s_hFileMap);
 retcode = 10;
 if (sprintf((char*)lpView,"%d",retcode) == EOF)

 {
 perror("Parent: unable to write to pipe");
 exit(1);
 }

 /* Call ourself with read handle as argument.
 */
 if ((pid = spawnl(P_NOWAIT, argv[0], argv[0],
 asc_handle, NULL)) == -1)
 perror("Parent: spawnl failed");
 else
 {
 printf("Parent: spawned child process %d\n",pid);
 if (wait(&stat) != pid)
 perror("Parent: wait failure");

 else
 {
 if ((stat & 0xff) == 0)
 printf("Parent: child returned %d\n", stat >> 8);
 else
 printf("Parent: child terminated abnormally\n");

 }
 }
 UnmapViewOfFile(lpView);
 CloseHandle(s_hFileMap);
 exit(0);
 }
}

/* send example */
/*
 There are two short programs here. SEND spawns a child
 process, RECEIVE. Each process holds one end of a
 pipe. The parent transmits its command-line argument
 to the child, which prints the string and exits.

 IMPORTANT: The parent process must be linked with
 the \32bit\fileinfo.obj file. The code in fileinfo
 enables a parent to share handles with a child.
 Without this extra information, the child cannot use
 the handle it receives.
*/

/* SEND */

#include <fcntl.h> // _pipe()
#include <io.h> // write()
#include <process.h> // spawnl() cwait()
#include <stdio.h> // puts() perror()
#include <stdlib.h> // itoa()
#include <string.h> // strlen()

#define DECIMAL_RADIX 10 // for atoi()
enum PIPE_HANDLES { IN, OUT }; // to index the array of handles

int main(int argc, char *argv[])
{
 int handles[2]; // in- and
//outbound pipe handles
 char handleStr[10]; // a handle
//stored as a string
 int pid;
 // system's ID for child process

 if (argc <= 1)
 {
 puts("No message to send.");
 return(1);
 }

 if (_pipe(handles, 256, O_TEXT) != 0)
 {
 perror("Cannot create the pipe");
 return(1);
 }

 // store handle as a string for passing on the command line
 itoa(handles[IN], handleStr, DECIMAL_RADIX);

 // create the child process, passing it the inbound pipe handle
 spawnl(P_NOWAIT, "receive.exe", "receive.exe", handleStr, NULL);

 // transmit the message
 write(handles[OUT], argv[1], strlen(argv[1])+1);

 // when done with the pipe, close both handles
 close(handles[IN]);
 close(handles[OUT]);

 // wait for the child to finish
 wait(NULL);
 return(0);
}

/* _setcursortype example */
#include <conio.h>

int main()
{
 // tell the user what to do
 clrscr();
 cputs("Press any key three times.\n\r");
 cputs("Each time the cursor will change shape.\n\r");

 gotoxy(1,5); // show a solid cursor
 cputs("Now the cursor is solid.\n\r");
 _setcursortype(_SOLIDCURSOR);

 while(!kbhit()) {}; // wait to proceed
 getch();

 gotoxy(1,5); // remove the cursor
 cputs("Now the cursor is gone.");
 clreol();
 gotoxy(1,6);
 _setcursortype(_NOCURSOR);

 while(!kbhit()) {}; // wait to proceed
 getch();

 gotoxy(1,5); // show a normal cursor
 cputs("Now the cursor is normal.");
 clreol();
 gotoxy(1,6);
 _setcursortype(_NORMALCURSOR);

 while(!kbhit()) {}; // wait to proceed
 getch();

 clrscr();
 return(0);
}

/* _dos_commit example */
#include <dos.h>
#include <errno.h>
#include <conio.h>

void main(void)
{
 char save[] = "to disk.",
 prompt[] = " File exist,overwrite?[y/n]",
 err[] = "Error occured. ",
 newline[] = "\n\r";

int handle, ch;
unsigned count;

 /* Open file and create and overwrite it */

 if (_dos_createnew("DUMMY.FIL",_A_NORMAL, &handle) !=0)
 {
 if (errno == EEXIST)
 {
 /* Use _dos_write to display prompts*/
 _dos_write (1, prompt, sizeof(prompt) -1, &count);
 ch = bdos(1, 0, 0) & 0x00ff;
 if ((ch == 'y') || (ch == 'Y'))
 _dos_creat("DUMMY.FIL", _A_NORMAL, &handle);
 _dos_write(1,newline, sizeof(newline) -1, &count);
 }
 }

 /* Write to file; output passes through operating system's buffer*/

 if (_dos_write(handle, save, sizeof(save),&count) != 0)

 {
 _dos_write(1, err, sizeof(err) - 1, &count);
 _dos_write(1, newline, sizeof(newline) -1, &count);
 }

 /* Write directly to file with no intermediate buffering */
 if (_dos_commit(handle) != 0)
 {
 _dos_write(1, err, sizeof(err) -1, &count);
 _dos_write(1, newline, sizeof(newline) - 1 , &count);
 }

 /* Close file */
 if (_dos_close(handle) != 0)
 {
 _dos_write(1, err, sizeof(err) -1, &count);
 _dos_write(1, newline, sizeof(newline) -1, &count);
 }

}

/* _expand example */
#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>

void main(void)
{
 char *bufchar;

 printf("Allocate a 512 element buffer\n");
 if((bufchar = (char *) calloc(512, sizeof(char))) == NULL)
 exit(1);
 printf("Allocated %d bytes at %Fp\n",
 _msize (bufchar), (void __far *)bufchar);

 if ((bufchar = (char *) _expand (bufchar, 1024)) == NULL)
 printf ("can not expand");
 else
 printf (" Expanded block to %d bytes at %Fp\n",
 _msize(bufchar) , (void __far *)bufchar);
/* free memory */
 free(bufchar);
 exit (0);
}

/* _get_osfhandle and _open_osfhandle example */
#include <windows.h>
#include <fcntl.h>
#include <stdio.h>
#include <io.h>
#ifndef __FLAT__
#error This Example must be compiled using 32 bit compiler
#endif

//Example for _get_osfhandle() and _open_osfhandle()

BOOL InitApplication(HINSTANCE hInstance);
HWND InitInstance(HINSTANCE hInstance, int nCmdShow);
LRESULT FAR PASCAL _export MainWndProc(HWND hWnd, UINT message,
 WPARAM wParam, LPARAM lParam);
Example_get_osfhandle(HWND hWnd);

#pragma argsused
int PASCAL WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)

{
MSG msg; // message

 if (!InitApplication(hInstance)) // Initialize shared things
 return (FALSE); // Exits if unable to initialize

 /* Perform initializations that apply to a specific instance */

 if (!(InitInstance(hInstance, nCmdShow)))
 return (FALSE);

 /* Acquire and dispatch messages until a WM_QUIT message is received. */

 while (GetMessage(&msg, // message structure
 NULL, // handle of window receiving the message
 NULL, // lowest message to examine
 NULL)) // highest message to examine
 {
 TranslateMessage(&msg); // Translates virtual key codes
 DispatchMessage(&msg); // Dispatches message to window
 }

 return (msg.wParam); // Returns the value from PostQuitMessage

}
BOOL InitApplication(HINSTANCE hInstance)
{
 WNDCLASS wc;

 // Fill in window class structure with parameters that describe the
 // main window.

 wc.style = CS_HREDRAW | CS_VREDRAW; // Class style(s).

 wc.lpfnWndProc = (long (FAR PASCAL*)(void *,unsigned int,unsigned int,
long))MainWndProc; // Function to retrieve messages for

 // windows of this class.
 wc.cbClsExtra = 0; // No per-class extra data.
 wc.cbWndExtra = 0; // No per-window extra data.
 wc.hInstance = hInstance; // Application that owns the class.
 wc.hIcon = LoadIcon(NULL, IDI_APPLICATION);
 wc.hCursor = LoadCursor(NULL, IDC_ARROW);
 wc.hbrBackground = GetStockObject(WHITE_BRUSH);
 wc.lpszMenuName = NULL; // Name of menu resource in .RC file.
 wc.lpszClassName = "Example"; // Name used in call to CreateWindow.

 /* Register the window class and return success/failure code. */

 return (RegisterClass(&wc));

}
HWND InitInstance(HINSTANCE hInstance, int nCmdShow)
{
 HWND hWnd; // Main window handle.

 /* Create a main window for this application instance. */

 hWnd = CreateWindow(
 "Example", // See RegisterClass() call.
 "Example _get_osfhandle _open_osfhandle (32 bit)", // Text for window
title bar.

 WS_OVERLAPPEDWINDOW, // Window style.
 CW_USEDEFAULT, // Default horizontal position.
 CW_USEDEFAULT, // Default vertical position.
 CW_USEDEFAULT, // Default width.
 CW_USEDEFAULT, // Default height.
 NULL, // Overlapped windows have no parent.
 NULL, // Use the window class menu.
 hInstance, // This instance owns this window.
 NULL // Pointer not needed.
);

 /* If window could not be created, return "failure" */

 if (!hWnd)
 return (FALSE);

 /* Make the window visible; update its client area; and return "success"
*/

 ShowWindow(hWnd, nCmdShow); // Show the window
 UpdateWindow(hWnd); // Sends WM_PAINT message
 return (hWnd); // Returns the value from PostQuitMessage

}
#pragma argsused
LRESULT FAR PASCAL _export MainWndProc(HWND hWnd, UINT message,
 WPARAM wParam, LPARAM lParam)
{

 switch (message)

 {
 case WM_CREATE:
 {
 Example_get_osfhandle(hWnd);
 return NULL;
 }
 case WM_QUIT:
 case WM_DESTROY: // message: window being destroyed
 PostQuitMessage(0);
 break;

 default: // Passes it on if unproccessed
 return (DefWindowProc(hWnd, message, wParam, lParam));
 }
}

Example_get_osfhandle(HWND hWnd)
{
 long osfHandle;
 char str[128];
 int fHandle = open("file1.c", O_CREAT|O_TEXT);
 if(fHandle != -1)
 {
 osfHandle = _get_osfhandle(fHandle);
 sprintf(str, "file handle = %lx OS file handle = %lx", fHandle,
osfHandle);

 MessageBox(hWnd,str,"_get_osfhandle",MB_OK|MB_ICONINFORMATION);
 close(fHandle);

 fHandle = _open_osfhandle(osfHandle, O_TEXT);
 sprintf(str, "file handle = %lx OS file handle = %lx", fHandle,
osfHandle);

 MessageBox(hWnd,str,"_open_osfhandle",MB_OK|MB_ICONINFORMATION);
 close(fHandle);

 }
 else
 MessageBox(hWnd,"File Open Error","WARNING",MB_OK|MB_ICONSTOP);
return 0;
}

/* _heapset example */
#include <windowsx.h>
#include <malloc.h>
#include <stdio.h>
#include <stdlib.h>

#ifndef __FLAT__
#error This Example must be compiled using 32 bit compiler
#endif
BOOL InitApplication(HINSTANCE hInstance);
HWND InitInstance(HINSTANCE hInstance, int nCmdShow);
LRESULT FAR PASCAL _export MainWndProc(HWND hWnd, UINT message,
 WPARAM wParam, LPARAM lParam);
void ExampleHeapSet(HWND hWnd);
#pragma argsused
int PASCAL WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)

{
MSG msg; // message

 if (!InitApplication(hInstance)) // Initialize shared things
 return (FALSE); // Exits if unable to initialize

 /* Perform initializations that apply to a specific instance */

 if (!(InitInstance(hInstance, nCmdShow)))
 return (FALSE);

 /* Acquire and dispatch messages until a WM_QUIT message is received. */

 while (GetMessage(&msg, // message structure
 NULL, // handle of window receiving the message
 NULL, // lowest message to examine
 NULL)) // highest message to examine
 {
 TranslateMessage(&msg); // Translates virtual key codes
 DispatchMessage(&msg); // Dispatches message to window
 }

 return (msg.wParam); // Returns the value from PostQuitMessage

}
BOOL InitApplication(HINSTANCE hInstance)
{
 WNDCLASS wc;

 // Fill in window class structure with parameters that describe the
 // main window.

 wc.style = CS_HREDRAW | CS_VREDRAW; // Class style(s).
 wc.lpfnWndProc = (long (FAR PASCAL*)(void *,unsigned int,unsigned int,
long))MainWndProc; // Function to retrieve messages for

 // windows of this class.

 wc.cbClsExtra = 0; // No per-class extra data.
 wc.cbWndExtra = 0; // No per-window extra data.
 wc.hInstance = hInstance; // Application that owns the class.
 wc.hIcon = LoadIcon(NULL, IDI_APPLICATION);
 wc.hCursor = LoadCursor(NULL, IDC_ARROW);
 wc.hbrBackground = GetStockObject(WHITE_BRUSH);
 wc.lpszMenuName = NULL; // Name of menu resource in .RC file.
 wc.lpszClassName = "Example"; // Name used in call to CreateWindow.

 /* Register the window class and return success/failure code. */

 return (RegisterClass(&wc));

}
HWND InitInstance(HINSTANCE hInstance, int nCmdShow)
{
 HWND hWnd; // Main window handle.

 /* Create a main window for this application instance. */

 hWnd = CreateWindow(
 "Example", // See RegisterClass() call.
 "Example _heapset 32 bit only", // Text for window title bar.
 WS_OVERLAPPEDWINDOW, // Window style.
 CW_USEDEFAULT, // Default horizontal position.
 CW_USEDEFAULT, // Default vertical position.
 CW_USEDEFAULT, // Default width.
 CW_USEDEFAULT, // Default height.
 NULL, // Overlapped windows have no parent.
 NULL, // Use the window class menu.
 hInstance, // This instance owns this window.
 NULL // Pointer not needed.
);

 /* If window could not be created, return "failure" */

 if (!hWnd)
 return (FALSE);

 /* Make the window visible; update its client area; and return "success"
*/

 ShowWindow(hWnd, nCmdShow); // Show the window
 UpdateWindow(hWnd); // Sends WM_PAINT message
 return (hWnd); // Returns the value from PostQuitMessage

}

void ExampleHeapSet(HWND hWnd)
{
 int hsts;
 char *buffer;

 if ((buffer = (char *)malloc(1)) == NULL)
 exit(0);
 hsts = _heapset('Z');

 switch (hsts)
 {
 case _HEAPOK:
 MessageBox(hWnd,"Heap is OK","Heap",MB_OK|MB_ICONINFORMATION);
 break;
 case _HEAPEMPTY:
 MessageBox(hWnd,"Heap is empty","Heap",MB_OK|MB_ICONINFORMATION);
 break;
 case _HEAPBADNODE:
 MessageBox(hWnd,"Bad node in heap","Heap",MB_OK|MB_ICONINFORMATION);
 break;
 default:
 break;

 }

 free (buffer);
}
#pragma argsused
LRESULT FAR PASCAL _export MainWndProc(HWND hWnd, UINT message,
 WPARAM wParam, LPARAM lParam)
{

 switch (message) {
 case WM_CREATE:
 {
 //Example _heapset
 ExampleHeapSet(hWnd);
 return NULL;
 }
 case WM_QUIT:
 case WM_DESTROY: // message: window being destroyed
 PostQuitMessage(0);
 break;

 default: // Passes it on if unproccessed
 return (DefWindowProc(hWnd, message, wParam, lParam));
 }
}

/* _searchstr example */
#include <stdio.h>
#include <stdlib.h>

char buf[_MAX_PATH];

int main(void)
{
 /* look for TLINK.EXE */
 _searchstr("TLINK.EXE", "PATH", buf);
 if (buf[0] == '\0')
 printf ("TLINK.EXE not found\n");
 else
 printf ("TLINK.EXE found in %s\n", buf);

 return 0;
}

/* _popen and _pclose example */
/* this program initiates a child process to run the dir command
 and pipes the directory listing from the child to the parent.
*/

#include <stdio.h> // popen() pclose() feof() fgets() puts()
#include <string.h> // strlen()

int main()
{
 FILE* handle; // handle to one end of pipe
 char message[256]; // buffer for text passed through pipe
 int status; // function return value

 // open a pipe to receive text from a process running "DIR"
 handle = _popen("dir /b", "rt");
 if (handle == NULL)
 {
 perror("_popen error");
 }

 // read and display input received from the child process
 while (fgets(message, sizeof(message), handle))
 {
 fprintf(stdout, message);
 }

 // close the pipe and check the return status
 status = _pclose(handle);
 if (status == -1)
 {
 perror("_pclose error");
 }

 return(0);
}

/* wctomb example */
#include <stdio.h>
#include <stdlib.h>

void main(void)
{
 int x;
 wchar_t wc = L'a';
 char *pmbNULL = NULL;
 char *pmb = (char *)malloc(sizeof(char));

 printf (" Convert a wchar_t array into a multibyte string:\n");
 x = wctomb(pmb, wc);
 printf ("Character converted: %u\n", x);
 printf ("Multibyte string: %1s\n\n",pmb);

 printf (" Convert when target is NULL\n");
 x = wctomb(pmbNULL, wc);
 printf ("Character converted: %u\n",x);
 printf ("Multibyte stri ng: %1s\n\n",pmbNULL);

}

/* wcstombs example */
#include <stdio.h>
#include <stdlib.h>

void main(void)
{
 int x;
 char *pbuf = (char*)malloc(MB_CUR_MAX);
 wchar_t *pwcsEOL = L'\0';
 char *pwchi= L"Hi there!";

 printf (" Convert entire wchar string into a multibyte string:\n");
 x = wcstombs(pbuf, pwchi,MB_CUR_MAX);
 printf ("Character converted: %u\n", x);
 printf ("Multibyte string character: %1s\n\n",pbuf);

 printf (" Convert when target is NULL\n");
 x = wcstombs(pbuf, pwcsEOL, MB_CUR_MAX);
 printf ("Character converted: %u\n",x);
 printf ("Multibyte string: %1s\n\n",pbuf);

}

Using EasyWin
See also
Borland C++ provides EasyWin, a feature that lets you compile standard DOS applications which use
traditional TTY style input and output so they can run as true Windows programs. With EasyWin, you do
not need to change a DOS program to run it under Windows.
Note: You cannot use EasyWin with the DLL version of the run-time library.
EasyWin includes:
clreol gotoxy wherey
clrscr wherex
These functions have the same names (and uses) as functions in conio.h header file. Classes in
constrea.h provide console I/O functionality for use with C++ streams.
The following routines can be ported to EasyWin programs but are not available in 16-bit Windows
programs:
fgetchar kbhit puts
getch perror scanf
getchar printf vprintf
getche putch vscanf
gets putchar
These functions are provided to simplify porting of existing DOS code into 16-bit Windows applications.

Converting DOS applications to Windows
C Example C++ Example
To convert console-based applications that use standard files or iostream functions, check the EasyWin
Target Type using TargetExpert in the IDE. Borland C++ will detect that your program does not contain a
WinMain function (normally required for Windows applications) and link the EasyWin library. When you
run your program in the Windows environment, a standard window is created, and your program takes
input and produces output for that window as if it were the standard screen.
You can use the EasyWin window any time to request input to or specify output from a TTY device. This
means that in addition to stdin and stdout, all stderr, stdaux, and cerr devices are all connected to this
window.

EasyWin C example
#include <stdio.h>

int main()
{
 printf("Hello Windows\n");
 return 0;
}

EasyWin C++ example
#include <iostream.h>

int main()
{
 cout << "Hello Windows\n";
 return 0;
}

Using EasyWin from within a Windows program
See also Example
Borland C++ provides EasyWin so you can quickly and easily convert your DOS applications to 16-bit
Windows programs.
You can also use EasyWin from within 16-bit Windows programs. For example, you can add printf
functions to your program code to help debug a Windows program.
To use EasyWin from within a Windows program, call _InitEasyWin() before performing any standard
input or output.

_InitEasyWin example
#include <stdio.h>
#include <windows.h>

#pragma argsused

int PASCAL WinMain(HANDLE hInstance, HANDLE hPrevInstance,
 LPSTR lpszCmdParam, int nCmdShow)
{
 char *p;

 _InitEasyWin();

 p = "This is an example of how Borland C++"
 " will automatically\nconcatenate"
 " very long strings,\nresulting in nicer"
 " looking programs.";

 printf(p);

 return(0);
}

EasyWin features
See also
EasyWin now has support for several new features:
{bullet.bmp} Printing support lets you print the contents of the EasyWin window.
{bullet.bmp} Viewable scrolling buffer stores either 100 or 400 lines of text (depending on the memory

model). This buffer automatically scrolls as you move the vertical or horizontal scroll bar thumb tabs.
{bullet.bmp} Redirects output to a file of your choice when the buffer runs out of space.
{bullet.bmp} Full Windows Clipboard support, lets you paste to standard input and copying from the

buffer onto the Clipboard, using either the keyboard or the mouse.

EasyWin: Printing
Use the Print command on the system menu to print the contents of an EasyWin window. It activates the
standard Print dialog from which you can specify printing options.
By default, EasyWin prints 80 columns and approximately 54 lines on U.S. Letter size (8.5" x 11") paper.
Note: The Print command is grayed if you do not have a default printer installed under Windows. If you

have a printer installed but it is not the default, make it the default printer before attempting to
print from an EasyWin application.

If you have trouble printing on a dot-matrix printer, add the following global variable to your main source
file:
BOOL _UseDefaultPrinterFont;

Set this variable to TRUE and EasyWin will print using the default font for your printer instead of the
standard EasyWin printer font.
You should declare this variable as external and set it to TRUE within your main() function:
extern BOOL _UseDefaultPrinterFont;
 .
 .
 .
int main()
{
 _UseDefaultPrinterFont = TRUE;
 .
 .
 .
}
Note: This variable is not recommended for use with laser or inkjet printers.

EasyWin: Scrolling Buffer
EasyWin caches your screen output into a buffer of either:
{bullet.bmp} 400 lines (for compact and large memory models)
{bullet.bmp} 100 lines (for small and medium memory models)
You can view the buffer any time by using the scroll bar or any of the standard window movement keys.
You can change the buffer size of your EasyWin application by declaring the following global variable in
your main source file with the appropriate initializer:
POINT _BufferSize = { X, Y };

where:
X is the number of columns you want. Setting X to a value other than 80 is not recommended as

the results are unpredictable.
Y is the number of lines you want. If you need to specify a value for Y greater than 100, use the

compact or large memory model. The small and medium memory models have limited local heap
space for the buffer.

Autoscrolling
If you click and drag either the vertical or horizontal scroll bar thumb tab, the text in the buffer
automatically scrolls up and down or left and right. This is a useful feature when you want to quickly
scan large amounts of data in the EasyWin window.

EasyWin: saving text in an output file
If you want to redirect the output of your program to a file, add the following global variable to your main
source file:
extern char *_OutputFileName = "C:\\myoutput.txt";

Make _OutputFileName the name of the file in which to store the redirected output.

Note: If the output file you specified already exists, it is deleted without warning.

EasyWin: Clipboard support
EasyWin lets you to cut, copy, and paste text from an EasyWin application window.
To select text, use the Edit command from the system menu and choose Mark. This puts you in Mark
mode. You can use the mouse or the keyboard to select text. You can move the cursor and select text
using the standard rules and keystrokes for this feature.

Action Explanation
Enter Exits Mark mode. Any marked text is copied to the Clipboard.
Escape Exits Mark mode. No text is selected.
Right mouse button same as Enter.
Edit|Copy same as Enter.
Edit|Paste pastes text into stdin, receiving the contents of the Clipboard as input to your

program, merging it with any keyboard input.

Example
If you are writing a program that requests its data from the keyboard via scanf, cin, or other similar
stdio/conio functions:
1. Write a data file that contains your entire input.
2. Load that file into NotePad, select it, and copy it to the Clipboard.
3. Run your program, go to the system edit menu, and choose Paste.
Your program accepts the contents of Clipboard as input.
Notes:
{bullet.bmp} The Paste command is grayed if the Clipboard contains no objects of type CF_TEXT or

if your program has terminated.
{bullet.bmp} The Copy command is grayed if you have not selected a block of text.

International API overview
See also
The Borland C++ provides support for developing international applications. The Borland C++ runtime
library now includes extensions to many of the single-byte routines. These extensions allow you to write
applications that can process multibyte or Unicode types.

International API routines
See also
To allow maximum portability, Borland C++ provides a portable macro for that expands to a multibyte
or a Unicode routine without having to rewrite the source code. When you use the portable macros, you
can recompile and define one of the following macros.
_MBCS enables multibyte routines
_UNICODE enables wide-character routines
If neither macro is defined, the single-byte routines are used.
The following table provides a list of the routines that are available for international applications. The
column Unicode platform support provides a list of the functions that are not supported on Windows
NT. Some Unicode functions are available as macros. When a routine is available as a macro, the
macro version is used by default. To get the function version of a routine, you must undefine the macro.

Single byte Portable macro Multibyte Unicode Unicode platform
support

_istlegal _ismbclegal - Win 95, NT
_istlead _ismbblead - Win 95, NT
_isleadbyte _ismbblead - Win 95, NT

_argv _targv _wargv Win NT
_atoi64 _ttoi64 _wtoi64 Win 95, NT
_atold _ttold _wtold Win 95, NT
closedir _tclosedir wclosedir WIN NT
_environ _tenviron _wenviron Win NT
_fdopen _tfdopen _wfdopen Win 95, NT
_fsopen _tfsopen _wfsopen Win NT
_fullpath _tfullpath _wfullpath Win NT
_getdcwd _tgetdcwd _wgetdcwd Win NT
_i64toa _i64tot _i64tow Win 95, NT
_makepath _tmakepath _wmakepath Win 95, NT
_popen _tpopen _wpopen Win NT
readdir _treaddir wreaddir WIN NT
_rtl_chmod _trtl_chmod _wrtl_chmod Win NT
_rtl_creat _trtl_creat _wrtl_creat Win NT
_rtl_open _trtl_open _wrtl_open Win NT
_searchenv _tsearchenv _wsearchenv Win NT
_searchstr _tsearchstr _wsearchstr Win NT
_snprintf _sntprintf _snwprintf Win 95, NT
_splitpath _tsplitpath _wsplitpath Win 95, NT

_strdate _tstrdate _wstrdate Win 95, NT
_strdec _tcsdec _mbsdec _wcsdec Win 95, NT
_stricoll _tcsicoll _mbsicoll _wcsicoll Win 95, NT
_strinc _tcsinc _mbsinc _wcsinc Win 95, NT
_strncnt _tcsnbcnt _mbsnbcnt _wcsncnt Win 95, NT
_strncoll _tcsnccoll _mbsncoll _wcsncoll Win 95, NT
_strncoll _tcsncoll _mbsnbcoll _wcsncoll Win 95, NT
_strnextc _tcsnextc _mbsnextc _wcsnextc Win 95, NT
_strnicoll _tcsncicoll _mbsnbicoll _wcsnicoll Win 95, NT
_strnicoll _tcsnicoll _mbsnbicoll _wcsnicoll Win 95, NT
_strninc _tcsninc _mbsninc _wcsninc Win 95, NT
_strspnp _tcsspnp _mbsspnp _wcsspnp Win 95, NT
_strtime _tstrtime _wstrtime Win 95, NT
_strtold _tcstold _wcstold Win 95, NT
_tzname _ttzname _wtzname Win NT
_ui64toa _ui64tot _ui64tow Win 95, NT
access _taccess _waccess Win NT
asctime _tasctime _wasctime Win 95, NT
atof _ttof _wtof Win 95, NT
atoi _ttoi _wtoi Win 95, NT
atol _ttol _wtol Win 95, NT
chdir _tchdir _wchdir Win NT
chmod _tchmod _wchmod Win NT
creat _tcreat _wcreat Win NT
ctime _tctime _wctime Win 95, NT
execl _texecl _wexecl Win NT
execle _texecle _wexecle Win NT
execlp _texeclp _wexeclp Win NT
execlpe _texeclpe _wexeclpe Win NT
execv _texecv _wexecv Win NT
execve _texecve _wexecve Win NT
execvp _texecvp _wexecvp Win NT
execvpe _texecvpe _wexecvpe Win NT
fgetc _fgettc fgetwc Win 95, NT
_fgetchar _fgettchar _fgetwchar Win 95, NT

fgets _fgetts fgetws Win 95, NT
findfirst _tfindfirst _wfindfirst Win NT
findnext _tfindnext _wfindnext Win NT
fnmerge _tfnmerge _wfnmerge Win NT
fnsplit _tfnsplit _wfnsplit Win NT
fopen _tfopen _wfopen Win NT
fprintf _ftprintf fwprintf Win 95, NT
fputc _fputtc fputwc Win 95, NT
_fputchar _fputtchar _fputwchar Win 95, NT
fputs _fputts fputws Win 95, NT
freopen _tfreopen _wfreopen Win NT
getc _gettc getwc Win 95, NT
getchar _gettchar getwchar Win 95, NT
getcurdir _tgetcurdir _wgetcurdir Win NT
getcwd _tgetcwd _wgetcwd Win NT
getenv _tgetenv _wgetenv Win 95, NT
gets _getts _getws Win 95, NT
isalnum _istalnum _ismbcalnum iswalnum Win 95, NT
isalpha _istalpha _ismbcalpha iswalpha Win 95, NT
isascii _istascii iswascii Win 95, NT
iscntrl _istntrl iswcntrl Win 95, NT
isdigit _istdigit _ismbcdigit iswdigit Win 95, NT
isgraph _istgraph _ismbcgraph iswgraph Win 95, NT
islower _istlower _ismbclower iswlower Win 95, NT
isprint _istprint _ismbcprint iswprint Win 95, NT
ispunct _istpunct _ismbcpunct iswpunct Win 95, NT
isspace _istspace _ismbcspace iswspace Win 95, NT
isupper _istupper _ismbcupper iswupper Win 95, NT
isxdigit _istxdigit iswxdigit Win 95, NT
ltoa _ltot _ltow Win 95, NT
main _tmain wmain Win NT
memchr _tmemchr _wmemchr Win 95, NT
memcpy _tmemcpy _wmemcpy Win 95, NT
memset _tmemset _wmemset Win 95, NT
mkdir _tmkdir _wmkdir Win NT

_mktemp _tmktemp _wmktemp Win 95, NT
open _topen _wopen Win NT
opendir _topendir wopendir WIN NT
perror _tperror _wperror Win 95, NT
printf _tprintf wprintf Win 95, NT
putc _puttc putwc Win 95, NT
putchar _puttchar putwchar Win 95, NT
putenv _tputenv _wputenv Win NT
puts _putts _putws Win 95, NT
remove _tremove wremove Win NT
rename _trename _wrename Win NT
rewinddir _trewinddir wrewinddir WIN NT
_rmdir _trmdir _wrmdir Win NT
scanf _tscanf wscanf Win 95, NT
searchpath _tsearchpath wsearchpath Win NT
setlocale _tsetlocale _wsetlocale Win 95, NT
_sopen _tsopen _wsopen Win 95, NT
spawnl _tspawnl _wspawnl Win NT
spawnle _tspawnle _wspawnle Win NT
spawnlp _tspawnlp _wspawnlp Win NT
spawnlpe _tspawnlpe _wspawnlpe Win NT
spawnv _tspawnv _wspawnv Win NT
spawnve _spawnve _wspawnve Win NT
spawnvp _tspawnvp _wspawnvp Win NT
spawnvpe _tspawnvpe _wspawnvpe Win NT
sprintf _stprintf swprintf Win 95, NT
sscanf _stsscanf swscanf Win 95, NT
stat _tstat _wstat Win NT
_stpcpy _tcspcpy _wcspcpy Win 95, NT
strcat _tcscat _mbscat wcscat Win 95, NT
strchr _tcschr _mbschr wcschr Win 95, NT
strcmp _tcscmp _mbscmp wcscmp Win 95, NT
strcmpi _tcscmpi _mbsicmp _wcscmpi Win 95, NT
strcoll _tcscoll _mbscoll wcscoll Win 95, NT
strcpy _tcscpy _mbscpy wcscpy Win 95, NT

strcspn _tcscspn _mbscspn wcscspn Win 95, NT
strdup _tcsdup _mbsdup _wcsdup Win 95, NT
strftime _tcsftime wcsftime Win 95, NT
_stricmp _stricmp _mbsicmp _wcsicmp Win 95, NT
strlen _tcslen _mbslen wcslen Win 95, NT
strlen _tcsclen _mbslen wcslen Win 95, NT
strlwr _tcslwr _mbslwr _wcslwr Win 95, NT
strncat _tcsncat _mbsnbcat wcsncat Win 95, NT
strncat _tcsnccat _mbsncat wcsncat Win 95, NT
strncmp _tcsnccmp _mbsncmp wcsncmp Win 95, NT
strncmp _tcsncmp _mbsnbcmp wcsncmp Win 95, NT
strncmpi _tcsncmpi wcsncmpi Win 95, NT
strncnt _tcsnccnt __mbsncnt _wcsncnt Win 95, NT
strncnt _tcsnbcnt _mbsnbcnt _wcsncnt Win 95, NT
strncpy _tcsncpy _mbsnbcpy wcsncpy Win 95, NT
strncpy _tcsnccpy _mbsncpy wcsncpy Win 95, NT
strnicmp _tcsncicmp _mbsnicmp _wcsnicmp Win 95, NT
strnicmp _tcsnicmp _mbsnbicmp wcsnicmp Win 95, NT
strnset _tcsnset _mbsnbset _wcsnset Win 95, NT
strnset _tcsncset _mbsnset _wcsnset Win 95, NT
strpbrk _tcspbrk _mbspbr wcspbrk Win 95, NT
strrchr _tcsrchr _mbsrchr wcsrchr Win 95, NT
strrev _tcsrev _mbsrev _wcsrev Win 95, NT
strset _tcsset _mbsset _wcsset Win 95, NT
strspn _tcsspn _mbsspn wcsspn Win 95, NT
strstr _tcsstr _mbsstr wcsstr Win 95, NT
strtod _tcstod wcstod Win 95, NT
strtok _tcstok _mbstok wcstok Win 95, NT
strtol _tcstol wcstol Win 95, NT
strtoul _tcstoul _wcstoul Win 95, NT
strupr _tcsupr _mbsupr _wcsupr Win 95, NT
strxfrm _tcsxfrm wcsxfrm Win 95, NT
system _tsystem _wsystem Win NT
_tempnam _ttempnam _wtempnam Win 95, NT
tmpnam _ttmpnam _wtmpnam Win 95, NT

tolower _totlower _mbctolower towlower Win 95, NT
toupper _totupper _mbctoupper towupper Win 95, NT
tzset _ttzset _wtzset Win 95, NT
ultoa _ultot _ultow Win 95, NT
ungetc _ungettc ungetwc Win 95, NT
_unlink _tunlink _wunlink Win NT
_utime _tutime _wutime Win 95, NT
vfprintf _vftprintf vfwprintf Win 95, NT
vprintf _vtprintf vwprintf Win 95, NT
vsprintf _vstprintf vswprintf Win 95, NT
WinMain _tWinMain wWinMain Win NT

Unicode macros
See also

By default, these Unicode routines are available as a macro. To get the function version, you must
undefine the macro.
iswalpha
iswascii
iswcntrl
iswdigit
iswgraph
iswlower
iswprint
iswpunct
iswspace
iswupper
iswxdigit

International API formatted I/O
See also
There are now versions of some runtime library functions that take wide strings (wchar_t*) instead of
narrow strings (char*). These wide functions have similar names as their narrow counter parts but with a
w placed in it. For example: along with printf and scanf there are now wprintf and wscanf functions. The
file TCHAR.H has #define names that map to either the narrow versions (for normal ANSI char’s) or
wide versions (for Unicode support) based on the setting of the _UNICODE macro.
The standard functions operate on regular strings, and the wide versions operate on wide strings. The
printf and scanf family of functions allow you to input or output similar width or opposite width strings
with some new format conversion characters and prefixes.
The narrow versions of the functions take narrow format strings and default to reading/writing narrow
strings and chars. The wide versions of the functions take wide format strings and default to
reading/writing wide strings and chars.
Note: The capitol letter version of %s and %c (%S and %C) mean "use the opposite width than the

default for the function that was called". This means that %S in wprintf will write to a narrow string.
Also, %l and %h force the width to be either long (wide) or short (narrow).

Summary of formatted I/O functions
See also
Here is a summary of the current printf and scanf family of functions.

 ANSI function Unicode function Description
 cprintf {None} Console output
 cscanf {None} Console input
 fprintf fwprintf FILE * stream output
 fscanf fwscanf FILE * stream input
 printf wprintf STDOUT output
 scanf wscanf STDIN input
 sprintf swprintf string/memory output
 sscanf swscanf string/memory input
 vfprintf vfwprintf VA_LIST FILE* stream output
 vfscanf vfwscanf VA_LIST FILE* stream input
 vprintf vwprintf VA_LIST STDOUT output
 vscanf vwscanf VA_LIST STDIN input

Unicode output format specifiers
See also
The following table shows the formatted ouput specifiers for the Unicode family of functions. The table
shows how the format specifier is used by printf and the Unicode family of output functions to output
strings and characters.

Format
specifier

printf
function

Unicode
function

 %c narrow wide
 %C wide narrow
 %hc narrow narrow
 %hC narrow narrow
 %lc wide wide
 %lC wide wide
 %s narrow wide
 %S wide narrow
 %hs narrow narrow
 %hS narrow narrow
 %ls wide wide
 %lS wide wide

Unicode family of output functions
The Unicode output family of functions includes the following.
_snprintf
fprintf
sprintf
vfprintf
vprintf
vsprintf
_snprintf
fwprintf
swprintf
vfwprintf
vwprintf
vswprintf

Unicode input format specifiers
See also
The following table shows the formatted ouput specifiers for the Unicode family of functions. The table
shows how the format specifier is used by scanf and the Unicode family of input functions to input
strings and characters.

Format
specifier

scanf
function

Unicode
function

 %c narrow wide
 %C wide narrow
 %hc narrow narrow
 %hC narrow narrow
 %lc wide wide
 %lC wide wide
 %s narrow wide
 %S wide narrow
 %hs narrow narrow
 %hS narrow narrow
 %ls wide wide
 %lS wide wide

Unicode family of input functions
The Unicode input family of functions includes the following.
sscanf
swscanf

Extended types formatted I/O
See also
The following table shows new format specifiers implemented in Borland C++ for the printf and scanf
family of functions. This implementation allows the input and output of 64-bit integers and provides
greater I/O flexibility for other types.

Format
character

 Functionality

 %Ld __int64
 %I8d 8-bit wide integer (char)
 %I16d 16-bit wide integer (short)
 %I32d 32-bit wide integer (long)
 %I64d 64-bit wide integer (__int64)

Note that the above table uses the %d format as an example. The I8, I16, I32, I64 prefixes can be
used with the d, i, o, x, X formats, as well as the new L prefix previously allowed only on float to specify
long double type.

BIVBX library functions
This file contains information about using the BIVBX library functions defined in the header file, bivbx.h,
located in your include directory. If you are using VBX controls with your C, C++, or ObjectWindows
applications, you will need to read this information so that you can use the correct VBX functions to
initialize VBX support, return a VBX control handle, initialize a dialog window, handle events, and so
forth.
For more information about using VBX controls in your C, C++, or ObjectWindows programs, see the
online text file, VBX.TXT, which describes how to use VBXGEN, a utility program designed to generate
a header file from a VBX control library.

For more details, see these topics:
Initialization Functions
Controls
Dialogs
Properties
Events
Methods
Conversions
Dynamic strings
Pictures
Basic strings
Form files
32-bit Issues

Initialization Functions
VBXInit
VBXTerm
VBXEnableDLL

VBXInit
See also
Syntax
BOOL VBXInit(HINSTANCE instance, LPCSTR classPrefix)
Description
This function initializes VBX support for the program instance <instance> and must be called before any
other VBX function. The <classPrefix> argument specifies the string prefix used when registering VBX
window classes (NULL defaults to "BiVbx"). This function returns TRUE if successful or FALSE if unable
to initialize.

VBXTerm
See also

Syntax
void VBXTerm(void)

Description
This function terminates VBX support for the current program instance. No other VBX functions should
be called after this function.

VBXEnableDLL
See also

Syntax
BOOL VBXEnableDLL(HINSTANCE instApp, HINSTANCE instDLL)

Description
This function enables VBX support for a DLL. It should be called prior to loading dialog resources from
an instance other than the main program. It returns TRUE if successful or FALSE if an error occurs.

Controls
VBXGetHct1
VBXGetHwnd
VBXCreate

VBXGetHct1
See also

Syntax
HCTL VBXGetHctl(HWND window)

Description
This function returns the VBX control handle associated with the window <window> or NULL if
<window> is not a valid VBX control.

VBXGetHwnd
See also

Syntax
HWND VBXGetHwnd(HCTL control)

Description
This function returns the window handle associated with the VBX control <control> or NULL if <control>
is not a valid VBX control.

VBXCreate
See also

Syntax
HCTL VBXCreate(HWND windowParent, UINT id,
 LPCSTR library, LPCSTR cls,
 LPCSTR title, DWORD style,
 int x, int y, int w, int h, int file)

Description
This function creates a new instance of the control <cls> located in the VBX library <library>. The
<style> argument specifies the control window style and can be set to 0 to use the default style. The
<file> argument specifies a form file and is should be set to 0 for dynamically created controls. This
function returns NULL if it is unable to load the VBX library and create the control. <x>, <y>, <w>, and
<h> are related system coordinates.

Dialogs
VBXInitDialogs

VBXInitDialog
See also

Syntax
BOOL VBXInitDialog(HWND window, HINSTANCE instance, LPSTR id)

Description
This function is used to initialize a dialog window <window> loaded from a resource <id> (located in
<instance>) by creating VBX controls for each child window of class VBControl located in the dialog
template. It should be called by the dialog procedure when it receives the WM_INITDIALOG message.
It returns TRUE if successful, or FALSE if an error occurs. Resource <id> must be of DLGINIT type.

Properties
VBXGetArrayProp
VBXGetArrayPropByName
VBXGetNumProps
VBXGetProp
VBXGetPropByName
VBXGetPropIndex
VBXGetPropName
VBXGetPropNameBuf
VBXGetPropType
VBXIsArrayProp
VBXSetArrayProp
VBXSetArrayPropByName
VBXSetProp
VBXSetPropByName

VBXGetArrayProp
See also

Syntax
BOOL VBXGetArrayProp(HCTL control, int index, LPVOID value, int element)

Description
This function retrieves the value of element <element> of property <index> of control <control> and
places it into the buffer located at <value>. It returns TRUE if successful, or FALSE if an error occurs.

VBXGetArrayPropByName
See also

Syntax
BOOL VBXGetArrayPropByName(HCTL control, LPSTR name, LPVOID value, int
element)

Description
This function retrieves the value of element <element> of property <name> of control <control> and
places it into the buffer located at <value>. It returns TRUE if successful, or FALSE if an error occurs.

VBXGetNumProps
See also

Syntax
int VBXGetNumProps(HCTL control)

Description
This function returns the number of properties supported by the control <control> or -1 if an error occurs.

VBXGetProp
See also

Syntax
BOOL VBXGetProp(HCTL control, int index, LPVOID value)

Description
This function retrieves the value of property <index> of control <control> and places it into the buffer
located at <value>. It returns TRUE if successful, or FALSE if an error occurs.

VBXGetPropByName
See also

Syntax
ERR VBXGetPropByName(HCTL control, LPSTR name, LPVOID value)

Description
This function retrieves the value of property <name> of control <control> and places it into the buffer
located at <value>. It returns TRUE if successful, or FALSE if an error occurs.
For both VBXGetProp and VBXGetPropByName, <value> should be large enough to contain the
property data type. Enumerated properties must have sizeof(value) >= sizeof(short).

VBXGetPropIndex
See also

Syntax
int VBXGetPropIndex(HCTL control, LPCSTR name)

Description
This function returns the index of the property <name> of control <control> or -1 if an error occurs.

VBXGetPropName
See also

Syntax
LPCSTR VBXGetPropName(HCTL control, int index) [OBSOLETE: use
VBXGetPropNameBuf]

Description
This function returns the name of property <index> of control <control> or NULL if an error occurs.

VBXGetPropNameBuf
See also

Syntax
int VBXGetPropNameBuf(HCTL control, int index, LPSTR buffer, int len)

Description
This function copies up to <len> bytes of the name of property <index> of control <control> into
<buffer>. It returns the number of bytes copied or 0 if an error occurs.

VBXGetPropType
See also

Syntax
USHORT VBXGetPropType(HCTL control, int index)

Description
This function returns the type (e.g. PTYPE_BOOL) of property <index> of control <control> or -1 if an
error occurs. The property types are:

 Type Name C Type
 PTYPE_CSTRING HSZ
 PTYPE_SHORT short
 PTYPE_LONG long
 PTYPE_BOOL short
 PTYPE_COLOR COLORREF
 PTYPE_ENUM short
 PTYPE_REAL float
 PTYPE_XPOS long (twips)
 PTYPE_XSIZE long (twips)
 PTYPE_YPOS long (twips)
 PTYPE_YSIZE long (twips)
 PTYPE_PICTURE HPIC
 PTYPE_BSTRING HLSTR

VBXIsArrayProp
See also

Syntax
BOOL VBXIsArrayProp(HCTL control, int index)

Description
This function returns TRUE if the property <index> of control <control> is an array.

VBXSetArrayProp
See also

Syntax
BOOL VBXSetArrayProp(HCTL control, int index, LONG value, int element)

Description
This function sets the value of element <element> of property <index> of control <control> to <value>.
It returns TRUE if successful, or FALSE if an error occurs.

VBXSetArrayPropByName
See also

Syntax
BOOL VBXSetArrayPropByName(HCTL control, LPSTR name, LONG value, int
element)

Description
This function sets the value of element <element> of property <name> of control <control> to <value>.
It returns TRUE if successful, or FALSE if an error occurs.

VBXSetProp
See also

Syntax
BOOL VBXSetProp(HCTL control, int index, LONG value)

Description
This function sets the value of property <index> of control <control> to <value>. It returns TRUE if
successful, or FALSE if an error occurs.

VBXSetPropByName
See also

Syntax
BOOL VBXSetPropByName(HCTL control, LPSTR name, LONG value);

Description
This function sets the value of property <name> of control <control> to <value>. It returns TRUE if
successful, or FALSE if an error occurs.

Events
See also
When a VBX control generates an event, it sends a WM_VBXFIREEVENT message to its parent. The
<lParam> argument of the message contains a far pointer to a VBXEVENT structure which describes
the event:
typedef struct VBXEVENT
{
 HCTL Control;
 HWND Window;
 int ID;
 int EventIndex;
 LPCSTR EventName;
 int NumParams;
 LPVOID ParamList;
} VBXEVENT, FAR * LPVBXEVENT, NEAR * NPVBXEVENT;
Control

the handle for the control that caused the event.
Window

the window handle for the above control.
ID

the control identifier for the above window.
EventIndex

the index into the event list for that control.
EventName

the name of the event (click, mouse move, etc.>.
NumParams

the number of arguments passed to the event.
ParamList

a pointer to an array (of size <NumParams>) of event arguments in reverse order (i.e. Arg0 == e-
>ParamList[e->NumParams-1]).

VBX_EVENTARGNUM
See also

Syntax
<type> VBX_EVENTARGNUM(event,type,index)
Description
This macro retrieves an argument <index> of type <type> from VBX event <event>. Note that 0 is the
first argument index.

Example
int x = VBX_EVENTARGNUM(event,int,0);
int y = VBX_EVENTARGNUM(event,int,1);

VBX_EVENTARGSTR
See also

Syntax
HLSTR VBX_EVENTARGSTR(event,index)

Description
This macro retrieves a string argument <index> of type HLSTR from VBX event <event>. Note that 0 is
the first argument index. For example:
HLSTR s = VBX_EVENTARGSTR(event,2);

VBXGetEventIndex
See also

Syntax
int VBXGetEventIndex(HCTL control, LPCSTR name)

Description
This function returns the index of event <name> of control <index> or -1 if an error occurs.

VBXGetEventName
See also

Syntax
LPCSTR VBXGetEventName(HCTL control, int index) [OBSOLETE: use
VBXGetEventNameBuf]

Description
This function returns the index of event <index> of control <control> or NULL if an error occurs.

VBXGetEventNameBuf
See also

Syntax
int VBXGetEventNameBuf(HCTL control, int index, LPSTR buffer, int len)

Description
This function copies up to <len> bytes of the name of event <index> of control <control> into <buffer>. It
returns the number of bytes copied or 0 if an error occurs.

VBXGetNumEvents
See also

Syntax
int VBXGetNumEvents(HCTL control)
Description
This function returns the number of events supported by the control <control> or -1 if an error occurs.

Methods
VBXMethod
VBXMethodAddItem
VBXMethodDrag
VBXMethodMove
VBXMethodRefresh
VBXMethodRemoveItem

VBXMethod
See also

Syntax
BOOL VBXMethod(HCTL control, int method, long far * args)

Description
This function invokes method <method> on control <control> with arguments <args>. Note that this
function is not normally called by application programs and is described here as a means of invoking
custom control methods. It returns TRUE if successful or FALSE if an error occurs.

VBXMethodAddItem
See also

Syntax
BOOL VBXMethodAddItem(HCTL control, int index, LPCSTR item)

Description
This function invokes the standard "add item" method on control <control> where <index> is the index of
the item to be added (<item>). The exact meaning of "add item" is dependent on the type of VBX
control. It returns TRUE if successful or FALSE if an error occurs.

VBXMethodDrag
See also

Syntax
BOOL VBXMethodDrag(HCTL control, int action)

Description
This function invokes the standard "drag" method on control <control> where <action> is one of the
following:
 0 - cancel a drag operation
 1 - begin a drag operation
 2 - "drop" the control at the current location
It returns TRUE if successful or FALSE if an error occurs.

VBXMethodMove
See also

Syntax
BOOL VBXMethodMove(HCTL control, long x, long y, long w, long h)

Description
This function invokes the standard "move" method on control <control>. The default behaviour for this
method is to position the control at <x>, <y>, <w>, and <h>. It returns TRUE if successful or FALSE if
an error occurs.

VBXMethodRefresh
See also

Syntax
BOOL VBXMethodRefresh(HCTL control)

Description
This function invokes the standard "refresh" method on control <control>. The default behaviour for this
method is to update the contents of the control window before returning. It returns TRUE if successful
or FALSE if an error occurs.

VBXMethodRemoveItem
See also

Syntax
BOOL VBXMethodRemoveItem(HCTL control, int item)

Description
This function invokes the standard "remove item" method on control <control> where <index> is the
index of the item to be removed. The exact meaning of "remove item" is dependent on the type of VBX
control. It returns TRUE if successful or FALSE if an error occurs.

Conversions
See also
VBX controls make use of a combination of Twips and pixel measurements. The following functions are
used to convert between these different measurement units:

VBXTwp2PixY
VBXTwp2PixX
VBXPix2TwpY
VBXPix2TwpX

VBXTwp2PixY
See also

Syntax
SHORT VBXTwp2PixY(LONG twips)

Description
This function converts a Y coordinate <twips> from twips to pixels.

VBXTwp2PixX
See also

Syntax
SHORT VBXTwp2PixX(LONG twips)

Description
This function converts an X coordinate <twips> from twips to pixels.

VBXPix2TwpY
See also

Syntax
LONG VBXPix2TwpY(SHORT pixels)

Description
This function converts a Y coordinate <pixels> from pixels to twips.

VBXPix2TwpX
See also

Syntax
LONG VBXPix2TwpX(SHORT pixels)

Description
This function converts an X coordinate <pixels> from pixels to twips.

Dynamic strings
See also
VBX controls make extensive use of moveable zero-terminated strings, or "dynamic strings". The
following functions are used to manipulate those strings:

VBXCreateCString
VBXGetCStringLength
VBXGetCStringPtr
VBXGetCStringBuf
VBXDestroyCString
VBXLockCString
VBXLockCStringBuf
VBXUnlockCString

VBXCreateCString
See also

Syntax
HSZ VBXCreateCString(HANDLE segment, LPSTR string)

Description
This function creates a new string by allocating from the local heap in <segment> and initializing to
<string>. It returns 0 if an error occurs.

VBXGetCStringLength
See also

Syntax
int VBXGetCStringLength(HSZ string)

Description
This function returns the length of dynamic string <string> or 0 if an error occurs.

VBXGetCStringPtr
See also

Syntax
LPSTR VBXGetCStringPtr(HSZ string) [OBSOLETE: use VBXGetCStringBuf]

Description
This function returns a pointer to the contents of the dynamic string <string> or 0 if an error occurs.

VBXGetCStringBuf
See also

Syntax
int VBXGetCStringBuf(HSZ string, LPSTR buffer, int len)

Description
This function copies up to <len> bytes of the dynamic string <string> into <buffer>. It returns the number
of bytes copied or 0 if an error occurs.

VBXDestroyCString
See also

Syntax
HSZ VBXDestroyCString(HSZ string)

Description
This function destroys the dynamic string <string>. It returns <string>.

VBXLockCString
See also

Syntax
LPSTR VBXLockCString(HSZ string) [OBSOLETE: use VBXLockCStringBuf]

Description
This function locks the string <string> and returns a pointer to the contents or 0 if an error occurs.

VBXLockCStringBuf
See also

Syntax
int VBXLockCStringBuf(HSZ string, LPSTR buffer, int len)

Description
This function locks the dynamic string <string> and copies up to <len> bytes of the string contents into
<buffer>. It returns the number of bytes copied or 0 if an error occurs.

VBXUnlockCString
See also

Syntax
void VBXUnlockCString(HSZ string)

Description
This function unlocks the string <string>.

Pictures
See also
VBX controls can support a variety of "picture" property types, including bitmaps, metafiles, and icons.
These types are represented by a single structure which contains a union of the different types:
typedef struct PICTURE
{
 BYTE Type;
 union
 {
 struct
 {
 HBITMAP Bitmap;
 HPALETTE Palette;
 } Bitmap;
 struct
 {
 HANDLE Metafile;
 int xExtent;
 int yExtent;
 } Metafile;
 struct
 {
 HICON Icon;
 } Icon;
 } Data;
 BYTE Unused0;
 BYTE Unused1;
 BYTE Unused2;
 BYTE Unused3;
} PICTURE, FAR * LPPICTURE, NEAR * NPPICTURE;

#define PICTURE_EMPTY 0
#define PICTURE_BMP 1
#define PICTURE_META 2
#define PICTURE_ICON 3

VBXCreatePicture
See also

Syntax
HPIC VBXCreatePicture(LPPICTURE picture)

Description
This function creates and returns a new picture handle from a picture buffer <picture> or 0 if an error
occurs.

Example
The following code creates an icon picture:
 PICTURE pic;
 HPIC hpic;
 pic.Type = PICTURE_ICON;
 pic.Icon.Icon.Icon = LoadIcon(NULL, IDI_ASTERISK);
 hpic = VBXCreatePicture(&pic);

VBXDestroyPicture
See also

Syntax
void VBXDestroyPicture(HPIC pic)

Description
This function decrements the reference count on the picture handle <pic> and destroys it if the count
becomes 0.

VBXGetPicture
See also

Syntax
HPIC VBXGetPicture(HPIC pic, LPPICTURE picture)

Description
This function copies the contents of the picture handle <pic> into the picture buffer <picture> and returns
<pic> if successful or 0 if an error occurs.

VBXGetPictureFromClipboard
See also

Syntax
ERR VBXGetPictureFromClipboard(HPIC FAR *pic, HANDLE data, WORD format)

Description
This function creates a new picture handle <*pic> from a clipboard data handle <data> and format
<format> and returns non-zero if an error occurs. Valid clipboard formats include CF_BITMAP,
CF_METAFILEPICT, CF_DIB and CF_PALETTE.

VBXReferencePicture
See also

Syntax
HPIC VBXReferencePicture(HPIC pic)

Description
This function increments the reference count on the picture handle <pic> and returns <pic> if successful
or 0 if an error occurs.

Basic strings
See also
VBX controls make use of moveable string buffers (not zero terminated), or "Basic strings." The
following functions are used to manipulate those strings:

VBXCreateBasicString
VBXGetBasicStringPtr
VBXGetBasicStringBuf
VBXDestroyBasicString
VBXGetBasicStringLength
VBXSetBasicString

VBXCreateBasicString
See also

Syntax
HLSTR VBXCreateBasicString(LPVOID buffer, USHORT len)

Description
This function creates a Basic string of length <len> and initial contents of <buffer>. It returns 0 if an
error occurs.

VBXGetBasicStringPtr
See also

Syntax
LPSTR VBXGetBasicStringPtr(HLSTR string) [OBSOLETE: use VBXGetBasicStringBuf]

Description
This function returns a pointer to the contents of the Basic string <string> or 0 if an error occurs.

VBXGetBasicStringBuf
See also

Syntax
int VBXGetBasicStringBuf(HLSTR string, LPSTR buffer, int len)

Description
This function copies up to <len> bytes of the Basic string <string> into <buffer>. It returns the number of
bytes copied or 0 if an error occurs.

VBXDestroyBasicString
See also

Syntax
void VBXDestroyBasicString(HLSTR string)

Description
This function destroys the Basic string <string>.

VBXGetBasicStringLength
See also

Syntax
USHORT VBXGetBasicStringLength(HLSTR string)

Description
This function returns the length of the Basic string <string> or 0 if an error occurs.

VBXSetBasicString
See also

Syntax
ERR VBXSetBasicString(HLSTR far * string, LPVOID buffer, USHORT len)

Description
This function replaces the contents of the Basic string <string> with <len> bytes from <buffer>. It
returns non-zero if an error occurs.

Form Files
See also
These functions are for use with the header files generated by VBXGEN:
VBXCreateFormFile
VBXDeleteFormFile

VBXCreateFormFile
See also

Syntax
HFORMFILE VBXCreateFormFile(LONG len, LPVOID data)

Description
This function creates a temporary form file from a buffer <data> of <len> bytes of data. The form file
returned can be used as an argument to the VBXCreate() function. It returns -1 if an error occurs.

VBXDeleteFormFile
See also

Syntax
BOOL VBXDeleteFormFile(HFORMFILE file)

Description
This function deletes the form file <file> and frees any resources associate with it. It returns TRUE if
successful, or FALSE if an error occurs.

32-bit Issues
TBvxEventHandler as a base class
Choosing data types
Windows NT

TVbxEventHandler as a base class
See also
ObjectWindows windows and dialogs, including those generated by AppExpert, which use VBX controls
must have TVbxEventHandler as a base class if built as a 32-bit application. This can done manually or
with ClassExpert.

To manually make a TVbxEventHandler as a base class:
class TMyDialog : public TDialog
.
.
.

DEFINE_RESPONSE_TABLE1(TMyDialog, TDialog)
should be
class TMyDialog : public TDialog, public TVbxEventHandler
.
.
.

DEFINE_RESPONSE_TABLE2(TMyDialog, TDialog, TVbxEventHandler)

To make a TVbxEventHandler as a base class using ClassExpert
1. Select the target in the project window
2. Select View | Class Expert
3. Select the desired window or dialog class in the Classes window
4. Select the Control Notifications item in the Events window
5. Select a VBX control under the Control Notifications item
6. Select a VBX event under the VBX control item
7. Use a local menu to add a handler for the selected event
8. ClassExpert will make sure that the window or dialog class is derived from TVbxEventHandler
If TVbxEventHandler is not used as a base class, the VBX control will not appear.

Choosing data types
See also
It's important to use the correct data type when getting property values from a VBX control. This is not
always obvious. For example, the following code looks quite reasonable and works in 16-bit:
int count;
VBXGetPropByName(hCtl, "Count", &count);
This same code will not work in 32-bit since <count> is now 32-bits wide and the emulator (which is 16-
bit) only writes 16-bits of information. The lower 2 bytes of <count> are left uninitialized. The best way to
fix this is to make <count> a short:
short count;
VBXGetPropByName(hCtl, "Count", &count);
Please refer to the table in Section 4fix for appropriate data types.

Windows NT
See also
VBX events are not forwarded to ObjectWindows child objects under Windows NT. They are, however,
correctly forwarded to the parent object.

